Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 26 maja 2025 16:23
  • Data zakończenia: 26 maja 2025 16:38

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W teodolicie stała podstawa, która służy do jego ustawienia w poziomie, nazywana jest

A. pionem
B. spodarką
C. limbusem
D. alidadą
Spodarka jest kluczowym elementem teodolitu, którego funkcją jest zapewnienie stabilnej i wypoziomowanej podstawy dla urządzenia pomiarowego. Dzięki zastosowaniu spodarki, możliwe jest precyzyjne wykonywanie pomiarów kątów poziomych i pionowych, co jest niezwykle istotne w geodezji oraz budownictwie. Spodarka często jest konstruowana w sposób umożliwiający łatwe dostosowanie poziomu urządzenia, co jest niezbędne do uzyskania dokładnych wyników. W praktyce geodezyjnej, teodolity z odpowiednio dostosowaną spodarką pozwalają na realizację skomplikowanych pomiarów terenowych, takich jak wyznaczanie linii prostych, kątów oraz różnic wysokości. Istotne jest, aby podczas pracy z teodolitem, zwłaszcza w trudnym terenie, zachować ostrożność przy poziomowaniu spodarki, co z kolei wpływa na dokładność pomiarów. Dobre praktyki w tej dziedzinie obejmują regularne kalibracje i kontrole sprzętu, co zapewnia wysoką jakość wyników pomiarowych oraz zgodność z obowiązującymi standardami branżowymi.

Pytanie 2

Na mapach terenowych nie uwzględnia się obiektów budowlanych

A. murowanych mieszkalnych w etapie projektowania
B. murowanych gospodarczych w stanie surowym
C. drewnianych przeznaczonych do wyburzenia
D. drewnianych, które nie są zamieszkałe
Odpowiedzi, które wskazują na budynki drewniane niezamieszkałe, drewniane przeznaczone do rozbiórki, oraz murowane gospodarcze w stanie surowym, są błędne z kilku powodów. Po pierwsze, budynki drewniane niezamieszkałe, mimo że nie są aktualnie użytkowane, mogą być fizycznie obecne i w związku z tym powinny być zaznaczone na szkicach polowych. Z kolei budynki drewniane przeznaczone do rozbiórki, będąc obiektami już istniejącymi, również muszą być uwzględnione, ponieważ ich obecność wpływa na aktualny stan zagospodarowania terenu. W przypadku murowanych budynków gospodarczych w stanie surowym, które mogą być w trakcie budowy, również powinny być zaznaczone, ponieważ ich konstrukcja ma realny wpływ na otoczenie. Typowym błędem myślowym jest założenie, że tylko budynki w pełni ukończone powinny być przedstawiane na szkicach. W rzeczywistości, wszystkie obiekty budowlane, które mają istotny wpływ na analizowany teren, powinny być dokumentowane, niezależnie od ich statusu budowlanego. Zrozumienie zasadności uwzględniania różnych typów budynków na szkicach polowych jest kluczowe dla prawidłowego przeprowadzania analizy przestrzennej oraz dla zachowania spójności i kompletności dokumentacji urbanistycznej.

Pytanie 3

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 5 punktów
B. 4 punkty
C. 3 punkty
D. 2 punkty
Wybranie innej liczby punktów może się brać z tego, że nie do końca rozumiesz, jak działa interpolacja warstwicowa. Często myśli się, że liczbę punktów liczy się tylko na podstawie zaokrągleń albo prostych różnic w wysokości, co sprawia, że liczba punktów jest zaniżona. Jak się stosuje złe metody obliczeń, na przykład ignorując cięcie warstwicowe, to wychodzą błędne wyniki. W geodezji i inżynierii lądowej bardzo ważne jest, żeby dokładnie ustalić pomiary, bo jeśli zaniżysz liczbę punktów, to potem mogą być poważne błędy w analizach i projektowaniu. Ustalając wysokości warstwic, zawsze musisz mieć na uwadze różnicę wysokości i wybrane cięcie. Pamiętaj, że pomiar powinien być zgodny z branżowymi standardami, takimi jak normy ISO czy lokalne przepisy geodezyjne. To wszystko przekłada się na jakość wyników, co jest kluczowe w planowaniu przestrzennym.

Pytanie 4

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. pomiarowego
B. technicznego
C. szacunkowego
D. katastralnego
Wybór odpowiedzi związanych z operatami katastralnymi, pomiarowymi czy szacunkowymi jest błędny, ponieważ nie odzwierciedla istoty dokumentacji geodezyjnej przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego. Operat katastralny dotyczy głównie ewidencji gruntów i budynków, a jego zadaniem jest zapewnienie danych o stanie prawnym i własnościowym nieruchomości, co odstaje od kontekstu pomiarów geodezyjnych. Z kolei operat pomiarowy zazwyczaj odnosi się do dokumentacji samych pomiarów, nie zaś do ich kompleksowego opracowania, co jest niezbędne do pełnego zrozumienia i interpretacji danych. Operat szacunkowy, natomiast, dotyczy wyceny nieruchomości i jest stosowany w kontekście oceny wartości majątkowej, co również nie ma bezpośredniego związku z geodezyjnymi pomiarami terenowymi i ich analizą. Typowym błędem myślowym jest mylenie różnych rodzajów dokumentacji geodezyjnej, co może prowadzić do nieporozumień w rozumieniu ich funkcji i zastosowania. Dlatego kluczowe jest zrozumienie, że operat techniczny jest jedynym odpowiednim dokumentem, który w pełni odzwierciedla rezultaty pomiarów oraz ich analizę, stanowiąc tym samym fundament dla dalszych działań w obszarze geodezji.

