Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 maja 2025 12:37
  • Data zakończenia: 8 maja 2025 13:01

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas instalacji wzmacniacza antenowego najpierw należy

A. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
B. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
C. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
D. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 2

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. zmiana częstotliwości
B. napięcie detektora
C. współczynnik zawartości harmonicznych
D. typ modulacji
Wybór innych parametrów jako charakterystyki wzmacniaczy małej częstotliwości może prowadzić do nieporozumień co do kluczowych aspektów ich działania. Napięcie detektora odnosi się do zastosowań detekcji sygnału w systemach radiowych i nie jest bezpośrednio związane z właściwościami wzmacniaczy. Przemiana częstotliwości dotyczy procesów modulacji sygnału i jest stosowana głównie w komunikacji, a nie w ocenie wydajności wzmacniaczy audio. Z kolei rodzaj modulacji, choć istotny w kontekście transmisji sygnału, nie jest parametrem technicznym, który bezpośrednio opisuje charakterystyki wzmacniaczy małej częstotliwości. Takie pomyłki mogą wynikać z braku zrozumienia podstawowych zasad działania wzmacniaczy i ich zastosowania w różnych dziedzinach elektroniki. Kluczowe jest, aby zrozumieć, że każdy z wymienionych parametrów ma swoje miejsce w inżynierii, ale nie jest specyficzny dla wzmacniaczy małej częstotliwości, co może zniekształcać zrozumienie ich funkcji i zastosowania. Rzeczywiste podejście do analizy wzmacniaczy wymaga znajomości specyfikacji technicznych oraz umiejętności odróżnienia pomiędzy różnymi kategoriami parametrów, co jest niezbędne dla uzyskania optymalnych wyników w praktyce inżynieryjnej.

Pytanie 3

W trakcie konserwacji działającego zasilacza komputerowego należy

A. zmienić elementy chłodzące
B. wymienić kondensatory filtrujące
C. oczyścić elementy chłodzące
D. wyczyścić styki mikroprocesora sterującego
Wyczyścić elementy chłodzące zasilacza komputerowego to kluczowy krok w konserwacji, który ma na celu zapewnienie odpowiedniej cyrkulacji powietrza oraz efektywnego odprowadzania ciepła. W miarę użytkowania zasilacza, wentylatory i radiatory mogą zbierać kurz i inne zanieczyszczenia, co prowadzi do obniżenia wydajności chłodzenia. Wysoka temperatura wewnętrzna może skrócić żywotność podzespołów zasilacza, takich jak tranzystory czy kondensatory. Regularne czyszczenie elementów chłodzących, zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak IPC-A-610, jest zatem nie tylko zalecane, ale wręcz niezbędne. Należy używać odpowiednich narzędzi, takich jak sprężone powietrze, aby uniknąć uszkodzenia elementów podczas czyszczenia. Przykładowo, czyszczenie zasilacza co kilka miesięcy w warunkach domowych, zwłaszcza w miejscach o dużym zapyleniu, może znacząco wpłynąć na jego niezawodność i stabilność energetyczną systemu komputerowego.

Pytanie 4

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 0,6
B. p = 1,0
C. p = 0,4
D. p = 0,8
Wartości współczynnika prostokątności p, które są mniejsze niż 1,0, wskazują na ograniczoną selektywność wzmacniacza, co może prowadzić do problemów w odbiorze sygnału. Odpowiedź p = 0,6 sugeruje, że wzmacniacz potrafi oddzielić sygnały, ale nie w sposób optymalny. W praktyce oznacza to, że wzmacniacz może wprowadzać zniekształcenia i szumy, co wpływa na jakość końcowego sygnału. Wartości takie jak p = 0,4 czy p = 0,8 również sugerują, że wzmacniacz nie pracuje w pełni efektywnie. Prowadzi to do typowych błędów myślowych związanych z interpretacją parametrów urządzeń elektronicznych. Niektórzy mogą sądzić, że niższe wartości p pozwalają na lepsze odbieranie sygnałów, jednak w rzeczywistości jest odwrotnie — oznaczają one mniejszą zdolność do selekcji pożądanych sygnałów oraz większą podatność na zakłócenia z innych źródeł. W kontekście inżynierii dźwięku czy telekomunikacji, zrozumienie znaczenia współczynnika prostokątności jest kluczowe dla projektowania efektywnych systemów, które muszą działać w złożonym środowisku pełnym różnych sygnałów. Dlatego zawsze warto dążyć do uzyskania wartości p jak najbliższej 1,0, aby zapewnić najlepszą jakość przenoszenia sygnału.

Pytanie 5

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. RS-485
B. I2C
C. GPIB
D. RS-232
Wybór RS-232, GPIB czy I2C jako standardów przesyłania danych, które miałyby umożliwić transmisję różnicową sygnałów, jest błędny z kilku powodów. RS-232 jest najstarszym standardem komunikacji szeregowej, który przesyła dane w sposób jednostronny, wykorzystywany głównie do połączeń krótkodystansowych. Jego konstrukcja, oparta na pojedynczym przewodzie z masą, czyni go narażonym na zakłócenia, co sprawia, że nie nadaje się do zastosowań wymagających dużej integracji w trudnych warunkach. GPIB, znany również jako IEEE 488, jest standardem komunikacji równoległej, który obsługuje wiele urządzeń, ale również nie stosuje różnicowej transmisji, co ogranicza jego zastosowanie do krótkich połączeń w środowisku laboratoryjnym. Z kolei I2C to protokół komunikacji szeregowej przeznaczony do krótkich dystansów, wykorzystywany w aplikacjach takich jak komunikacja z czujnikami czy sterownikami. I2C może przesyłać dane w dwóch liniach, ale również nie korzysta z różnicowego przesyłania sygnałów, co czyni go niewłaściwym w kontekście omawianego pytania. Typowe błędy w analizie tych standardów polegają na myleniu różnych technik przesyłania z ich możliwościami w zakresie eliminacji zakłóceń i długości połączeń. Przy wyborze odpowiedniego protokołu komunikacji kluczowe jest zrozumienie ich właściwości i ograniczeń, co pozwala na efektywne projektowanie systemów z uwzględnieniem ich przeznaczenia.

