Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 12:44
  • Data zakończenia: 22 maja 2025 13:01

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. rękawic ochronnych i fartucha ochronnego
B. okularów ochronnych i fartucha ochronnego
C. nienaruszonych narzędzi izolowanych
D. szczypiec oraz zestawu wkrętaków
Wybór okularów i fartucha ochronnego, rękawic oraz szczypiec i kompletu wkrętaków, choć istotny dla ogólnego bezpieczeństwa w miejscu pracy, nie rozwiązuje problemu związanego z bezpiecznym posługiwaniem się urządzeniami mechatronicznymi, w których istnieje ryzyko wystąpienia napięcia elektrycznego. Okulary ochronne i fartuchy są ważnymi elementami odzieży ochronnej, jednak ich głównym celem jest ochrona przed mechanicznymi uszkodzeniami i substancjami chemicznymi, a nie przed porażeniem prądem. Rękawice, choć mogą oferować pewien poziom izolacji, nie są wystarczające, jeśli nie są specjalnie przystosowane do pracy z urządzeniami elektrycznymi. Ponadto, używanie narzędzi, które nie są odpowiednio izolowane, stwarza poważne zagrożenie. Typowym błędem myślowym jest założenie, że wystarczające jest posiadanie wyposażenia ochronnego bez uwzględnienia specyfiki pracy z napięciem elektrycznym. Aby skutecznie minimalizować ryzyko porażenia prądem, mechatronik powinien korzystać wyłącznie z narzędzi z odpowiednią izolacją, a także przestrzegać standardów bezpieczeństwa, takich jak zalecenia zawarte w normach IEC. Ignorowanie tej zasady może prowadzić do tragicznych konsekwencji, dlatego zawsze należy upewnić się, że narzędzia są właściwie dobrane do rodzaju wykonywanej pracy.

Pytanie 2

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Cykliczna redundancja
B. Pomiar napięcia sygnału przesyłanego
C. Sprawdzanie parzystości
D. Weryfikacja sumy kontrolnej
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 3

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. obr./min
B. Hz
C. V
D. V/(obr./min)
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 4

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termoelement
B. termostat
C. czujnik termiczny
D. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
Regulator temperatury z wyświetlaczem cyfrowym to urządzenie, które monituruje i kontroluje temperaturę, ale nie mierzy jej bezpośrednio. Głównie utrzymuje zadaną temperaturę, kontrolując inne urządzenia, jak grzałki czy wentylatory. Temperatura zazwyczaj pochodzi z czujników, a one same nie są do pomiaru. Termostat też jest urządzeniem sterującym, ale raczej zajmuje się kontrolowaniem ciepła niż pomiarem. Przekaźnik termiczny włącza lub wyłącza obwody elektryczne w zależności od temperatury, ale również nie mierzy temperatury. Często ludzie mylą te funkcje, co prowadzi do błędnych wniosków. W praktyce to, że te urządzenia mogą zarządzać temperaturą, nie znaczy, że potrafią ją zmierzyć. Żeby prawidłowo mierzyć temperaturę, potrzeba dedykowanych urządzeń, jak termoelementy, które są dokładne i niezawodne.

Pytanie 5

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 4,5 V
B. 10,0 V
C. 7,5 V
D. 3,0 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 6

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. woltomierz
B. watomierz
C. amperomierz
D. omomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 7