Pytanie 5

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:2000
B. 1:250
C. 1:500
D. 1:1000
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to DAB = 33,00 m (rzeczywista długość) oraz dAB = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako DAB / dAB, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 6

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. geodeta uprawniony
B. główny geodeta kraju
C. starosta
D. wojewoda
Wybór wojewody jako osoby odpowiedzialnej za prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu jest błędny, ponieważ wojewoda pełni funkcje administracyjne na poziomie województwa, ale nie ma kompetencji do zarządzania ewidencją geodezyjną na poziomie krajowym. Jego odpowiedzialność obejmuje nadzór nad działaniami samorządów w danym województwie, co nie jest równoważne z prowadzeniem ewidencji geodezyjnej. Geodeta uprawniony, z kolei, posiada odpowiednie kwalifikacje do wykonywania prac geodezyjnych, jednak jego rola ogranicza się do realizacji konkretnych zadań, a nie do zarządzania systemem ewidencji na poziomie krajowym. Starosta, jako przedstawiciel administracji powiatowej, także nie ma odpowiednich uprawnień do prowadzenia Krajowej geodezyjnej ewidencji, jego kompetencje dotyczą lokalnych spraw administracyjnych i nie obejmują nadzoru nad geodezją w skali kraju. Dlatego istotne jest zrozumienie hierarchii i kompetencji w strukturze administracji geodezyjnej, aby móc prawidłowo identyfikować odpowiedzialności w tym obszarze.

Pytanie 7

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. rejestru cen oraz wartości nieruchomości
B. geodezyjnej ewidencji infrastruktury terenowej
C. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
D. ewidencji gruntów i budynków (katastru nieruchomości)
Poprawna odpowiedź odnosi się do państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych, który stanowi kluczowy element centralnego zasobu geodezyjnego i kartograficznego. Rejestr ten gromadzi dane dotyczące punktów odniesienia, które są fundamentem dla wszelkich prac geodezyjnych i projektowych. Dzięki niemu możliwe jest precyzyjne określenie położenia obiektów na powierzchni Ziemi oraz ich relacji przestrzennych. Przykłady zastosowania obejmują inżynierię lądową, urbanistykę oraz planowanie przestrzenne, gdzie dokładność danych geodezyjnych jest niezbędna. Organizacje zajmujące się geodezją powinny stosować wytyczne zgodne z normami ISO, aby zapewnić najwyższą jakość zbieranych danych. Warto także zauważyć, że utrzymanie i aktualizacja tego rejestru jest kluczowe dla rozwoju infrastruktury i ochrony środowiska, co czyni go niezbędnym narzędziem w procesach decyzyjnych związanych z zagospodarowaniem terenu.

Pytanie 8

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Domiary prostokątne
B. Sytuacyjne szczegóły terenowe
C. Wysokości punktów terenu
D. Numery obiektów
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 9

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno być ustawione lustro lub łata
B. powinno znajdować się stanowisko instrumentu
C. powinien być pomiarowy
D. powinien znajdować się obserwator
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 10

Mapa zasadnicza to rodzaj map

A. gospodarczych
B. społecznych
C. fizjologicznych
D. sozologicznych
Mapa zasadnicza to, krótko mówiąc, bardzo ważny element, jak chodzi o systemy informacji geograficznej. Jest to mapa, która pokazuje najistotniejsze cechy terenu, takie jak granice administracyjne, różne rodzaje dróg czy nawet ukształtowanie powierzchni. Moim zdaniem, to niesamowite, jak wiele zastosowań ma ta mapa. Od planowania miast po rolnictwo – wszędzie się przydaje. Dla inwestycji infrastrukturalnych to wręcz niezbędne narzędzie, bo pomaga zrozumieć, gdzie i jakie tereny są dostępne. Warto też wiedzieć, że takie standardy jak ISO 19101 i wytyczne GUGIK podkreślają znaczenie map zasadniczych. One są jak fundament dla innych, bardziej szczegółowych map. Bez nich trudno by było mówić o jakiejkolwiek mapie w kontekście gospodarczym.

Pytanie 11

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. kolimacji
B. inklinacji
C. libeli pudełkowej
D. libeli rurkowej
Wybór błędnych odpowiedzi wynika z nieporozumienia dotyczącego pojęć związanych z błędami pomiarowymi. Libela pudełkowa oraz libela rurkowa to narzędzia służące do poziomowania, jednak nie są one związane z błędem inklinacji. Libela pudełkowa jest narzędziem wykorzystywanym do sprawdzania poziomości powierzchni, polegającym na umieszczeniu poziomnicy w płaszczyźnie poziomej, podczas gdy libela rurkowa, zawierająca ciecz, służy do oceny poziomu w dłuższych odcinkach. Żadne z tych narzędzi nie odnoszą się do konkretnego błędu pomiarowego dotyczącego prostopadłości osi obrotu lunety do osi obrotu instrumentu. Z kolei kolimacja to termin odnoszący się do ustawienia optyki w taki sposób, aby oś optyczna instrumentu była zgodna z osią mechaniczną. To pojęcie może prowadzić do błędnej interpretacji, gdyż choć kolimacja jest kluczowym elementem precyzyjnych pomiarów, nie obejmuje problemu inklinacji. Użycie niewłaściwych terminów może prowadzić do nieścisłości w analizach oraz wnioskach, dlatego istotne jest, aby stosować precyzyjne definicje i zrozumienie różnych typów błędów pomiarowych.

Pytanie 12

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 9 mm
B. p = 10 mm
C. p = 3 mm
D. p = 5 mm
Wszystkie odpowiedzi inne niż p = 9 mm wynikają najczęściej z błędnego zrozumienia metody obliczania przemieszczenia liniowego. Istotne jest, aby w procesie obliczeń poprawnie zidentyfikować współrzędne punktu przed i po pomiarach. Wiele osób może pomylić się w obliczeniach, myląc różnice z wartościami absolutnymi współrzędnych, co prowadzi do błędnych wyników. Odpowiedzi takie jak p = 5 mm, p = 10 mm, czy p = 3 mm mogą sugerować niepełne zrozumienie zastosowania twierdzenia Pitagorasa, które jest fundamentalne w obliczeniach przestrzennych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych konkluzji, to pomijanie elementów wzoru lub fałszywe założenia dotyczące proporcji pomiędzy współrzędnymi. Każde nieprecyzyjne przeliczenie może skutkować dużymi błędami w końcowych wynikach, co w kontekście geodezji i pomiarów przestrzennych ma poważne konsekwencje. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń zawsze zweryfikować dane wejściowe oraz zastosować odpowiednie techniki analizy, co zapewnia wysoką jakość i dokładność uzyskanych wyników.

Pytanie 13

Jaką czynność należy wykonać podczas przeprowadzania wywiadu terenowego, który poprzedza pomiary sytuacyjne i wysokościowe?