Pytanie 6

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Analogowy na zakresie I = 1 A i RWE = 50 Ω
B. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
C. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
D. Analogowy na zakresie I = 10 A i RWE = 50 Ω
Jeśli wybierzesz złe amperomierze, możesz się mocno rozczarować co do dokładności. Na przykład, analogowy amperomierz na 10 A z RWE 50 Ω, chociaż może działać, nie jest najlepszy w tej sytuacji. Z takim dużym zakresem, pomiar 0,5 A to praktycznie nic, a to może wprowadzać spore błędy. Do tego ten wysoki RWE wprowadza dodatkowy opór, a to znowu zmniejsza dokładność pomiarów, zwłaszcza przy czujniku 100 Ω. A co do cyfrowego amperomierza na 10 A z RWE 5 Ω – też nie jest to najlepszy wybór, bo przy dużym zakresie wiadomo, że pomiary małych prądów będą mniej dokładne. Przy czujniku o rezystancji 100 Ω ten dodatkowy opór zmienia charakterystykę obwodu, co prowadzi do niepewnych wyników. Często ludzie myślą, że większy zakres to lepsza dokładność, ale to nie zawsze prawda, szczególnie przy pomiarach blisko dolnej granicy zakresu. Więc fajnie jest wybierać narzędzia pomiarowe blisko mierzonych wartości, bo to naprawdę zwiększa dokładność.

Pytanie 7

Kolejność czynności przy montażu anteny satelitarnej powinna być następująca:

A. ustawienie kąta elewacji oraz azymutu, złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
B. złożenie anteny, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu
C. złożenie anteny, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej, ustawienie kąta elewacji oraz azymutu
D. złożenie anteny, ustawienie kąta elewacji oraz azymutu, przymocowanie anteny w wyznaczonym miejscu, wykonanie instalacji kablowej
Poprawna odpowiedź wskazuje, że montaż anteny satelitarnej powinien zaczynać się od jej zmontowania, co jest kluczowe dla zapewnienia stabilności i funkcjonalności całego systemu. Następnie, zamocowanie anteny w odpowiednim miejscu jest niezbędne, ponieważ musi być ona umiejscowiona w taki sposób, aby miała bezproblemowy dostęp do sygnału satelitarnego. Wykonanie instalacji kablowej to kolejny istotny krok, ponieważ prawidłowe połączenie kabli zapewni efektywne przesyłanie sygnału do odbiornika. Ostatnim etapem jest ustawienie kąta elewacji i azymutu, które są niezbędne do precyzyjnego skierowania anteny na satelitę. Należy pamiętać, że każdy z tych kroków jest ze sobą powiązany i pominięcie jednego z nich może prowadzić do znacznych problemów z jakością sygnału. W praktyce, stosowanie się do tej kolejności zapewnia, że proces montażu będzie przebiegał sprawnie i efektywnie, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej, a także z instrukcjami producentów anten.

Pytanie 8

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Pierścienia.
B. Drzewa.
C. Siatki.
D. Gwiazdy.
Wybór innych topologii, takich jak drzewo, gwiazda czy pierścień, prowadzi do ograniczonej niezawodności w porównaniu z siatką. Topologia drzewa, mimo że jest uporządkowana i łatwa do rozbudowy, jest podatna na awarie głównego węzła, co może spowodować utratę komunikacji w całej gałęzi. W przypadku awarii jednego z węzłów w strukturze drzewiastej, inne urządzenia w tej samej gałęzi przestają działać, co jest znaczącym ograniczeniem w kontekście niezawodności. Topologia gwiazdy natomiast, choć łatwa do zarządzania, również cierpi na problem centralnego węzła; jeśli centralny przełącznik ulegnie awarii, cała sieć przestaje funkcjonować. Natomiast pierścień, choć oferuje równomierną dystrybucję danych, ma swoje ograniczenia związane z potrzeba przekazywania sygnału przez wszystkie węzły. Awaria jednego z węzłów może przerwać komunikację w całym pierścieniu, co czyni ją mało odporną na błędy. Wybór odpowiedniej topologii powinien być oparty na analizie wymagań systemowych i środowiskowych. W praktyce, projektanci sieci powinni dążyć do implementacji rozwiązań, które zapewniają wysoką dostępność i odporność na awarie, co czyni topologię siatki najkorzystniejszą opcją w wielu współczesnych zastosowaniach.

Pytanie 9

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 460 zł
B. 3 240 zł
C. 3 080 zł
D. 3 540 zł
Obliczanie kosztów instalacji alarmowej może prowadzić do różnych błędnych wniosków, jeśli nie uwzględnimy wszystkich składników oraz odpowiednich stawek VAT. W przypadku podanych opcji, wiele osób może popełnić błąd, zapominając o konieczności osobnego doliczenia VAT dla materiałów oraz robocizny. Często myślą, że wystarczy zsumować netto i doliczyć jeden wspólny procent VAT, co prowadzi do nieprawidłowych wyników. Na przykład, jeśli ktoś zastosuje stawkę VAT 23% do całkowitej kwoty 3 000 zł (2 000 zł materiałów + 1 000 zł robocizny), otrzyma błędny wynik 3 690 zł, co jest całkowicie mylne, ponieważ nie uwzględnia różnych stawek VAT dla różnych usług. Ponadto, niektórzy mogą omyłkowo pomyśleć, że koszt robocizny powinien być wyższy lub pominięty w obliczeniach, co również prowadzi do zafałszowanych kalkulacji. Ważne jest, aby w takich obliczeniach zawsze rozdzielać poszczególne składniki kosztów, stosując odpowiednie stawki VAT, zgodnie z praktykami branżowymi i przepisami prawa. Poprawne podejście nie tylko zapewnia zgodność z obowiązującymi normami, ale także poprawia przejrzystość finansową projektu.

Pytanie 10

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NC, systemy domofonowe – NC
B. Systemy blokowania przejścia – NO, systemy domofonowe – NC
C. Systemy blokowania przejścia – NO, systemy domofonowe – NO
D. Systemy blokowania przejścia – NC, systemy domofonowe – NO
Wybór elektrozaczepów w systemach blokowania przejścia oraz domofonowych wymaga zrozumienia ich funkcji oraz kontekstu użycia. W przypadku systemów blokowania przejścia, zastosowanie elektrozaczepów normalnie zamkniętych (NC) może prowadzić do opóźnień w procesie otwierania, co jest nieefektywne w sytuacjach, gdy szybka reakcja jest niezbędna. Podobnie, wybór elektrozaczepów normalnie otwartych (NO) w systemach domofonowych może wprowadzać ryzyko nieautoryzowanego dostępu, ponieważ drzwi pozostają odblokowane, gdy nie ma aktywnego sygnału. Błędne założenie, że obie funkcjonalności mogą być stosowane zamiennie, prowadzi do poważnych luk w bezpieczeństwie. W praktyce, systemy NC w domofonach są bardziej odpowiednie, ponieważ ich zamknięcie blokuje dostęp do momentu potwierdzenia tożsamości użytkownika, co jest zgodne z normami bezpieczeństwa. Ignorowanie tych zasad może skutkować nieodpowiednim doborem komponentów i w konsekwencji, niższym poziomem ochrony. Warto również pamiętać, że w kontekście zabezpieczeń budynków, stosowanie odpowiednich standardów i procedur jest kluczowe, aby zapewnić skuteczność systemów zabezpieczeń oraz minimalizować ryzyko wypadków.