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Buty z izolującą podeszwą
B. Ochronne okulary
C. Opaskę uziemiającą
D. Fartuch ochronny z bawełny
Wybór bawełnianego fartucha ochronnego, okularów ochronnych lub butów z izolowaną podeszwą do pracy przy wymianie tranzystora CMOS jest niewłaściwy, gdyż te elementy ochrony nie są wystarczające, aby zminimalizować ryzyko związane z uszkodzeniem komponentów przez ładunki elektrostatyczne. Fartuch ochronny, mimo że może chronić przed zanieczyszczeniami, nie zapewnia ochrony przed ESD. Użycie okularów ochronnych jest również nieadekwatne, ponieważ ich główną funkcją jest ochrona oczu przed zanieczyszczeniami mechanicznymi czy chemicznymi, ale nie ma zastosowania w kontekście ochrony przed uszkodzeniami wywołanymi przez elektrostatykę. Co więcej, buty z izolowaną podeszwą mogą prowadzić do zwiększenia ryzyka gromadzenia się ładunków elektrostatycznych, co jest sprzeczne z zasadami ochrony ESD. Często pracownicy nie doceniają znaczenia uziemienia, uważając, że inne formy ochrony są wystarczające, co jest klasycznym błędem myślowym. W przypadku pracy z wrażliwymi komponentami, jak tranzystory CMOS, najważniejsze jest minimalizowanie ryzyka ESD, a do tego niezbędne jest stosowanie opasek uziemiających, które zapewniają bezpieczne odprowadzenie ładunków do ziemi. Bez odpowiedniej ochrony ESD, nawet niewielkie ładunki mogą spowodować nieodwracalne uszkodzenia komponentów, co prowadzi do zwiększonych kosztów napraw oraz strat w produkcji.

Pytanie 8

Licznik impulsów rewersyjnych to urządzenie

A. które zajmuje się dodawaniem impulsów
B. które dokonuje odejmowania impulsów
C. które zapisuje w pamięci określoną liczbę impulsów
D. które wykonuje dodawanie i odejmowanie impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 9

Jak można zmierzyć prędkość przepływu gazu?

A. przy pomocy pirometru radiacyjnego
B. używając czujnika termoelektrycznego
C. za pomocą zwężki Venturiego
D. z wykorzystaniem impulsatora fotoelektrycznego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 10

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Powiercanie
B. Wygładzanie
C. Gratowanie
D. Szlifowanie
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 11

Która z wymienionych działań, które są częścią montażu osłon przy użyciu wielu mocowań śrubowych, powinna być realizowana ściśle zgodnie z wytycznymi?

A. Dokręcanie śrub
B. Polerowanie ręczne powierzchni
C. Dobór narzędzi
D. Smarowanie odpowiednim smarem
Dokręcanie śrub jest kluczowym etapem montażu osłon za pomocą połączeń śrubowych, ponieważ ma na celu zapewnienie odpowiedniej siły i stabilności całej konstrukcji. Zgodnie z normami branżowymi, każde połączenie mechaniczne powinno być dokręcone zgodnie z zaleceniami producenta oraz przy użyciu odpowiednich narzędzi, które gwarantują dokładność momentu dokręcania. Przykładowo, w przypadku zastosowania połączeń śrubowych w motoryzacji, niewłaściwe dokręcenie może prowadzić do wibracji, uszkodzeń komponentów oraz w konsekwencji do poważnych awarii. Ważne jest również, aby stosować się do procedur, takich jak sekwencyjne dokręcanie, które ma na celu równomierne rozłożenie sił i minimalizację ryzyka deformacji elementów. Ponadto, zastosowanie momentomierzy jest rekomendowane, aby uzyskać powtarzalność i zgodność z wymaganiami technicznymi. Takie podejście nie tylko zwiększa bezpieczeństwo, ale również przedłuża żywotność montowanych osłon, co jest kluczowe w kontekście efektywności i niezawodności mechanizmów.

Pytanie 12

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Regularna wymiana rozdzielacza
C. Codzienna wymiana oleju
D. Regularna wymiana filtrów
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 13

Aby zdemontować stycznik zamocowany na szynie, należy wykonać czynności w odpowiedniej kolejności:

A. odłączyć napięcie, odkręcić przewody, zdjąć stycznik z szyny
B. odłączyć napięcie, zdjąć stycznik z szyny, odkręcić przewody
C. zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
D. odkręcić przewody, zdjąć stycznik z szyny, odłączyć napięcie
W przypadku demontażu stycznika na szynie, proces powinien być przeprowadzany w ściśle określonej kolejności, aby zapewnić bezpieczeństwo oraz minimalizować ryzyko uszkodzenia sprzętu. Pomylenie kolejności czynności może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenie urządzenia. Na przykład, zaczynając od odpięcia stycznika z szyny lub odkręcenia przewodów bez wcześniejszego odłączenia napięcia, stawiamy się w sytuacji, w której możemy przypadkowo dotknąć żywych elementów, co jest ekstremalnie ryzykowne. Każdy elektryk powinien być świadomy, że praca przy urządzeniach pod napięciem jest zabroniona, a odłączenie zasilania to podstawowy krok w każdym projekcie związanym z pracami elektrycznymi. Utrzymywanie zasilania podczas demontażu komponentów stwarza także ryzyko zwarcia, które może doprowadzić do uszkodzenia stycznika oraz innych elementów systemu elektrycznego. Ponadto, nieodpowiednia kolejność może prowadzić do nieefektywności w procesie montażu i demontażu, co w dłuższej perspektywie czasu może zwiększyć koszty eksploatacji oraz napraw. Aby uniknąć takich błędów, zaleca się ścisłe przestrzeganie procedur oraz szkoleń z zakresu pracy z instalacjami elektrycznymi.

Pytanie 14

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Rezystancyjnego
B. Pojemnościowego
C. Optycznego
D. Indukcyjnego
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 15

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. maskę przeciwpyłową
B. okulary ochronne
C. kask ochronny
D. buty ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 16

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Odpowiedzi z wydajnością 3,6 m3/h są błędne, ponieważ nie spełniają podstawowych wymagań dla zasilania siłownika sprężonym powietrzem. Siłownik potrzebuje 4,2 m3/h (jak to przeliczymy z litrów na metry sześcienne), więc sprężarka musi mieć moc do dostarczania przynajmniej tyle powietrza. Ta wydajność 3,6 m3/h na pewno nie wystarczy, by pokryć potrzeby, a siłownik mógłby mieć problemy z pełnym cyklem roboczym. To by wpłynęło na działanie całego systemu. Dodatkowo, maksymalne ciśnienie 0,7 MPa (7 bar) to za mało, bo siłownik działa przy ciśnieniu 8 barów. Jeśli sprężarka nie dostarczy odpowiedniego ciśnienia, to wyjdą problemy z wydajnością siłownika i mogą być awarie. W praktyce coś takiego to już ryzyko, a to się nie trzyma zasad dobrej praktyki w projektowaniu systemów pneumatycznych, gdzie trzeba dobierać urządzenia z odpowiednią wydajnością i parametrami, żeby wszystko działało bez zarzutu.

Pytanie 17

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być wciągane do osłon jako ostatnie
B. być wciągane do osłon jako pierwsze
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być układane jak najdalej od przewodów silnoprądowych
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 18

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na pomiar parametrów procesowych prasy
B. na odczyt wartości zmierzonych parametrów
C. na wizualizację przebiegu pracy prasy
D. na załączanie i wyłączanie pracy prasy
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 19

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. nie zmienia się w stosunku do linii punktu rosy
B. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
C. oddala się od linii punktu rosy
D. zbliża się do linii punktu rosy
Wzrost ciśnienia w zbiorniku sprężarki powoduje, że powietrze staje się bardziej sprężone. Przy stałej wilgotności i temperaturze, wilgotność względna powietrza wzrasta, co oznacza, że stan pary wodnej w powietrzu zbliża się do linii punktu rosy. Linia punktu rosy jest granicą, przy której para wodna zaczyna kondensować w ciecz. W praktyce, im wyższe ciśnienie, tym więcej pary wodnej może być obecne w powietrzu, co prowadzi do podwyższenia ciśnienia cząstkowego pary wodnej. W zastosowaniach przemysłowych, kontrola ciśnienia i wilgotności powietrza jest kluczowa, zwłaszcza w procesach, w których może wystąpić kondensacja, jak w systemach pneumatycznych czy podczas przechowywania materiałów wrażliwych na wilgoć. Przykładowo, w przemyśle spożywczym lub farmaceutycznym, monitoring tych parametrów zapewnia, że procesy technologiczne przebiegają zgodnie z normami jakości, co z kolei wpływa na trwałość oraz bezpieczeństwo produktów końcowych.