A. Sporządzenie szkicu polowego z mierzonego terenu
B. Identyfikację w terenie punktów osnowy geodezyjnej
C. Pomiar kontrolny szczegółów terenowych
D. Zgłoszenie pracy geodezyjnej geodecie powiatowemu
Identyfikacja w terenie punktów osnowy geodezyjnej jest kluczowym etapem przed przystąpieniem do pomiarów sytuacyjnych i wysokościowych. Osnowa geodezyjna stanowi fundament, na którym opierają się wszystkie inne pomiary. Jej odpowiednie zidentyfikowanie pozwala na precyzyjne odniesienie danych pomiarowych do układu współrzędnych, co jest niezbędne w geodezji. Przykładowo, podczas wykonywania pomiarów dla nowego projektu budowlanego, geodeta najpierw lokalizuje punkty osnowy, aby móc ustawić instrumenty pomiarowe w odpowiednich miejscach. Takie praktyki są zgodne z normami, takimi jak PN-EN ISO 17123, które podkreślają znaczenie stabilności i precyzji punktów osnowy dla efektywnego i wiarygodnego pomiaru. Właściwa identyfikacja punktów osnowy geodezyjnej nie tylko zwiększa dokładność pomiarów, ale również przyczynia się do redukcji błędów w późniejszych analizach i projektach.

Pytanie 14

Oś stanowiąca południki w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-1992 to południk

A. 21o
B. 15o
C. 17o
D. 19o
Wybór innych południków, jak 15o, 17o czy 21o, jest niestety błędny. Każdy z tych południków przydzielony jest do innej strefy w układzie Gaussa-Krugera, co mocno wpływa na to, jak dokładnie odwzorowujemy dane geograficzne w danym miejscu. Jeśli nie zrozumiesz podziału na strefy, łatwo o błędne obliczenia i interpretacje w geodezji. W systemie PL-1992 każda strefa ma przypisany swój południk centralny. Jak wybierasz zły południk, to masz zniekształcenia w odwzorowaniach przestrzennych. Poza tym, brak znajomości standardów geodezyjnych i technik analizy przestrzennej to dość powszechny błąd, który może prowadzić do poważnych problemów w planowaniu i realizacji projektów budowlanych. Źle wybrany południk to niepoprawne ustawienie systemu współrzędnych, co potem wpływa na lokalizację obiektów, ich wzajemne relacje i dokładność pomiarów. Zrozumienie, dlaczego wybór odpowiedniego południka w geodezji i planowaniu jest tak kluczowe, pomoże zapewnić rzetelność i precyzję wszelkich działań dotyczących przestrzeni.

Pytanie 15

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Usunięcie sytuacji, która już nie istnieje w terenie
B. Korekta zmian w nazewnictwie
C. Dodanie nowych elementów treści mapy
D. Wprowadzenie jedynie wybranych danych
Wszystkie pozostałe odpowiedzi sugerują działania, które są integralną częścią aktualizacji mapy zasadniczej. Naniesienie nowych elementów treści mapy jest kluczowym zadaniem, które zapewnia, że mapa odzwierciedla aktualny stan infrastruktury i zagospodarowania przestrzennego. W praktyce oznacza to, że nowe budynki, drogi czy inne obiekty muszą być wprowadzane do zasobów mapowych, aby mogły być wykorzystywane w planowaniu przestrzennym i decyzjach administracyjnych. Zmiany w nazewnictwie to kolejny istotny aspekt, ponieważ aktualizacja nazw ulic czy obiektów jest niezbędna dla poprawnego funkcjonowania systemów informacyjnych oraz dla użytkowników, którzy korzystają z tych danych w codziennym życiu. Usunięcie sytuacji nieistniejącej już w terenie, takie jak zlikwidowane budynki czy drogi, również jest ważne, ponieważ w przeciwnym razie użytkownicy mogą być wprowadzani w błąd przez nieaktualne informacje. Prowadzi to do typowego błędu myślowego, w którym użytkownicy mogą zakładać, że aktualizacja mapy nie wymaga pełnej weryfikacji danych, a jedynie fragmentarycznego podejścia. Taka strategia może skutkować powstawaniem nieścisłości oraz nieaktualności, co podważa wiarygodność mapy jako źródła informacji. Zastosowanie standardowych procedur aktualizacji, zgodnych z normami branżowymi, jest kluczowe dla zachowania rzetelności i użyteczności mapy zasadniczej.

Pytanie 16

W jakim rodzaju ciągu niwelacyjnym zakłada się, że teoretyczna suma różnic wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Otwarty
B. Zawieszonym
C. Obliczeniowym
D. Zamkniętym
Ciąg niwelacyjny zamknięty to taki, w którym pomiar wysokości rozpoczyna się w punkcie, a po wykonaniu pomiarów wraca się do punktu początkowego. Teoretyczna suma różnic wysokości między punktem początkowym i końcowym wynosi 0 mm, co oznacza, że w idealnych warunkach nie występują błędy pomiarowe ani różnice w terenie, które mogłyby wpłynąć na wyniki. Praktyczne zastosowanie ciągów zamkniętych jest szczególnie widoczne w inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych i infrastrukturalnych. Wykonywanie niwelacji w cyklu zamkniętym pozwala na wykrycie błędów systematycznych, które mogą wystąpić w trakcie pomiarów, a także na ich korekcję, co jest zgodne z zasadami obowiązującymi w normach takich jak PN-EN ISO 17123. Ważnym aspektem jest również to, że stosowanie ciągów zamkniętych zwiększa wiarygodność uzyskanych wyników, co jest niezbędne w pracach geodezyjnych i w kontekście odpowiedzialności zawodowej geodetów.