Pytanie 11

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,02) V
B. U = (5,00 ± 0,01) V
C. U = (5,00 ± 0,07) V
D. U = (5,00 ± 0,05) V
Niepoprawne odpowiedzi wykazują pomyłki w obliczaniu błędów pomiarowych oraz ich interpretacji. W przypadku pierwszej koncepcji, błąd ± 0,05 V nie uwzględnia błędu stałego, co prowadzi do niedoszacowania niepewności wyniku. Przyjęcie tylko błędu procentowego na poziomie 1 % przy odczycie 5 V to niewystarczające podejście, ponieważ rzeczywisty błąd instrumentu obejmuje również komponent stały, który nie może być pominięty. W drugiej opcji, ± 0,02 V nie odzwierciedla rzeczywistej sytuacji, ponieważ jest to tylko błąd wynikający z błędu stałego, podczas gdy błąd procentowy nadal pozostaje ważny i musi być uwzględniony. Z kolei w trzeciej odpowiedzi podano zbyt niski błąd, co wynika z nieprawidłowych obliczeń, które nie sumują błędów w sposób właściwy. Wysoka jakość pomiarów wymaga uwzględnienia wszystkich źródeł niepewności, co jest kluczowym elementem standardów metrologicznych. Bez prawidłowego zrozumienia tych koncepcji, pomiary mogą prowadzić do błędnych wniosków oraz decyzji, co w profesjonalnych zastosowaniach, takich jak inżynieria, może mieć poważne konsekwencje. Kluczowe jest, aby każdy pomiar był dokumentowany z uwzględnieniem pełnej charakterystyki błędów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 12

Wymiana bezpiecznika 500 mA na bezpiecznik 2 A w urządzeniu elektronicznym może prowadzić do

A. wzrostu strat cieplnych
B. uszkodzenia urządzenia
C. zmniejszenia efektywności
D. zwiększenia zużycia prądu
Wybór nieprawidłowego bezpiecznika, takiego jak zamiana 500 mA na 2 A, nie tylko może wydawać się na pierwszy rzut oka korzystny, ale w rzeczywistości prowadzi do wielu błędnych założeń. Na przykład, odpowiedzi sugerujące, że taka zmiana może prowadzić do zwiększenia strat cieplnych, są mylne, ponieważ to nie bezpośrednio wartość bezpiecznika, ale warunki pracy urządzenia oraz jego konstrukcja wpływają na straty energii. W kontekście obniżenia sprawności, można zauważyć, że zmiana bezpiecznika sama w sobie nie wpływa na efektywność energetyczną urządzenia, o ile nie prowadzi do przeciążenia. Z kolei stwierdzenie o zwiększeniu poboru prądu jest także nieprecyzyjne, ponieważ bezpiecznik nie generuje większego prądu, a jedynie zabezpiecza przed jego nadmiernym wzrostem. Rzeczywiście, większy bezpiecznik może pozwolić na przepływ większego prądu, co w praktyce prowadzi do uszkodzeń, gdy urządzenie zostanie przeciążone. Kluczowym błędem myślowym jest założenie, że wyższy bezpiecznik świadczy o lepszej ochronie. W rzeczywistości, dobór zabezpieczeń musi opierać się na dokładnych parametrach urządzenia oraz jego specyfikacji. Zgodnie z praktykami inżynieryjnymi, decyzje dotyczące wyboru bezpieczników powinny być oparte na analizie parametrów znamionowych, co podkreśla znaczenie właściwego doboru komponentów w celu zapewnienia bezpieczeństwa i niezawodności systemów elektronicznych.

Pytanie 13

Jakie urządzenie pozwala na łączenie się z Internetem poprzez sieć CATV?

A. switch
B. wzmacniacz
C. modem
D. hub
Modem jest urządzeniem, które konwertuje sygnały analogowe na cyfrowe i vice versa, umożliwiając tym samym komunikację komputerów z siecią Internet. W kontekście sieci CATV (Cable Television), modem kablowy jest niezbędnym elementem, który pozwala użytkownikom na dostęp do Internetu za pośrednictwem infrastruktury telewizyjnej. Dzięki zastosowaniu technologii DOCSIS (Data Over Cable Service Interface Specification), modemy kablowe zapewniają wysoką prędkość transferu danych oraz stabilne połączenie. Przykładem zastosowania modemu może być domowe połączenie z Internetem, gdzie użytkownik łączy modem z routerem, co umożliwia korzystanie z sieci na wielu urządzeniach jednocześnie. Warto również zaznaczyć, że dobór odpowiedniego modemu powinien być zgodny z wymaganiami dostawcy usług internetowych oraz z aktualnymi standardami branżowymi, co zapewnia optymalne parametry pracy i bezpieczeństwo połączenia.

Pytanie 14

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Stabilizator
B. Multiplekser
C. Komparator
D. Demultiplekser
Komparator to specjalistyczny układ elektroniczny, którego głównym zadaniem jest porównywanie dwóch napięć: badane napięcie oraz napięcie odniesienia. W przypadku, gdy napięcie badane jest większe od napięcia odniesienia, na wyjściu komparatora generowany jest sygnał logiczny 1, natomiast gdy jest mniejsze – sygnał logiczny 0. Komparatory są szeroko stosowane w różnorodnych aplikacjach, takich jak systemy automatyki, detektory poziomu, czy układy zabezpieczeń. Przykładowo, w aplikacjach zasilania, komparator może być używany do monitorowania napięcia akumulatora; jeśli napięcie spadnie poniżej ustalonego poziomu, układ może wyłączyć obciążenie, zapobiegając uszkodzeniu akumulatora. Z punktu widzenia standardów branżowych, komparatory powinny charakteryzować się niskim poziomem szumów oraz dużą szybkością przełączania, co zapewnia dokładność w działaniu. Warto również zwrócić uwagę na dobór odpowiednich napięć odniesienia, co może wpłynąć na stabilność i niezawodność komparatora w aplikacjach.