Pytanie 20

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Zaginania
B. Spawania
C. Klejenia
D. Zgrzewania
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 21

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HVLP
B. H
C. HLP
D. HL
Wybór złych symboli olejów może sporo namieszać w ich właściwościach względem potrzeb. Na przykład, symbol HVLP mówi o olejach hydraulicznych, które mają dobre właściwości smarujące, ale brakuje im tych dodatków antykorozyjnych. Również symbol HL informuje o olejach, które nie mają dodatków przeciwutleniających ani poprawiających smarność, co ogranicza ich użycie w trudniejszych warunkach. Znowu, oznaczenie H dotyczy olejów hydraulicznych, które nie mówią nic więcej o ich specyficznych właściwościach. Często myli się te symbole i ich zastosowanie, co może prowadzić do poważnych problemów w hydraulikach, jak przegrzewanie czy korozja. Dlatego tak ważne jest, aby znać różnice między tymi oznaczeniami i wiedzieć, jak je stosować w praktyce w przemyśle.

Pytanie 22

Chłodzenie powietrza przy użyciu agregatu chłodniczego do ciśnienia punktu rosy na poziomie +2 °C ma na celu

A. usunięcie zanieczyszczeń
B. osuszenie powietrza
C. nasycenie powietrza parą wodną
D. zwiększenie ciśnienia
Odpowiedź 'osuszenie powietrza' jest prawidłowa, ponieważ oziębianie powietrza za pomocą agregatu chłodniczego prowadzi do zmniejszenia jego zdolności do utrzymywania pary wodnej. Gdy powietrze jest schładzane do temperatury punktu rosy, nadmiar wilgoci kondensuje się, co skutkuje usunięciem wody z powietrza. Przykładem zastosowania tej technologii jest klimatyzacja w budynkach, gdzie odpowiednia kontrola wilgotności jest kluczowa dla komfortu mieszkańców oraz ochrony materiałów budowlanych przed wilgocią. Dobre praktyki w branży HVAC (ogrzewanie, wentylacja, klimatyzacja) zakładają, że optymalny poziom wilgotności w pomieszczeniach powinien wynosić od 30% do 50%. Dlatego agregaty chłodnicze, które działają na zasadzie osuszania, są kluczowe w zapewnieniu komfortu oraz efektywności energetycznej w różnych zastosowaniach, w tym w procesach przemysłowych oraz w serwerowniach, gdzie wilgoć może prowadzić do uszkodzeń sprzętu elektronicznego.

Pytanie 23

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 8 wejściach i 6 wyjściach
B. S7-200 o 14 wejściach i 10 wyjściach
C. S7-200 o 24 wejściach i 16 wyjściach
D. S7-200 o 6 wejściach i 4 wyjściach
Niepoprawne odpowiedzi, takie jak S7-200 o 8 wejściach i 6 wyjściach, S7-200 o 24 wejściach i 16 wyjściach oraz S7-200 o 6 wejściach i 4 wyjściach, nie spełniają wymagań dla skutecznego sterowania windą w budynku trzykondygnacyjnym. Przede wszystkim, w przypadku 8 wejść i 6 wyjść, liczba wejść jest zdecydowanie zbyt mała, aby obsłużyć wszystkie niezbędne czujniki, takie jak te monitorujące położenie windy, sygnały przycisków oraz inne sensory. Podobnie, 6 wejść i 4 wyjścia również nie są wystarczające, co prowadzi do ryzyka awarii systemu. Z drugiej strony, odpowiedź z 24 wejściami i 16 wyjściami, mimo że teoretycznie przekracza wymagania, w praktyce może prowadzić do zbędnych kosztów oraz złożoności systemu, co jest nieefektywne. W projektowaniu systemów automatyki niezwykle ważne jest, aby dobierać komponenty w sposób przemyślany, co oznacza nie tylko spełnienie minimalnych wymagań, ale także optymalizację kosztów. Niezrozumienie tego aspektu może prowadzić do błędnych założeń i nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz niezawodność działania urządzeń. Warto pamiętać, że właściwy dobór komponentów jest fundamentem każdej dobrze zaprojektowanej instalacji automatyki.