Pytanie 17

Kiedy oznaczenia geodezyjne uległy zniszczeniu, rekonstruowanie punktów szczegółowej osnowy poziomej należy przeprowadzić na podstawie zarejestrowanych w opisie topograficznym zmierzonych odległości do

A. elementów terenowych z I kategorii dokładnościowej
B. najbliższych elementów terenu
C. punktów określanych jako poboczniki
D. sąsiednich funkcjonujących punktów osnowy
Odpowiedzi sugerujące korzystanie z sąsiednich istniejących punktów osnowy, najbliższych szczegółów terenowych lub szczegółów terenowych z I grupy dokładnościowej są mylące i mogą prowadzić do nieprecyzyjnych rezultatów w procesie odtwarzania zniszczonych punktów osnowy. Sąsiednie punkty osnowy, choć mogą wydawać się logicznym wyborem, często nie są dostatecznie bliskie, aby zapewnić odpowiednią dokładność geodezyjną. W przypadku, gdy punkty są usunięte lub zniszczone, opieranie się na ich sąsiedztwie może wprowadzać błędy wynikające z niepewności lokalizacji. Najbliższe szczegóły terenowe, chociaż mogą być użyteczne, nie mają często ustalonej geodezyjnej dokładności, co czyni je niewłaściwym odniesieniem. Ponadto, szczegóły terenowe z I grupy dokładnościowej mogą nie być przystosowane do precyzyjnego odtwarzania punktów osnowy, zwłaszcza jeśli nie są to punkty o stabilnej geodezyjnej charakterystyce. W praktyce, niepoprawne podejście do wyboru punktów odniesienia może prowadzić do znacznych błędów w pomiarach, co jest niezgodne z obowiązującymi standardami geodezyjnymi, które nakładają wymóg stosowania precyzyjnych i zweryfikowanych odniesień, takich jak poboczniki. Dlatego kluczowe jest zrozumienie, że odpowiednie punkty odniesienia są fundamentem dokładności w geodezji i powinny być starannie wybrane, aby zapewnić wiarygodność wyników pomiarowych.

Pytanie 18

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
B. Archiwum Geodezyjnego
C. Banku Danych Lokalnych
D. Państwowego Zasobu Geodezyjnego i Kartograficznego
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 19

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Numery obiektów budowlanych
B. Domiary prostokątne
C. Sytuacyjne szczegóły terenowe
D. Wysokości punktów terenu
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 20

Na czym polega metoda niwelacji trygonometrycznej?

A. Na bezpośrednim pomiarze długości przy użyciu miarki, co nie ma związku z pomiarami wysokościowymi.
B. Na tworzeniu profili terenu za pomocą modelowania 3D, co nie dotyczy bezpośrednio pomiarów wysokościowych.
C. Na obliczaniu różnic wysokości na podstawie pomiarów kątów i odległości.
D. Na określaniu współrzędnych punktów za pomocą GPS, co nie jest związane z niwelacją trygonometryczną.
Metoda niwelacji trygonometrycznej jest jedną z kluczowych technik stosowanych w geodezji do pomiaru różnic wysokości między punktami terenowymi. Polega ona na wykorzystaniu pomiarów kątów oraz odległości poziomych lub skośnych, aby obliczyć różnice wysokości. Metoda ta wykorzystuje trygonometrię, w szczególności funkcje trygonometryczne, takie jak sinus i tangens, do przekształcenia danych kątowych i odległościowych w różnice wysokości. Dzięki temu można precyzyjnie określić wysokość punktów w terenie bez konieczności fizycznego przemieszczania się między nimi. W praktyce, niwelacja trygonometryczna jest stosowana w sytuacjach, gdy teren jest trudny do przebycia lub gdy pomiary wymagają dużej dokładności, np. w budownictwie mostów czy tuneli. Dodatkowo, ta technika jest przydatna w miejscach, gdzie niemożliwe jest zastosowanie tradycyjnych metod niwelacji, takich jak niwelacja geometryczna. Korzystanie z tej metody wymaga jednak precyzyjnych instrumentów, takich jak tachimetry, oraz umiejętności analizy danych pomiarowych w kontekście matematycznym. Metoda ta jest zgodna z normami i standardami geodezyjnymi, co czyni ją niezastąpioną w wielu profesjonalnych zastosowaniach.

Pytanie 21

Długość odcinka zmierzonego na mapie w skali 1:500 to 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 5,55 m
B. 55,5 m
C. 2,22 m
D. 22,2 m
Skala 1:500 oznacza, że 1 cm na mapie odpowiada 500 cm w rzeczywistości. Jak chcesz obliczyć rzeczywistą długość, to wystarczy, że pomnożysz długość odcinka na mapie przez wartość skali. W tym przypadku: 11,1 cm x 500 to 5550 cm. A jak to przeliczymy na metry, to wychodzi 55,5 m. To typowe zadanie w geodezji. Widać, jak ważne jest zrozumienie skali mapy, szczególnie w pomiarach terenowych. Przykładowo, jak inżynierowie planują budowę, to muszą dobrze przeliczać długości, żeby wszystko pasowało do rzeczywistości. Moim zdaniem, zrozumienie skali jest kluczowe w każdej pracy z pomiarami przestrzennymi, w kartografii czy nawigacji.

Pytanie 22

Z jaką precyzją podaje się wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych?

A. 0,1 m
B. 0,5 m
C. 0,05 m
D. 0,01 m
Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podaje się z dokładnością do 0,01 m, co jest zgodne z wymaganiami standardów geodezyjnych. Taka precyzja jest niezbędna w kontekście planowania przestrzennego oraz inżynierii lądowej, gdzie drobne różnice w wysokości mogą mieć istotny wpływ na projektowane konstrukcje oraz zarządzanie wodami opadowymi. Na przykład, w przypadku budowy infrastruktury, jak drogi czy mosty, dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego spadku, co zapobiega gromadzeniu się wody na nawierzchni. W praktyce geodeci wykorzystują zaawansowane technologie, takie jak GPS o wysokiej precyzji oraz tachimetry, aby osiągnąć taką dokładność. Dobrą praktyką jest również stosowanie w terenie punktów osnowy geodezyjnej, które pozwalają na weryfikację pomiarów. Dodatkowo, precyzyjne pomiary wysokości są kluczowe w kontekście ochrony środowiska oraz projektowania obiektów w obszarach o skomplikowanej topografii, gdzie niewielkie różnice w wysokości mogą wpływać na ekosystemy.