Pytanie 15

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
B. Połączenie przewodu za pomocą tulejek zaciskowych
C. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
D. Zainstalowanie w miejscu uszkodzenia złączki typu F
Zainstalowanie w miejscu uszkodzenia złączki typu F to najlepszy sposób na naprawę przerwanego kabla antenowego, gdyż złączki te są standardem w transmisji sygnału telewizyjnego i radiowego. Gwarantują one niskie straty sygnału oraz stabilne połączenie. Złączki typu F są zaprojektowane z myślą o minimalizacji refleksji sygnału, co jest kluczowe dla zachowania jakości odbioru. Przykładowo, gdy stosujemy złączkę F, zapobiegamy niepożądanym zakłóceniom, które mogą wystąpić przy innych metodach łączenia kabli. W instalacjach antenowych, standardem jest używanie kabli koncentrycznych, a zastosowanie złączek typu F pozwala na łatwe połączenie z urządzeniami, takimi jak dekodery czy telewizory. Warto również pamiętać o regularnym sprawdzaniu stanu połączeń i wymianie uszkodzonych elementów, co jest zgodne z najlepszymi praktykami utrzymania instalacji RTV.

Pytanie 16

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. kontroli temperatury elementów
B. uaktualniania oprogramowania
C. pomiaru parametrów
D. znajdowania anomalii w działaniu urządzenia
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 17

Jaką liczbę wyjść ma konwerter TWIN?

A. jedno wyjście
B. osiem wyjść
C. dwa wyjścia
D. cztery wyjścia
Wybór odpowiedzi dotyczących jednego, czterech lub ośmiu wyjść w kontekście konwertera TWIN jest błędny, gdyż nie odzwierciedla rzeczywistych właściwości tego urządzenia. Odpowiedź sugerująca jedno wyjście może wynikać z mylnego przekonania, że konwerter jest prostym urządzeniem. W rzeczywistości, konwertery są zaprojektowane z myślą o złożoności systemów elektrycznych, a ich funkcjonalność opiera się na możliwości jednoczesnego zasilania różnych obwodów. Przyjęcie, że konwerter TWIN mógłby mieć cztery lub osiem wyjść, prowadzi do nieporozumień dotyczących jego zastosowania i ogranicza zrozumienie, jak te urządzenia wpasowują się w większe systemy energetyczne. W rzeczywistości, większa liczba wyjść mogłaby sugerować inny typ urządzenia, jak na przykład rozdzielacze mocy lub bardziej zaawansowane systemy zarządzania energią, które mają na celu obsługę bardziej złożonych instalacji. Warto zauważyć, że wybór niewłaściwego konwertera może prowadzić do problemów z kompatybilnością w systemach zasilania, co z kolei może wpływać na stabilność i bezpieczeństwo całej instalacji. Zrozumienie specyfikacji technicznych urządzeń oraz ich zastosowań w praktyce jest kluczowe dla efektywnego projektowania i eksploatacji systemów elektrycznych.

Pytanie 18

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 15:2
B. 30:2
C. 2:30
D. 2:15
Właściwy stosunek uciśnięć mostka do wentylacji podczas resuscytacji krążeniowo-oddechowej (RKO) dla osoby dorosłej wynosi 30:2. Oznacza to, że wykonujemy 30 uciśnięć klatki piersiowej, a następnie 2 wdechy. Ten protokół odzwierciedla standardy wytycznych opublikowanych przez Europejską Radę Resuscytacji oraz American Heart Association. Uciśnięcia klatki piersiowej mają na celu zapewnienie odpowiedniego przepływu krwi do najważniejszych narządów, w tym serca i mózgu. Prawidłowe tempo uciśnięć wynosi 100-120 na minutę, a ich głębokość powinna wynosić co najmniej 5 cm, co jest kluczowe dla efektywności resuscytacji. Włączenie wentylacji po 30 uciśnięciach jest istotne, aby dostarczyć tlen do płuc, co zwiększa szansę na powrót spontanicznego krążenia. W praktyce, podczas resuscytacji, ważne jest, aby osoba prowadząca RKO nie traciła rytmu i zachowała skupienie, co jest kluczowe dla skuteczności akcji ratunkowej. W sytuacjach, gdy jest więcej niż jedna osoba, warto rotować między wykonawcami, aby uniknąć zmęczenia, które może obniżyć jakość uciśnięć.

Pytanie 19

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tyrystory
B. termistory
C. tensometry
D. diody
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 20

Który z niżej wymienionych elementów nie wpływa na jakość odbioru sygnału telewizji cyfrowej?

A. Odległość od stacji nadawczej
B. Stan kabla antenowego
C. Temperatura otoczenia
D. Zjawisko burzy
Temperatura zewnętrzna rzeczywiście nie ma wpływu na odbiór sygnału telewizji naziemnej, ponieważ sygnał telewizyjny jest transmitowany na określonych częstotliwościach radiowych, które są stosunkowo odporne na zmiany temperatury. W praktyce, czynniki takie jak odległość od nadajnika oraz stan przewodu antenowego mają kluczowe znaczenie dla jakości odbioru. Na przykład, im większa odległość od nadajnika, tym sygnał staje się słabszy z powodu rozpraszania i tłumienia w atmosferze. Z tego powodu, odpowiednia lokalizacja anteny oraz jej ustawienie są kluczowe dla uzyskania optymalnej jakości odbioru. Warto również pamiętać, że podczas instalacji systemów antenowych, stosuje się różne techniki i technologie, takie jak wzmacniacze sygnału, aby zminimalizować problemy związane z odległością. Dodatkowo, dobre praktyki branżowe zalecają regularne sprawdzanie stanu przewodów i złączy, aby zredukować potencjalne straty sygnału. W związku z tym, zrozumienie, że temperatura zewnętrzna nie wpływa na odbiór, pozwala skupić się na istotnych aspektach zapewniających właściwą jakość sygnału.