Pytanie 24

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. uziemić urządzenie.
B. zdjąć obudowę.
C. zweryfikować stan izolacji.
D. odłączyć urządzenie od źródła zasilania.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 25

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. szczelinomierz
B. liniał
C. mikrometr
D. suwmiarka
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 26

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Siłownika jednostronnego działania
B. Zbiornika sprężonego powietrza
C. Siłownika dwustronnego działania
D. Zbiornika oleju hydraulicznego
Podłączenie przyłącza T do zbiornika sprężonego powietrza jest niewłaściwie zrozumiane, ponieważ systemy hydrauliczne i pneumatyczne różnią się zasadniczo w swoim działaniu i zastosowaniu. Zbiorniki sprężonego powietrza są przeznaczone do gromadzenia powietrza pod ciśnieniem i są używane w systemach pneumatycznych, gdzie energia jest przekazywana przez sprężone powietrze. Zastosowanie przyłącza T w tym kontekście wprowadzałoby w błąd, ponieważ olej hydrauliczny nie może być użyty w systemie pneumatycznym, co mogłoby prowadzić do uszkodzeń komponentów i awarii całego układu. Z kolei podłączenie do siłownika jednostronnego działania również jest nieprawidłowe, ponieważ taki siłownik potrzebuje jedynie jednego przyłącza do zasilania, a powrót oleju odbywa się przez inne kanały, co nie ma związku z przyłączem T. Siłownik dwustronnego działania wymaga natomiast zarówno zasilania, jak i odprowadzania oleju, ale jego konstrukcja nie przewiduje podłączenia do zbiornika w ten sposób. Zrozumienie funkcji przyłącza T w kontekście zaworu hydraulicznego 4/2 jest fundamentalne dla efektywnego zarządzania systemem hydraulicznym, dlatego kluczowe jest, aby nie mylić jego zastosowania z systemami pneumatycznymi czy z siłownikami, które operują na innych zasadach.

Pytanie 27

Jaki rodzaj zaworu powinien zostać zainstalowany w systemie, aby umożliwić przepływ medium wyłącznie w jednym kierunku?

A. Odcinający
B. Rozdzielający
C. Bezpieczeństwa
D. Zwrotny
Zawór zwrotny, znany również jako zawór jednokierunkowy, jest kluczowym elementem w wielu systemach hydraulicznych oraz pneumatycznych, którego głównym zadaniem jest umożliwienie przepływu medium w jednym kierunku, jednocześnie zapobiegając cofaniu się go. Działa na zasadzie automatycznej regulacji, co oznacza, że nie wymaga zewnętrznego źródła energii do działania. Zawory te są powszechnie stosowane w aplikacjach takich jak pompy, gdzie zapobiegają cofaniu się cieczy do pompy, co mogłoby prowadzić do uszkodzenia urządzenia. W praktyce, instalacje, które wymagają ciągłego przepływu medium w określonym kierunku, korzystają z zaworów zwrotnych, aby zapewnić ich efektywność i bezpieczeństwo. Ponadto, stosowanie zaworów zwrotnych jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ minimalizuje ryzyko awarii systemu oraz zapewnia jego stabilność operacyjną. W związku z tym, zawory zwrotne są niezbędnymi komponentami w systemach, gdzie kontrola kierunku przepływu medium jest krytyczna.