Pytanie 23

Znaki geodezyjne, które nie są objęte ochroną, to

A. budowle triangulacyjne
B. kamienie graniczne
C. punkty osnowy geodezyjnej
D. repety robocze
Repety robocze, znane również jako punkty robocze lub odniesienia robocze, to elementy wykorzystywane do wykonywania pomiarów geodezyjnych i nie podlegają ochronie zgodnie z obowiązującymi przepisami dotyczącymi ochrony znaków geodezyjnych. Ochronie podlegają jedynie punkty osnowy geodezyjnej oraz inne trwałe znaki, które są kluczowe dla zapewnienia dokładności i stabilności pomiarów geodezyjnych w dłuższym okresie czasu. Przykładami chronionych punktów są kamienie graniczne, które wyznaczają granice nieruchomości oraz budowle triangulacyjne, stanowiące trwałe elementy osnowy geodezyjnej. Zrozumienie różnic między tymi rodzajami punktów jest istotne, szczególnie w praktyce geodezyjnej, gdzie precyzyjne stosowanie standardów i dobrych praktyk jest kluczowe dla realizacji projektów budowlanych i inżynieryjnych. Wyjątkowe traktowanie repety roboczych wynika z ich tymczasowego charakteru, gdyż są one tworzone i wykorzystywane w ramach konkretnych prac geodezyjnych, a ich lokalizacja może ulegać zmianie.

Pytanie 24

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. dane dotyczące wykonawcy
B. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
C. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
D. datę zakończenia pracy
W przypadku zgłoszenia pracy geodezyjnej, osoba wypełniająca dokumentację może mylnie sądzić, że inne elementy, takie jak termin zakończenia pracy, opis przedmiotu czy informacja o wykonawcy, są kluczowe dla ośrodka dokumentacji geodezyjnej i kartograficznej. Jednakże, w kontekście przeprowadzania takich prac, najważniejszym aspektem jest zrozumienie, jakie inne działania są prowadzone w tym samym czasie na danym obszarze. Termin zakończenia pracy, choć istotny z perspektywy zarządzania projektami, nie dostarcza istotnych informacji o wpływie na inne projekty, podczas gdy opis przedmiotu pracy może być zbyt ogólny i nie uwzględniać specyfiki lokalnych warunków. Informacja o wykonawcy również ma swoje miejsce w dokumentacji, jednakże sama w sobie nie odnosi się do kluczowych współzależności między różnymi pracami geodezyjnymi. Takie podejście do zgłoszenia może prowadzić do pomijania istotnych czynników, które mogą rzekomo kolidować z innymi projektami, co skutkuje problemami z koordynacją działań geodezyjnych. Dlatego zrozumienie znaczenia koordynacji prac w obszarze geodezyjnym oraz odpowiedniego dokumentowania tego aspektu jest kluczowym elementem skutecznego zarządzania projektami geodezyjnymi.

Pytanie 25

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Niwelacji siatkowej
B. Biegunową
C. Ortogonalną
D. Niwelacji reperów
Wybór innych metod, takich jak niwelacja siatkowa, biegunowa czy ortogonalna, w kontekście wyznaczania wysokości stanowiska instrumentu w niwelacji punktów rozproszonych, może prowadzić do wielu nieporozumień i błędów. Niwelacja siatkowa, choć użyteczna w pracach terenowych, nie koncentruje się na precyzyjnym wyznaczeniu wysokości instrumentu, lecz na rozkładzie danych pomiarowych w siatce, co nie zawsze zapewnia wymagany poziom dokładności w lokalizacji punktów. Z kolei niwelacja biegunowa skupia się na pomiarach kątów i odległości, co jest efektywne w innych aspektach geodezji, lecz nie dostarcza informacji dotyczących wysokości bezpośrednio związanych z punktem pomiarowym. Metoda ortogonalna, z kolei, polega na stosowaniu prostych kątów do ustalenia odniesienia, co w kontekście niwelacji może być zbyt uproszczonym podejściem, prowadzącym do błędów w pomiarach wysokości. W praktyce, te metody nie są przystosowane do dokładnego wyznaczania wysokości stanowiska instrumentów, co jest kluczowym krokiem w procesie niwelacji, a ich niewłaściwe zastosowanie może skutkować znacznymi różnicami w wynikach pomiarowych. Dlatego tak ważne jest stosowanie odpowiednich procedur i metod, aby zapewnić wiarygodność i precyzję wyników w geodezyjnych badaniach terenowych.

Pytanie 26

Jakich informacji nie powinno się zamieszczać w opisie obiektu podczas aktualizacji mapy zasadniczej?

A. Numeru porządkowego obiektu
B. Liczby kondygnacji nadziemnych
C. Oznaczenia literowego funkcji obiektu
D. Oznaczenia literowego źródła danych o lokalizacji
Oznaczenie literowe źródła danych o położeniu to informacja, która nie jest istotna dla opisu budynku w kontekście aktualizacji mapy zasadniczej. W praktyce, aktualizacja ta powinna skupiać się na danych, które są kluczowe dla identyfikacji i charakterystyki obiektów budowlanych. Numer porządkowy budynku oraz oznaczenie literowe funkcji budynku są istotne dla klasyfikacji i lokalizacji obiektów, co jest zgodne z obowiązującymi normami w zakresie ewidencji budynków. Liczba kondygnacji nadziemnych również ma znaczenie, ponieważ wpływa na klasyfikację obiektów oraz ich przeznaczenie. Oznaczenie źródła danych jest natomiast informacją techniczną, która dotyczy pochodzenia danych, a nie samego budynku. W dobrych praktykach kartograficznych i urbanistycznych koncentrujemy się na danych, które mają bezpośredni wpływ na planowanie przestrzenne oraz podejmowanie decyzji inwestycyjnych.

Pytanie 27

Jaki wzór powinien być użyty do obliczenia sumy kątów wewnętrznych w zamkniętym poligonie?

A. [β]t = Ak – Ap + n · 200g
B. [β]t = (n + 2) · 200g
C. [β]t = Ap – Ak + n · 200g
D. [β]t = (n - 2) · 200g
Wzór [β]t = (n - 2) · 200g jest kluczowy do obliczenia sumy kątów wewnętrznych w poligonie zamkniętym, gdzie n oznacza liczbę boków. W przypadku wielokątów, suma kątów wewnętrznych wynika z faktu, że każdy dodatkowy bok wprowadza dodatkowe kąty. W praktyce, dla trójkąta, który ma 3 boki, suma kątów wynosi 180°, co odpowiada wzorowi (3 - 2) · 180° = 180°. Dla czworokąta (4 boki) suma kątów wynosi 360° – (4 - 2) · 180° = 360°. Wzór ten jest szeroko stosowany w geometrii i architekturze, a także w inżynierii, gdzie dokładne obliczenia kątów są niezbędne do projektowania struktur. Zrozumienie tego wzoru pozwala na lepsze planowanie i realizację projektów, a także unikanie błędów konstrukcyjnych.