Pytanie 21

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Moc wyjściowa
B. Moc wejściowa
C. Czułość
D. Selektywność
Czułość, selektywność oraz moc wyjściowa to parametry, które są kluczowe w ocenie jakości odbiorników radiowych. Czułość odbiornika definiuje minimalny poziom sygnału, przy którym urządzenie jest w stanie zidentyfikować i przetworzyć sygnał. W praktyce, oznacza to, że im niższa wartość czułości, tym lepiej odbiornik poradzi sobie z odbieraniem słabych sygnałów, co jest szczególnie istotne w obszarach o niskiej mocy sygnału. Selektywność natomiast, określa zdolność urządzenia do oddzielania sygnałów znajdujących się blisko siebie w spektrum częstotliwości. Wartość ta jest niezwykle ważna, gdyż pozwala na odbiór wybranych stacji bez zakłóceń spowodowanych przez inne nadajniki działające w sąsiedztwie. Moc wyjściowa to parametr, który wskazuje na siłę sygnału dostarczanego do końcowego urządzenia, co ma bezpośredni wpływ na jakość dźwięku. Błędne zrozumienie mocy wejściowej i jej roli w kontekście odbiorników radiowych może prowadzić do mylnego wniosku, że jest ona istotnym parametrem dla tych urządzeń. W rzeczywistości moc wejściowa dotyczy źródła sygnału, a nie samego odbiornika, co jest kluczowym aspektem, który powinien być uwzględniany przy analizie parametrów radiowych. Zrozumienie tych różnic jest niezbędne dla prawidłowej oceny i porównania odbiorników radiowych w różnych zastosowaniach.

Pytanie 22

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. jakikolwiek zmiennokodowy
B. jedynie dostarczony przez producenta szlabanu
C. uniwersalny (samouczący)
D. jakikolwiek stałokodowy
Wybór innych opcji, takich jak pilot dowolny stałokodowy, zmiennokodowy czy uniwersalny, jest błędny z kilku powodów. Piloty stałokodowe działają na zasadzie wysyłania tego samego kodu za każdym razem, co czyni je łatwymi do skopiowania i naraża system na ataki. W kontekście systemów takich jak Keeloq, które są oparte na zmiennym kodowaniu, piloty stałokodowe nie są w stanie zapewnić wymaganej ochrony i ich użycie może skutkować poważnymi lukami bezpieczeństwa. Z kolei piloty zmiennokodowe, choć bardziej zaawansowane, niekoniecznie będą kompatybilne z konkretnym systemem szlabanu, co może prowadzić do problemów z działaniem. Uniwersalne piloty samouczące, mimo że mogą być wygodne, również nie gwarantują pełnej kompatybilności z systemem Keeloq, gdyż mogą nie obsługiwać specyficznych protokołów kodowania stosowanych przez producenta. Typowym błędem jest założenie, że jakikolwiek pilot będzie współpracował z danym systemem, co często prowadzi do frustracji użytkowników i dodatkowych kosztów związanych z ewentualnymi naprawami. W związku z tym, kluczowe jest korzystanie z pilotów dostarczonych przez producenta, które gwarantują nie tylko prawidłowe działanie, ale również bezpieczeństwo całego systemu.

Pytanie 23

Złącza BNC umieszcza się na końcach kabli

A. symetrycznych
B. skrętka UTP
C. skrętka STP
D. koncentrycznych
Wybór pozostałych odpowiedzi wskazuje na niepełne zrozumienie zastosowań i konstrukcji różnych typów kabli. Skrętka STP (Shielded Twisted Pair) oraz UTP (Unshielded Twisted Pair) to rodzaje kabli stosowanych głównie w sieciach komputerowych do przesyłania danych, w szczególności w standardach Ethernet. Złącza BNC nie są projektowane do pracy z tymi typami kabli, ponieważ skrętka nie ma rdzenia koncentrycznego, a jej budowa nie zapewnia odpowiedniej ochrony sygnału przesyłanego na dużą odległość. Zastosowanie skrętki do połączeń, które wymagałyby złącz BNC, może prowadzić do dużych strat sygnału oraz zakłóceń, ponieważ złącza BNC nie mogą efektywnie łączyć przewodów, które nie mają konstrukcji koncentrycznej. Z kolei złącza symetryczne, choć mogą być stosowane w różnych aplikacjach audio i wideo, również nie są odpowiednie dla przewodów koncentrycznych, ponieważ różnią się pod względem mechanizmu łączenia oraz charakterystyki przesyłu sygnałów. Zrozumienie różnic między tymi rodzajami kabli i ich zastosowaniem jest kluczowe w projektowaniu i wdrażaniu systemów komunikacji, aby uniknąć błędów w doborze komponentów, które mogą prowadzić do problemów z jakością sygnału.

Pytanie 24

Montaż wtyku F na kablu koncentrycznym polega na

A. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
B. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
C. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
D. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
Odpowiedź wskazuje na prawidłowy proces montażu wtyku F na przewodzie koncentrycznym. Kluczowym krokiem jest usunięcie odciętej izolacji zewnętrznej, co pozwala na odsłonięcie oplotu. Oplot ten należy prawidłowo ułożyć wzdłuż przewodu, co jest istotne dla zapewnienia dobrego kontaktu elektrycznego oraz ochrony przed zakłóceniami elektromagnetycznymi. Następnie, po usunięciu izolacji żyły, nakręcamy wtyk, co powinno być wykonane z odpowiednią siłą, aby zapewnić solidne połączenie. Praktyczne przykłady zastosowania obejmują instalacje telewizyjne oraz systemy monitoringu, gdzie jakość sygnału jest kluczowa dla poprawnego działania. Dobre praktyki w zakresie montażu wtyków obejmują stosowanie odpowiednich narzędzi, takich jak wyspecjalizowane zaciskarki oraz monitorowanie jakości połączeń za pomocą mierników sygnału. Doświadczeni technicy zwykle przestrzegają standardów branżowych, takich jak ISO/IEC 11801, które zapewniają wytyczne dotyczące instalacji i jakości sygnalizacji w systemach telekomunikacyjnych.

Pytanie 25

Technik zajmował się naprawą odbiornika radiowego bez odłączania zasilania i doznał porażenia prądem elektrycznym. W udzielaniu mu pierwszej pomocy, co powinno być zrobione w pierwszej kolejności?

