Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 15:39
  • Data zakończenia: 25 maja 2025 15:55

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. transformator do zmiany liczby faz
B. przekładnik prądowy
C. przekładnik napięciowy
D. transformator bezpieczeństwa
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 2

W barach są skalowane

A. manometry
B. wiskozymetry
C. przepływomierze
D. prędkościomierze
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 3

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI16/DO8 oraz AI4
B. DI32/DO8 oraz AI2
C. DI32/DO16 oraz AI4
D. DI16/DO16 oraz AI2
Wybór złej konfiguracji w systemie PLC może naprawdę narobić kłopotów. Na przykład, DI16/DO16 oraz AI2 to kiepski pomysł, bo mają za mało wejść. W twoim układzie potrzeba przynajmniej 18 wejść, więc DI16 będzie niewystarczające. A te 2 analogowe na AI2? No, raczej nie podepniesz wszystkich 4 przetworników, co może spowodować, że nie będziesz mógł monitorować ważnych parametrów. Możesz pomyśleć, że DI32/DO8 oraz AI2 to dobry plan, bo DI32 ma odpowiednią liczbę wejść, ale 8 wyjść cyfrowych to za mało, żeby obskoczyć 11 elementów wykonawczych. To może być frustrujące, bo układ może nie działać jak należy. Podobna sytuacja jest z DI16/DO8 oraz AI4 – znowu te 16 wejść to za mało na wszystkie czujniki. Generalnie, dobierając konfigurację sterowników PLC, dobrze jest mieć na uwadze nadmiarowość i elastyczność, bo wtedy system łatwiej dostosować do przyszłych potrzeb.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 3
B. Przetwornik 1
C. Przetwornik 2
D. Przetwornik 4
Przetwornik 4 jest odpowiednią odpowiedzią, ponieważ jego działanie jest niezgodne z oczekiwaniami w kontekście standardów przetworników ciśnienia. Zgodnie z danymi katalogowymi, dla ciśnienia 0,50 MPa przetwornik ten powinien generować sygnał 8 mA. W przypadku braku prawidłowego sygnału, jak w tym przypadku 5 mA, wskazuje to na awarię urządzenia lub błędną kalibrację. Praktyczne zastosowanie przetworników ciśnienia wymaga ich niezawodności, ponieważ od ich działania zależy poprawność pomiarów w różnych procesach technologicznych. W związku z tym, regularne sprawdzanie i kalibracja tych urządzeń są kluczowe w utrzymaniu standardów jakości i bezpieczeństwa w przemyśle. Ponadto, w przypadku nieprawidłowego działania przetwornika, istotne jest przeprowadzenie diagnostyki w celu określenia przyczyn błędów, co może obejmować testy elektryczne oraz analizę warunków pracy. Warto również zaznaczyć, że odpowiednie monitorowanie sygnałów wyjściowych pozwala na wczesne wykrywanie problemów i minimalizowanie przestojów w procesie technologicznym.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Do czego służy stabilizator napięcia?

A. do wygładzania napięcia po prostowaniu przez prostownik
B. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
C. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
D. do przekształcania napięcia przemiennego w napięcie stałe
Stabilizator napięcia jest urządzeniem, które ma za zadanie utrzymywanie stałego napięcia na wyjściu, niezależnie od zmian natężenia prądu obciążenia oraz fluktuacji napięcia wejściowego. W praktyce oznacza to, że gdy obciążenie zmienia się, a także gdy napięcie zasilające ulega zmianie (na przykład w wyniku wahań w sieci energetycznej), stabilizator zapewnia, że napięcie na wyjściu pozostaje na pożądanym poziomie. Przykładem zastosowania stabilizatorów napięcia są zasilacze do urządzeń elektronicznych, takich jak komputery czy telewizory, które wymagają stałego napięcia do prawidłowego działania. W branży elektronicznej oraz elektrycznej, stosowanie stabilizatorów napięcia jest zgodne z dobrymi praktykami, które mają na celu zapewnienie niezawodności i bezpieczeństwa urządzeń. Stabilizatory mogą również chronić sprzęt przed uszkodzeniami spowodowanymi nadmiernym wzrostem napięcia lub jego spadkiem. Warto zaznaczyć, że stabilizatory mogą działać w różnych trybach, w tym jako liniowe lub impulsowe, w zależności od zastosowania i wymagań dotyczących efektywności energetycznej.