Pytanie 28

Jakie kryterium musi zostać zrealizowane dla poprawek po wyrównaniu zmierzonych wartości o różnej dokładności, przy założeniu, że v to poprawka, a p to waga zmierzonej wartości?

A. [pvv] = max
B. [pvv] = min
C. [pv] = max
D. [pv] = min
Wybór odpowiedzi [pv] = min. sugeruje zrozumienie pojęcia wag pomiarowych, jednak jest to nieprawidłowe podejście. W kontekście wyrównania pomiarów, minimalizacja wartości wag pomiarowych prowadziłaby do zniekształcenia rzeczywistego obrazu danych, co jest niepożądane. Waga pomiaru (p) odnosi się do poziomu zaufania do danego pomiaru, a nie do jego wartości. W przypadku gdy różne pomiary mają różne stopnie dokładności, ich wpływ na wyniki powinien być uwzględniony w sposób, który odzwierciedla rzeczywistą precyzję tych pomiarów. Zastosowanie zasady minimum dla wag pomiarowych mogłoby prowadzić do nadmiernej redukcji wpływu wartości bardziej wiarygodnych, co jest sprzeczne z zasadami statystyki oraz analizą błędów. Wartości [pvv] = max. oraz [pv] = max. również są mylące. Maksymalizacja wag pomiarowych nie jest zgodna z potrzebą otrzymania najbardziej trafnych i precyzyjnych wyników. Dlatego kluczowym elementem jest zrozumienie, że minimalizowanie błędów wymaga zastosowania odpowiednich poprawek, a nie minimalizacji wag, co jest fundamentem dla każdego analityka danych oraz specjalisty zajmującego się pomiarami, który dąży do uzyskania rzetelnych wyników w swojej pracy.

Pytanie 29

Mapy zasadniczej nie sporządza się w skali

A. 1:1000
B. 1:10000
C. 1:2000
D. 1:5000
Odpowiedź 1:10000 jest prawidłowa, ponieważ mapy zasadnicze są tworzone w skali 1:10000, co jest zgodne ze standardami określonymi w przepisach dotyczących geodezji i kartografii. Ta skala jest optymalna dla prezentacji lokalnych szczegółów w terenie, co czyni ją niezwykle przydatną w działaniach związanych z urbanistyką, planowaniem przestrzennym oraz w procesach inwestycyjnych. Właściwe odwzorowanie terenu w tej skali umożliwia dokładne pomiary i analizy, które są niezbędne w planowaniu budynków, dróg oraz infrastruktury. Mapy w tej skali są zazwyczaj wykorzystywane w projektach budowlanych, gdzie precyzyjne odwzorowanie elementów terenu, takich jak granice działek, sieci uzbrojenia terenu oraz istniejące obiekty, jest kluczowe dla skutecznego zarządzania inwestycją. Zgodność z normami, takimi jak PN-ISO 19110, podkreśla znaczenie jakości danych w procesach geoinformacyjnych, co sprawia, że skala 1:10000 jest szeroko uznawana jako standardowa w polskiej geodezji.

Pytanie 30

Który krok nie jest częścią procesu konwersji mapy analogowej na cyfrową?

A. wektoryzacja
B. skanowanie
C. generalizacja
D. kalibracja
Wszystkie procesy, poza generalizacją, są ważnymi krokami w przetwarzaniu mapy analogowej na cyfrową. Skanowanie to ten pierwszy etap, gdzie przekształcamy obraz mapy analogowej na wersję cyfrową. Do tego używamy skanerów wysokiej rozdzielczości, które wychwytują szczegóły, a potem przerabiają je na dane cyfrowe. Kalibracja to inny proces, który ma na celu dopasowanie zeskanowanej mapy do rzeczywistych współrzędnych geograficznych, używając punktów kontrolnych, żeby precyzyjnie oddać rzeczywistość. Wektoryzacja natomiast to przerabianie pikseli na obiekty wektorowe, co pozwala na dalszą analizę. W praktyce, bez tych kroków mapa nie byłaby używana w systemach GIS ani dobrze rozumiana przez ludzi. Często ludzie mylą etapy przetwarzania z późniejszymi poprawkami danych, co powoduje zamieszanie, jeśli chodzi o ich rolę w cyfryzacji map. Ważne jest, by zrozumieć, że każdy z tych kroków ma swoje zadanie i prowadzi do powstania dokładniejszego modelu danych.

Pytanie 31

Przyjmując pomiarową osnowę sytuacyjną, należy zrealizować pomiary liniowe z przeciętnym błędem pomiaru odległości

A. md ≤ 0,01 m + 0,02 m/km
B. md ≤ 0,05 m + 70 mm/km
C. md ≤ 0,07 m + 50 mm/km
D. md ≤ 0,01 m + 0,01 m/km
Odpowiedź md ≤ 0,01 m + 0,01 m/km jest poprawna, ponieważ spełnia wymogi dotyczące precyzji pomiarów liniowych w osnowach geodezyjnych. Średni błąd pomiaru odległości określa granice dopuszczalnej dokładności pomiarów, które są kluczowe w geodezji. W przypadku tej odpowiedzi, błąd systematyczny wynosi tylko 1 cm, co jest na poziomie zalecanym dla pomiarów precyzyjnych, a dodatkowy błąd na jednostkę długości wynosi 1 cm na każdy kilometr, co również jest akceptowalne w praktyce. Takie wartości są zgodne z normami geodezyjnymi, takimi jak PN-EN ISO 17123, które regulują metody pomiarów i wymagania dotyczące ich jakości. Przy pomiarach w warunkach terenowych, uzyskanie takiej dokładności jest osiągalne przy zastosowaniu nowoczesnych instrumentów geodezyjnych, jak tachymetry czy teodolity z automatyczną korekcją. Przykładem zastosowania są prace związane z budową dróg czy mostów, gdzie precyzyjne pomiary mają kluczowe znaczenie dla bezpieczeństwa i jakości realizacji inwestycji.