A. ustawić poszkodowanego w stabilnej pozycji bocznej
B. położyć poszkodowanego na brzuchu z głową odchyloną na bok
C. usunąć poszkodowanego spod wpływu prądu
D. ocenić parametry życiowe poszkodowanego
W sytuacji, gdy pracownik uległ porażeniu prądem elektrycznym, najważniejszym krokiem jest jak najszybsze uwolnienie go spod działania prądu. To jest kluczowe działanie, które powinno być wykonane jako pierwsze. Porażenie prądem elektrycznym może prowadzić do groźnych konsekwencji zdrowotnych, w tym do zatrzymania akcji serca, dlatego natychmiastowe odłączenie źródła prądu jest niezbędne. W praktyce, jeśli to możliwe, należy wyłączyć zasilanie w obwodzie elektrycznym, z którego korzystał poszkodowany. W przypadku, gdy wyłączenie zasilania jest niemożliwe, należy zastosować materiały izolacyjne (np. drewniane lub gumowe) do usunięcia poszkodowanego z miejsca porażenia. Po uwolnieniu z działania prądu, możemy przystąpić do oceny stanu poszkodowanego i udzielania dalszej pomocy, w tym ewentualnego wykonania resuscytacji krążeniowo-oddechowej. Zgodnie z wytycznymi organizacji zajmujących się bezpieczeństwem pracy, takie jak OSHA, kluczowe jest przestrzeganie zasad BHP i podejmowanie działań zgodnie z ustalonymi procedurami.

Pytanie 26

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. mniejszej pojemności i mniejszym napięciu znamionowym
B. większej pojemności i mniejszym napięciu znamionowym
C. mniejszej pojemności i większym napięciu znamionowym
D. większej pojemności i większym napięciu znamionowym
Wybór kondensatora o większej pojemności oraz o wyższym napięciu znamionowym w kontekście zasilaczy sieciowych jest zgodny z najlepszymi praktykami w dziedzinie elektroniki. Zwiększona pojemność kondensatora filtrującego poprawia zdolność do wygładzania napięcia wyjściowego, co jest kluczowe w zasilaczach przetwornicowych i liniowych, gdzie stabilność napięcia jest istotna dla prawidłowego działania podłączonych urządzeń. Przykład zastosowania to sytuacja, w której wymiana kondensatora w zasilaczu audio może poprawić jakość dźwięku przez redukcję tętnień. Ponadto, wyższe napięcie znamionowe zapewnia margines bezpieczeństwa, co zmniejsza ryzyko przebicia dielektryka kondensatora, szczególnie w aplikacjach, gdzie mogą występować skoki napięcia. Jakiekolwiek zmiany w parametrach kondensatorów filtrujących powinny być zgodne z wytycznymi producentów oraz normami, takimi jak IEC 60384, aby zapewnić bezpieczeństwo i niezawodność systemów elektronicznych.

Pytanie 27

Osoba zajmująca się trawieniem płytek drukowanych w dziedzinie elektroniki może być narażona na

A. porażenie prądem elektrycznym
B. poparzenie środkiem chemicznym
C. zatrucie pokarmowe
D. pylicę płuc
Odpowiedź 'poparzenie środkiem chemicznym' jest prawidłowa, ponieważ elektronik pracujący na stanowisku trawienia płytek drukowanych ma do czynienia z różnymi substancjami chemicznymi, które są używane do etching (trawienia) miedzi na płytkach. Proces ten często wymaga stosowania silnych kwasów, takich jak kwas solny lub nadsiarczan amonu, które mogą powodować oparzenia chemiczne w przypadku kontaktu ze skórą. Aby zminimalizować ryzyko, bardzo istotne jest przestrzeganie standardów BHP, używanie odpowiedniej odzieży ochronnej, takiej jak rękawice i gogle. Ponadto, pracownicy powinni być przeszkoleni w zakresie procedur awaryjnych i postępowania w razie kontaktu skóry z substancjami chemicznymi. Właściwe stosowanie środków ochrony osobistej oraz znajomość procedur pierwszej pomocy w sytuacjach oparzeń chemicznych są kluczowe w zminimalizowaniu ryzyka i zapewnieniu bezpiecznego środowiska pracy. Przykładem dobrej praktyki jest posiadanie w miejscu pracy stacji do płukania oczu oraz prysznica awaryjnego, co powinno być zgodne z normami OSHA.

Pytanie 28

Na środku wyświetlacza odbiornika OTV pojawia się bardzo jasna pozioma linia, podczas gdy reszta ekranu jest ciemna. Gdzie doszło do awarii w odbiorniku?

A. W dekoderze kolorów
B. W bloku odchylania poziomego
C. W bloku odchylania pionowego
D. We wzmacniaczu p.cz. różnicowej fonii
Chociaż odpowiedzi dotyczące bloku odchylania poziomego, wzmacniacza p.cz. różnicowej fonii oraz dekodera kolorów mogą wydawać się logiczne, każda z nich ma zasadnicze braki w kontekście diagnozowania problemu opisanego w pytaniu. Blok odchylania poziomego odpowiada za kontrolowanie ruchu elektronów w poziomie. Problemy w tym obszarze prowadzą do zniekształceń poziomych, takich jak zniekształcenia obrazu, a nie do pojawienia się jasnej linii poziomej. Wzmacniacz p.cz. różnicowej fonii ma na celu przetwarzanie sygnałów audio, co nie ma wpływu na wyświetlanie obrazu. Usterka w tym bloku skutkuje problemami z dźwiękiem, a nie z obrazu. Z kolei dekoder kolorów jest odpowiedzialny za separację i przetwarzanie sygnałów kolorów. Usterki w tym obszarze mogą prowadzić do problemów z kolorami, ale nie stworzą jasnej, poziomej linii na ekranie. Kluczowym błędem myślowym w takich przypadkach jest mylenie funkcji różnych bloków i ich wpływu na wyjście obrazu. Właściwe zrozumienie architektury i funkcji różnych komponentów telewizora jest niezbędne do efektywnej diagnostyki i naprawy. Dlatego ważne jest, aby podczas rozwiązywania problemów z telewizorami zwracać uwagę na konkretne symptomy i ich powiązania z odpowiednimi obszarami funkcjonalnymi urządzenia.