Pytanie 28

Czynniki zagrażające zdrowiu ludzi, związane z użyciem urządzeń hydraulicznych, są w głównej mierze spowodowane przez

A. wibracje oraz hałas.
B. wysokie temperatury płynów.
C. wysokie ciśnienia płynów oraz ogromne siły.
D. duże przepływy prądów.
Odpowiedź dotycząca wysokich ciśnień cieczy i dużych sił jako zagrożeń dla zdrowia człowieka w kontekście urządzeń hydraulicznych jest poprawna. Urządzenia hydrauliczne działają na zasadzie wykorzystania ciśnienia cieczy do przenoszenia sił i momentów, co czyni je niezwykle efektywnymi w wielu zastosowaniach przemysłowych. Wysokie ciśnienie w układach hydraulicznych, które może osiągać wartości kilkuset barów, stwarza ryzyko nie tylko uszkodzenia samych urządzeń, ale również poważnych wypadków, jeśli system ulegnie awarii. Przykładem może być wybuch węża hydraulicznego, który może prowadzić do niebezpiecznych sytuacji, takich jak obrażenia ciała pracowników. Dlatego w branży hydraulicznej istnieją ścisłe normy bezpieczeństwa, takie jak ISO 4413, które określają wymagania dotyczące hydraulicznych systemów zasilania, aby minimalizować ryzyko związane z wysokim ciśnieniem i siłami. Użytkownicy urządzeń hydraulicznych powinni być odpowiednio przeszkoleni, a urządzenia poddawane regularnym inspekcjom, aby zapewnić ich bezpieczeństwo i sprawność działania.

Pytanie 29

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić membranę
B. zmierzyć rezystancję cewki
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. wymienić uszczelkę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 30

Transoptor wykorzystuje się do

A. sygnalizowania transmisji
B. galwanicznego połączenia obwodów
C. galwanicznej izolacji obwodów
D. konwersji impulsów elektrycznych na promieniowanie świetlne
Zamiana impulsów elektrycznych na promieniowanie świetlne jest funkcją, którą pełnią diody LED, a nie transoptory. Transoptor to urządzenie, które wykorzystuje światło do przesyłania sygnałów, ale nie zamienia energii elektrycznej na promieniowanie, tylko używa wewnętrznego źródła światła do aktywacji detektora, co zapewnia separację galwaniczną. Sygnalizacja transmisji, choć może sugerować pewne aspekty działania transoptora, nie oddaje głównego celu tego komponentu, którym jest izolacja. Izolacja galwaniczna jest kluczowym aspektem w wielu aplikacjach, gdzie różne poziomy napięcia muszą być oddzielone, a nie tylko sygnalizowane. W praktyce, transoptory są projektowane specjalnie do tej funkcji, aby chronić obwody przed szkodliwymi skutkami zakłóceń i różnic potencjałów. W związku z tym, odpowiedzi sugerujące sygnalizację czy zamianę energii są mylne i nie odzwierciedlają rzeczywistego zastosowania transoptorów w nowoczesnej elektronice, gdzie kluczowa jest ochrona i niezawodność obwodów.

Pytanie 31

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HV, HLP, HLPD
C. HLP, HFA, HTG
D. HFA, HFC, HFD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 32

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Prostownika sterowanego trójpulsowego
B. Softstartu
C. Przełącznika gwiazda-trójkąt
D. Przemiennika częstotliwości
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 33