Pytanie 32

Kąty pionowe nachylenia (a) mogą przyjmować wartości +/- w zakresie

A. 0g-300g
B. 0g-100g
C. 0g-400g
D. 0g-200g
Kąt nachylenia pionowego, który określa kąt, jaki tworzy linia pionowa z poziomem, jest kluczowym zagadnieniem w wielu dziedzinach inżynierii, w tym budownictwie i geodezji. Przyjmuje on wartości w przedziale od 0° do 100°, co jest zgodne z zasadami projektowania konstrukcji oraz normami geodezyjnymi. Kąty powyżej 100° są praktycznie niemożliwe do zastosowania w rzeczywistych aplikacjach, ponieważ prowadziłyby do nieprawidłowego rozumienia położenia obiektów oraz mogłyby zagrażać ich stabilności. Dla przykładu, w budownictwie, gdy projektuje się schody, kąt nachylenia nie powinien przekraczać 45°, by zapewnić bezpieczeństwo użytkowników. Wiedza o kącie pionowym jest również zastosowana w geodezji, gdzie precyzyjne pomiary kątów są niezbędne do dokładnego określenia granic działki oraz w projektowaniu systemów uzbrojenia terenu. Tylko wartości w przedziale 0° do 100° pozwalają na prawidłowe obliczenia oraz zastosowanie w praktyce inżynieryjnej.

Pytanie 33

Punkty kontrolne, które są używane w trakcie analizy przemieszczeń obiektów budowlanych, powinny być rozmieszczane

A. jak najdalej od analizowanego obiektu
B. w bezpośredniej bliskości analizowanego obiektu
C. bezpośrednio na analizowanym obiekcie
D. jak najbliżej punktów odniesienia dotyczących badanego obiektu
Umieszczanie punktów kontrolnych bezpośrednio na badanym obiekcie budowlanym jest kluczowym aspektem precyzyjnych pomiarów przemieszczeń. Tylko w ten sposób można uzyskać dokładne i wiarygodne wyniki, ponieważ punkty te są bezpośrednio związane z deformacjami obiektu. Przykładem zastosowania tej metody jest monitoring mostów, gdzie punkty kontrolne są instalowane na elementach konstrukcyjnych, co pozwala na bieżące śledzenie ich stanu oraz identyfikację ewentualnych zagrożeń. Stanowisko pomiarowe powinno być zgodne z odpowiednimi normami, takimi jak PN-EN 1992-1-1, które określają wymagania dotyczące projektowania i wykonania konstrukcji. Dzięki umiejscowieniu punktów kontrolnych na obiekcie, możliwe jest również zastosowanie nowoczesnych technologii, takich jak skanowanie laserowe, które pozwala na uzyskanie danych o przemieszczeniach w skali nano. To podejście zwiększa nie tylko dokładność pomiarów, ale także umożliwia przeprowadzanie analizy trendów, co jest niezbędne w zarządzaniu cyklem życia budynków i infrastruktury.

Pytanie 34

Miary określające lokalizację mierzonej pikiety nazywają się

A. domiarami prostokątnymi
B. przecięciami
C. domiarami biegunowymi
D. kątami wierzchołkowymi
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 35

Osnowy geodezyjne klasyfikuje się na różne grupy na podstawie ich precyzji oraz metody zakładania, jakich używa się do ich tworzenia?

A. podstawowe fundamentalne, podstawowe bazowe, szczegółowe
B. fundamentalne, podstawowe bazowe, sytuacyjne
C. poziome bazowe, podstawowe wysokościowe, sytuacyjne
D. podstawowe, podstawowe bazowe, pomiarowe
Odpowiedź 'podstawowe fundamentalne, podstawowe bazowe, szczegółowe' jest poprawna, ponieważ odzwierciedla klasyfikację osnow geodezyjnych w kontekście ich dokładności oraz metod zakładania. Osnowy fundamentalne stanowią podstawę dla innych sieci geodezyjnych, zapewniając najwyższy poziom dokładności i stabilności. Przykładem ich zastosowania są pomiary, które tworzą ogólnokrajowe systemy odniesienia, na podstawie których prowadzi się dalsze prace geodezyjne. Osnowy bazowe to sieci, które są wykorzystywane do precyzyjnych pomiarów lokalnych, a osnowy szczegółowe są stosowane do opracowywania map oraz w projektach budowlanych, gdzie wymagana jest wysoka precyzja. Klasyfikacja ta jest zgodna z normami międzynarodowymi oraz krajowymi, które nakładają obowiązek stosowania odpowiednich sieci geodezyjnych w zależności od skali i dokładności projektów geodezyjnych.

Pytanie 36

Kontrolę tyczenia, polegającą na weryfikacji długości boków oraz przekątnych pojedynczych prostokątów, kwadratów lub ich zestawień, wykonuje się w trakcie prac niwelacyjnych

A. profili
B. punktów rozproszonych
C. siatkową
D. tras
Odpowiedzi wskazujące na kontrolę tyczenia profili, trasy oraz punktów rozproszonych opierają się na niepełnym zrozumieniu koncepcji niwelacji i jej zastosowań w praktyce inżynieryjnej. Kontrola profili dotyczy najczęściej określenia kształtu i wymiarów elementów konstrukcyjnych, co nie obejmuje szczegółowej weryfikacji geometrii siatki. W przypadku tras, chodzi głównie o wyznaczanie ścieżek dla dróg lub linii kolejowych, a więc kontrola tyczenia nie odnosi się bezpośrednio do geometrycznej dokładności prostokątów czy kwadratów. Z kolei punkty rozproszone są używane do pomiarów lokalizacji różnych obiektów, co również nie przekłada się na kontrolę kształtów i wymiarów prostokątów. Zrozumienie, że kontrola tyczenia w kontekście niwelacji powinno dotyczyć siatki geodezyjnej, a nie pojedynczych elementów, jest kluczowe. Często błędne odpowiedzi wynikają z mylnego interpretowania terminologii oraz niewłaściwego odniesienia do praktycznych zastosowań w geodezji. Właściwe podejście do kontroli tyczenia zapewnia jakość i bezpieczeństwo konstrukcji, dlatego ważne jest, aby stosować odpowiednie metody oraz standardy w tej dziedzinie.