Pytanie 29

Zwiększenie histerezy w regulatorze dwustawnym w systemie regulacji

A. spowoduje powiększenie amplitudy zmian sygnału kontrolowanego
B. spowoduje przesunięcie wykresu w górę o wartość pętli histerezy
C. spowoduje zmniejszenie amplitudy zmian sygnału kontrolowanego
D. nie wpłynie na kształt sygnału
Nieprawidłowe podejście do analizy histerezy w regulatorze dwustawowym wiąże się z błędnym zrozumieniem samej jej natury oraz efektów, jakie wywołuje w układzie regulacji. Odpowiedzi sugerujące, że zwiększenie histerezy nie wpłynie na przebieg sygnału lub spowoduje jego przesunięcie, są mylące. Histereza nie jest jedynie parametrem statycznym, lecz dynamicznie wpływa na zachowanie systemu. Wartości histerezy definiują progi, w których następuje zmiana stanu wyjściowego, co oznacza, że każda zmiana tych wartości ma bezpośredni wpływ na reakcję sygnału. Zwiększenie histerezy prowadzi do zmiany zakresu, w jakim sygnał może fluktuować przed osiągnięciem nowego stanu stabilnego, co w praktyce przekłada się na większe amplitudy zmian. Ponadto, koncepcje mówiące o przesunięciu przebiegu w górę o szerokość histerezy ignorują fakt, że histereza nie jest przesunięciem, a raczej różnicą pomiędzy dwoma stanami. To może prowadzić do błędnych interpretacji podczas projektowania systemów regulacji, gdzie kluczowe jest zrozumienie, że histereza pozwala na redukcję niepożądanych oscylacji i stabilizację odpowiedzi systemu. Ignorowanie aspektu dynamicznego histerezy w kontekście regulacji może skutkować zbyt dużymi fluktuacjami w sygnale sterowanym, co jest szczególnie problematyczne w procesach wymagających precyzyjnego nadzoru, takich jak kontrola temperatury czy ciśnienia w systemach przemysłowych.

Pytanie 30

Podstawowe działania serwisowe realizowane w ramach konserwacji systemu monitoringu wizyjnego nie dotyczą

A. zamiany kamery na nowocześniejszy model
B. definiowania pola widzenia kamer
C. weryfikacji zasilania kamer
D. diagnostyki uszkodzeń
Wybór odpowiedzi dotyczącej wymiany kamery na nowszy model jako niezaliczonej do podstawowych prac serwisowych w ramach konserwacji systemu telewizji dozorowej jest poprawny. Konserwacja służy utrzymaniu istniejącego systemu w dobrym stanie technicznym i nie obejmuje modernizacji sprzętu. Wymiana kamery na nowszy model to proces, który zazwyczaj wymaga szerszego planowania, budżetowania oraz może wiązać się z różnymi aspektami, takimi jak zgodność z istniejącą infrastrukturą, integracja z systemami zarządzania oraz szkolenie personelu. W ramach bieżącej konserwacji kluczowe są działania takie jak sprawdzenie zasilania, czy ustawienie pola widzenia, które mają na celu zapewnienie prawidłowego funkcjonowania sprzętu bez wprowadzania nowych elementów. Przykładowo, rutynowe przeglądy zasilania kamer są niezbędne, aby uniknąć przestojów w pracy systemu, co jest zgodne z najlepszymi praktykami w dziedzinie monitoringu wizyjnego.

Pytanie 31

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 500 zł
B. 150 zł
C. 2 500 zł
D. 750 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 32

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. śruby i śrubokręt
B. gwoździe oraz młot
C. ołówek i poziomica
D. wiertarka i kołki rozporowe
Użycie wkrętów i wkrętaka, wiertarki i kołków, lub gwoździ i młotka do wyznaczania trasy przewodów na ścianie betonowej jest koncepcją, która nie odnosi się do rzeczywistych wymagań i zasad profesjonalnej instalacji. Wkręty i wkrętak mogą być używane do mocowania elementów, ale nie służą do precyzyjnego wyznaczania tras. W przypadku wkrętów konieczne byłoby wcześniejsze zaznaczenie linii, co wymagałoby użycia innego narzędzia, a więc nie są one narzędziem właściwym do samego wyznaczania tras. Wiertarka z kolei, mimo że jest niezbędna do wykonywania otworów w betonie, również nie dostarcza informacji o prawidłowym ułożeniu przewodów. Zastosowanie kołków jest związane z mocowaniem, a nie z wyznaczaniem tras, więc nie spełnia ono głównej funkcji w tym procesie. Gwoździe i młotek również są narzędziami, które nie mają zastosowania w kontekście wyznaczania trasy przewodów, gdyż ich użycie wiąże się z innymi rodzajami prac budowlanych. Typowe błędy w myśleniu polegają na pomyleniu narzędzi do wyznaczania linii z tymi do mocowania, co prowadzi do nieefektywnych praktyk i potencjalnych problemów w późniejszych etapach instalacji. Aby zapewnić nie tylko estetykę, ale także funkcjonalność, konieczne jest stosowanie odpowiednich narzędzi, co podkreślają standardy branżowe dotyczące instalacji elektrycznych.

Pytanie 33

Czym jest watchdog?

A. typ licznika rejestrującego impulsy zewnętrzne
B. system bezpośredniego dostępu do portów I/O mikroprocesora
C. rodzaj timera kontrolującego działanie mikroprocesora
D. system bezpośredniego dostępu do pamięci mikroprocesora
Watchdog to kluczowy element w systemach mikroprocesorowych, który działa jako rodzaj timera nadzorującego ich pracę. Jego głównym zadaniem jest monitorowanie stanu pracy systemu i wykrywanie potencjalnych awarii. W momencie, gdy system przestaje odpowiadać lub wchodzi w stan zawieszenia, watchdog resetuje mikroprocesor, co pozwala na przywrócenie jego prawidłowego działania. Przykłady zastosowania zegarów watchdog są widoczne w systemach krytycznych, takich jak urządzenia medyczne czy systemy wbudowane w lotnictwie, gdzie niezawodność i ciągłość działania są kluczowe. Wdrażając watchdogi w projektach, inżynierowie stosują standardy, takie jak IEC 61508, które zapewniają odpowiedni poziom bezpieczeństwa w systemach elektronicznych. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają implementację mechanizmów nadzorujących, aby minimalizować ryzyko awarii systemów oraz zapewnić ich ciągłe działanie.

Pytanie 34

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. wysuszenie skóry dłoni
B. poparzenie dłoni
C. uszkodzenie wzroku
D. krwawienie podskórne
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 35

Oznaczenie RG6 odnosi się do typu kabla

A. ethernetowego
B. symetrycznego
C. współosiowego
D. głośnikowego
Wybór odpowiedzi dotyczącej kabla ethernetowego jest błędny, ponieważ kable ethernetowe, takie jak kategoria 5e (Cat 5e) czy 6 (Cat 6), są zaprojektowane do przesyłania danych w sieciach komputerowych, a nie do transmisji sygnałów telewizyjnych. Kable te składają się z kilku par skręconych przewodów, które minimalizują zakłócenia elektromagnetyczne i zapewniają wysoką prędkość transmisji, ale nie są stosowane w kontekście analogowego lub cyfrowego sygnału wideo. Ponadto, wybór odpowiedzi odnoszącej się do kabla głośnikowego jest również mylny; kable głośnikowe są zaprojektowane do przesyłania sygnałów audio w systemach audio i nie mają zastosowania w transmisji sygnałów telewizyjnych. Z kolei kable symetryczne, stosowane głównie w audio i telekomunikacji, różnią się konstrukcją, ponieważ składają się z dwóch przewodników, które przesyłają sygnały w przeciwnych fazach, co minimalizuje zakłócenia. Pomieszanie tych typów kabli wynika często z braku znajomości ich zastosowań oraz specyfikacji technicznych. Kluczowe jest zrozumienie, że każdy typ kabla ma swoje dedykowane zastosowania i powinien być wykorzystywany zgodnie z jego przeznaczeniem, co zapewnia optymalną jakość przesyłanego sygnału oraz minimalizuje problemy związane z zakłóceniami.