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. chronienia ramienia robota przed przeciążeniem
B. przemieszczania obiektu w przestrzeni
C. chwytania obiektu z odpowiednią siłą
D. ochrony ramienia robota przed kolizjami z operatorem
Efektor, umieszczony na końcu ramienia robota, odgrywa kluczową rolę w jego funkcjonowaniu, zwłaszcza w kontekście automatyzacji procesów produkcyjnych. Jego głównym zadaniem jest chwytanie elementów z odpowiednią siłą, co jest istotne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy transport materiałów. Efektory mogą mieć różne formy – od prostych chwytaków pneumatycznych, po zaawansowane systemy z czujnikami siły, które umożliwiają precyzyjne dostosowanie siły chwytu do rodzaju i wagi chwytanego obiektu. Dzięki tym technologiom możliwe jest minimalizowanie uszkodzeń delikatnych komponentów oraz zwiększenie efektywności produkcji. Dobre praktyki w zakresie projektowania efektorów obejmują uwzględnienie materiałów, które zapewniają odpowiednią przyczepność i trwałość, a także zastosowanie systemów kontroli, które pozwalają na monitorowanie siły chwytu w czasie rzeczywistym, co może być zgodne z normami ISO 10218 dotyczącymi robotów przemysłowych.

Pytanie 34

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
B. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Wiele osób myli funkcję filtrów dolnoprzepustowych, co prowadzi do błędnych wniosków. W przypadku pierwszej odpowiedzi, wskazanie, że filtr dolnoprzepustowy przepuszcza sygnały o częstotliwości większej od granicznej jest sprzeczne z definicją jego działania. Filtr dolnoprzepustowy ma na celu eliminację tych wyższych częstotliwości, a nie ich przepuszczanie. W praktyce, może to prowadzić do poważnych problemów w projektowaniu układów elektronicznych, gdzie konieczne jest zachowanie jakości sygnału. Z kolei odpowiedź mówiąca o wzmacnianiu sygnałów o częstotliwości mniejszej od granicznej jest również myląca. Filtry dolnoprzepustowe nie wzmacniają sygnałów, lecz je tłumią lub przepuszczają w zależności od ich częstotliwości. W realnych zastosowaniach, takie nieporozumienia mogą prowadzić do błędnych decyzji w konstrukcji układów, które nie będą działały zgodnie z zamierzeniem. Zrozumienie pracy filtrów dolnoprzepustowych jest kluczowe w inżynierii sygnałowej, gdzie efektywność filtracji wpływa na jakość końcowego sygnału oraz zgodność z normami branżowymi. Typowe błędy myślowe, takie jak mylenie funkcji wzmacniania z przepuszczaniem, mogą prowadzić do poważnych usterek w projektach elektronicznych, a także do obniżenia jakości usług w systemach komunikacyjnych.

Pytanie 35

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fotoogniwie
B. Fototranzystorze
C. Fotorezystorze
D. Fotodiodzie
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 36

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec uniwersalnych
C. Szczypiec płaskich
D. Kluczy oczkowych
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 37

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. poparzenie dłoni
B. uszkodzenie słuchu
C. krwawienie z nosa
D. uszkodzenie wzroku
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 38

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. smarownica, filtr powietrza, reduktor
B. reduktor, filtr powietrza, smarownica
C. filtr powietrza, reduktor, smarownica
D. reduktor, smarownica, filtr powietrza
Odpowiedź "filtr powietrza, reduktor, smarownica" jest poprawna, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla efektywności oraz żywotności układu sprężonego powietrza. Filtr powietrza jest pierwszym elementem, który powinien być zainstalowany, ponieważ jego zadaniem jest usunięcie zanieczyszczeń i wilgoci z powietrza atmosferycznego, co zapobiega uszkodzeniom pozostałych komponentów systemu. Następnie montowany jest reduktor ciśnienia, który reguluje ciśnienie powietrza dostarczanego do urządzeń roboczych, zapewniając optymalne warunki pracy. Na końcu montowana jest smarownica, która dostarcza odpowiednią ilość oleju do narzędzi pneumatycznych, co wpływa na ich skuteczność oraz wydajność. Zgodnie z normami branżowymi, takimi jak ISO 8573, zachowanie tej kolejności pozwala na utrzymanie wysokiej jakości powietrza oraz minimalizację kosztów eksploatacji, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 39

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak

A. HV
B. HL
C. HM
D. HH
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 40

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Silikon
B. Lateks
C. Poliuretan
D. Poliamid
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.