Pytanie 37

Jakie jest pole powierzchni działki o wymiarach 20,00 m x 40,00 m na mapie zasadniczej wykonanej w skali 1:500?

A. 32,00 cm2
B. 320,00 cm2
C. 0,32 cm2
D. 3,20 cm2
Wybór błędnych odpowiedzi wynika głównie z nieprawidłowej interpretacji skali oraz prostej omyłki w obliczeniach. Na przykład, odpowiedź 3,20 cm² sugeruje znacząco zaniżoną wartość wyniku, co może wynikać z niepoprawnego przeliczenia wymiarów działki z jednostek metrycznych na centymetrowe jednostki mapy. Działka o wymiarach 20,00 m x 40,00 m ma pole 800,00 m² w rzeczywistości, co w skali 1:500 przelicza się na 32,00 cm². Odpowiedzi takie jak 0,32 cm² są także wynikiem błędów w przeliczeniach, gdzie dwukrotnie pominięto proces przeliczenia długości działania na mapie, co prowadzi do znacznie zaniżonej wartości wyniku. Niezrozumienie zasad skali może prowadzić do błędnych oszacowań, które są krytyczne w projektach budowlanych i urbanistycznych. Ponadto, odpowiedzi takie jak 320,00 cm² mogą powstać w wyniku pomyłki przy mnożeniu, co jest typowym błędem w obliczeniach geometrycznych. Dlatego istotne jest, aby zrozumieć podstawy konwersji jednostek oraz właściwe przeliczanie wymiarów działki na mapie, aby uniknąć takich pomyłek w praktycznych zastosowaniach zawodowych.

Pytanie 38

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = 0 mm
B. f∆h = 8 mm
C. f∆h = -16 mm
D. f∆h = -8 mm
W przypadku pozostałych odpowiedzi występują różne nieporozumienia dotyczące zasad obliczania odchyłek w niwelacji. Odpowiedź f∆h = -16 mm sugeruje, że pomiar przewyższeń zostały podwojone, co jest błędnym podejściem, ponieważ odchyłka powinna być bezpośrednio związana z różnicą pomiędzy pomiarami a rzeczywistymi wartościami wysokości. Odpowiedź f∆h = 8 mm również nie ma sensu, ponieważ pomiar przewyższeń był ujemny, co powinno prowadzić do zrozumienia, że wynik powinien być oznaczony jako ujemny, nie dodatni. Warto zauważyć, że pomiar przewyżek w geodezji wymaga precyzyjnego podejścia do interpretacji danych i uwzględnienia wszelkich potencjalnych źródeł błędów. Wybór odpowiedzi f∆h = 0 mm nie uwzględnia faktu, że mamy do czynienia z rzeczywistą różnicą wynoszącą -8 mm, co oznacza, że istnieje wyraźna odchyłka, a nie brak jakiejkolwiek odchyłki. Kluczowym błędem w rozumieniu tych odpowiedzi jest nieuwzględnienie rzeczywistych pomiarów i ich interpretacji, co prowadzi do nieprawidłowych wniosków o istniejących błędach pomiarowych. W geodezji, zwłaszcza podczas niwelacji, istotne jest, aby lokalizować i rozumieć te odchylenia, aby poprawić dokładność i wiarygodność danych.

Pytanie 39

Południkiem centralnym odwzorowania Gaussa-Krügera w systemie współrzędnych PL-1992 jest południk

A. 15°
B. 17°
C. 21°
D. 19°
Wybór odpowiedzi 17°, 21° czy 15° wskazuje na niezrozumienie podstawowych zasad funkcjonowania układu współrzędnych PL-1992 oraz odwzorowania Gaussa-Krügera. W kontekście kartografii, południk osiowy stanowi kluczowy element, który określa orientację mapy oraz zapewnia spójność pomiarów geodezyjnych w danym regionie. Odpowiedzi te mogą wynikać z błędnych założeń dotyczących lokalizacji geograficznej Polski, a także mylnej interpretacji systemów odwzorowania. Warto zauważyć, że każdy z tych południków może być używany w różnych odwzorowaniach, ale tylko jeden z nich jest właściwy dla konkretnego regionu. Południki 17°, 21° i 15° mogą być mylone z innymi systemami odwzorowań, co prowadzi do nieporozumień w zakresie ich zastosowania. Często pojawiającym się błędem jest mylenie południków z innymi parametrami geograficznymi, takimi jak równoleżniki, co zaburza zrozumienie struktury systemów geodezyjnych. Aby skutecznie posługiwać się systemem PL-1992, ważne jest zrozumienie, że południk 19° jest optymalny dla tego obszaru, ponieważ minimalizuje zniekształcenia w odwzorowaniu, co jest niezbędne w geodezji i kartografii. Zatem, dla każdego, kto chce pracować w dziedzinie pomiarów geodezyjnych czy tworzenia map, wiedza o odpowiednim południku osiowym jest fundamentalna.

Pytanie 40

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:1000
B. 1:2000
C. 1:5000
D. 1:500
Odpowiedź 1:1000 jest prawidłowa, ponieważ w układzie PL-2000 arkusz mapy zasadniczej o godle 7.125.30.10.3 jest sporządzony w skali 1:1000. Tego typu skala jest powszechnie stosowana w dokumentacji geodezyjnej, ponieważ pozwala na szczegółowe przedstawienie małych obszarów, takich jak działki budowlane czy obiekty infrastrukturalne. W praktyce, dla geodetów i urbanistów, skala 1:1000 umożliwia precyzyjne planowanie przestrzenne oraz analizę zagospodarowania terenu. Ponadto, zgodnie z obowiązującymi przepisami prawno-geodezyjnymi, mapy w takiej skali muszą spełniać określone standardy jakości, co zapewnia ich użyteczność w procesach decyzyjnych związanych z inwestycjami budowlanymi. Dodatkowo, w kontekście normatywów, skala ta jest uznawana za optymalną dla przedstawienia szczegółowych informacji, takich jak granice działek, ukształtowanie terenu, czy lokalizację istniejącej infrastruktury. W związku z tym, posługiwanie się skalą 1:1000 w arkuszach mapy zasadniczej jest nie tylko zgodne z wymaganiami, ale również efektywne z punktu widzenia praktycznego zastosowania w geodezji i urbanistyce.