Pytanie 36

Przyczyną chwilowego znikania obrazu (zamrożenia) podczas odbioru sygnału z satelity mogą być

A. nieprawidłowości w synchronizacji
B. uszkodzenia systemu odchylania
C. awarie układu synchronizacji
D. warunki atmosferyczne
Warunki atmosferyczne są jednym z najważniejszych czynników wpływających na jakość sygnału satelitarnego. W szczególności opady deszczu, śniegu oraz intensywne chmury mogą powodować osłabienie sygnału, co może prowadzić do czasowego zaniku obrazu. Zjawisko to jest znane jako „attenuacja”, czyli osłabienie sygnału, które zwiększa się przy zwiększonej wilgotności powietrza lub podczas wystąpienia burz. W praktyce, techniki takie jak stosowanie większych anten satelitarnych, które mogą lepiej odbierać sygnał w trudnych warunkach, są powszechnie przyjęte w branży. Zgodnie z dobrymi praktykami, zaleca się również monitorowanie prognoz pogody i dostosowywanie systemów do zmieniających się warunków. Użytkownicy powinni być świadomi, że podczas intensywnych opadów lub burz mogą wystąpić czasowe zakłócenia w odbiorze, a zrozumienie tego zjawiska może pomóc w lepszym planowaniu korzystania z technologii satelitarnych.

Pytanie 37

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. uziemienie robocze
B. uziemienie ochronne
C. wyłącznik różnicowoprądowy
D. zerowanie
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które ma na celu automatyczne odłączenie zasilania w przypadku wystąpienia nadmiernego prądu doziemnego. Działa na zasadzie monitorowania różnicy między prądem wpływającym a wpływającym do obwodu. W momencie, gdy ta różnica przekroczy ustalony próg (zazwyczaj 30 mA dla obwodów ochrony), wyłącznik natychmiast przerywa obwód, co znacząco redukuje ryzyko porażenia prądem elektrycznym. RCD jest szczególnie istotny w miejscach, gdzie używane są urządzenia elektryczne w wilgotnym lub mokrym otoczeniu, takich jak łazienki czy kuchnie. W stosunku do standardów, takich jak norma PN-EN 61008, wyłączniki różnicowoprądowe są zalecane do stosowania w instalacjach elektrycznych jako element zwiększający bezpieczeństwo użytkowników. W praktyce montaż RCD może być również wymagany podczas przeglądów technicznych i modernizacji instalacji elektrycznych, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa elektrycznego.

Pytanie 38

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. sprawdzić drożność dróg oddechowych
B. wykonać sztuczne oddychanie oraz masaż serca
C. umożliwić położenie na boku
D. podać leki
Nieprawidłowe podejście do sytuacji zatrzymania akcji serca i braku oddechu, takie jak umożliwienie leżenia na boku, brakuje kluczowego elementu pierwszej pomocy, którym jest zapewnienie drożności dróg oddechowych. Pozycja na boku, mimo że może być stosowana w innych przypadkach, nie jest odpowiednia w sytuacji, gdy osoba nie oddycha i ma zatrzymaną akcję serca. Kiedy osoba jest nieprzytomna i nie oddycha, kluczowe jest natychmiastowe udrożnienie dróg oddechowych, co jest niezbędne dla skutecznej wentylacji. Wiele osób myli również kolejność działań, sądząc, że sztuczne oddychanie i masaż serca powinny być wykonywane bezpośrednio, zanim drożność dróg oddechowych zostanie zapewniona. Jednak w rzeczywistości, jeśli drogi oddechowe są zablokowane, sztuczne oddychanie nie przyniesie oczekiwanego efektu, a masaż serca również nie będzie skuteczny. Podawanie leków w takiej sytuacji jest również błędne, ponieważ w przypadku zatrzymania akcji serca natychmiastowe działania mają na celu przywrócenie krążenia i wentylacji, a leki mogą być stosowane dopiero po tych podstawowych czynnościach. Wreszcie, kluczowym błędem myślowym w takich sytuacjach jest niedocenianie znaczenia wstępnej oceny stanu poszkodowanego przed podjęciem decyzji o dalszych krokach, co jest fundamentalną częścią standardów resuscytacji.

Pytanie 39

Jakość sygnału z anten satelitarnych w dużym stopniu zależy od warunków pogodowych. Zjawisko pikselizacji lub zanik obrazu jest szczególnie zauważalne w antenach o średnicy

A. 110 cm
B. 100 cm
C. 60 cm
D. 85 cm
Odpowiedź 60 cm jest prawidłowa, ponieważ mniejsze anteny satelitarne, takie jak te o średnicy 60 cm, są bardziej wrażliwe na zmiany warunków atmosferycznych, co prowadzi do występowania efektu pikselizacji lub zaniku obrazu. W praktyce oznacza to, że w przypadku opadów deszczu, śniegu czy silnego wiatru, sygnał satelitarny może być znacznie osłabiony. W branży telekomunikacyjnej, standardy dotyczące projektowania systemów odbioru satelitarnego wskazują, że większe anteny (np. 100 cm czy 110 cm) są mniej podatne na trudne warunki atmosferyczne, ponieważ ich większa powierzchnia pozwala na lepsze zbieranie sygnału, co przekłada się na stabilniejszy odbiór. Przykładem zastosowania tej wiedzy może być dobór odpowiedniej anteny w regionach o często zmiennej pogodzie, gdzie mniejsze anteny są bardziej narażone na zakłócenia sygnału. Dlatego zaleca się wybór anteny o większej średnicy, jeśli planuje się korzystanie z sygnału satelitarnego w trudnych warunkach atmosferycznych, aby zapewnić jakość odbioru.

Pytanie 40

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. niskich temperatur.
B. wyładowań atmosferycznych.
C. promieniowania X.
D. opadów deszczu.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.