Pytanie 14

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. zbyt wysokie napięcie zasilające
B. nadmierne obciążenie silnika
C. wysyłanie impulsów sterujących w błędnej kolejności
D. brak modyfikacji częstotliwości impulsów z kontrolera
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. częstotliwości impulsu
B. częstotliwości oraz fazy impulsu
C. szerokości impulsu
D. amplitudy impulsu
Modulacja impulsowa oznaczona jako PWM jest często mylona z innymi formami modulacji, co prowadzi do nieporozumień na temat jej działania. Zmiana częstotliwości impulsu nie jest właściwa, ponieważ w PWM częstotliwość pozostaje stała, a zmienia się tylko szerokość impulsów. Użytkownicy mogą mylić tę koncepcję z modulacją częstotliwości (FM), w której to właśnie częstotliwość sygnału jest zmieniana. Z kolei zmiana fazy impulsu odnosi się raczej do technik, które są stosowane w modulacji fazy, gdzie istotne jest przesunięcie fazy sygnału, co również nie jest cechą PWM. Ostatnia z niepoprawnych koncepcji, związana z amplitudą impulsu, odnosi się do modulacji amplitudy (AM), w której zmiana amplitudy fali nośnej jest kluczowa. Takie błędne myślenie może wynikać z nieznajomości różnic pomiędzy różnymi technikami modulacji. Zrozumienie, że PWM polega na zmianie szerokości impulsów, a nie innych parametrów, jest kluczowe do prawidłowego zastosowania tej techniki w praktyce. Niezrozumienie podstaw PWM może prowadzić do niewłaściwego projektowania układów, co w konsekwencji skutkuje nieefektywnym wykorzystaniem energii lub nawet uszkodzeniem komponentów. Dlatego ważne jest, aby zrozumieć, jak PWM działa oraz jakie ma zastosowanie w różnych dziedzinach inżynierii.

Pytanie 17

W procesie TIG stosuje się technikę spawania

A. strumieniem elektronów
B. elektrodą wolframową w osłonie argonowej
C. łukiem plazmowym
D. elektrodą topliwą w osłonie dwutlenku węgla
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik uniwersalny
B. miernik parametrów instalacji
C. miernik RLC
D. kamerę termowizyjną
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 20

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. termometru rezystancyjnego
B. termometru półprzewodnikowego
C. termopary
D. pirometru
Pirometr to instrument przeznaczony do bezdotykowego pomiaru temperatury, wykorzystujący promieniowanie podczerwone emitowane przez obiekty. Jego działanie opiera się na zasadzie, że wszystkie obiekty emitują promieniowanie w zależności od swojej temperatury. Pirometry są szczególnie przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry cieczowe czy termopary, są niewłaściwe lub niemożliwe do zastosowania, na przykład w przypadku gorących lub trudno dostępnych powierzchni. W przemyśle metalurgicznym, hutniczym czy w obiektach energetycznych pirometry znajdują szerokie zastosowanie do monitorowania procesów technologicznych oraz do oceny temperatury w piecach. Standardy takie jak ASTM E2877-13 definiują metody i procedury pomiarowe dla pirometrów, co zwiększa ich wiarygodność i precyzję. Dzięki zastosowaniu pirometrów można także uniknąć kontaktu z niebezpiecznymi materiałami oraz zredukować ryzyko uszkodzenia czujników w ekstremalnych warunkach temperaturowych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Izoluje galwanicznie sygnały
C. Wytwarza sygnały sinusoidalne
D. Zwiększa prąd
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Zastępować przewody pneumatyczne
B. Dostosowywać ciśnienie powietrza
C. Usuwać kondensat
D. Wymieniać szybkozłączki
Wymiana przewodów pneumatycznych, regulacja ciśnienia powietrza oraz wymiana szybkozłączek to czynności, które mogą być przeprowadzane w ramach konserwacji układu pneumatycznego, ale nie mają one tak kluczowego znaczenia, jak regularne usuwanie kondensatu. W przypadku wymiany przewodów, choć jest to istotne, nie jest to procedura, którą należy wykonywać cyklicznie, chyba że przewody są uszkodzone lub zużyte. Regulacja ciśnienia powietrza jest z kolei bardziej związana z dostosowaniem parametrów pracy urządzenia do specyfikacji, a nie z utrzymywaniem systemu w dobrym stanie. Wiele osób może błędnie sądzić, że kontrolowanie ciśnienia jest najważniejsze, jednak to właśnie kondensat, jeśli nie jest odpowiednio usuwany, może prowadzić do awarii całego układu. Ponadto, wymiana szybkozłączek, choć również istotna, jest operacją doraźną, a nie cykliczną. W praktyce, ignorowanie kondensatu w układzie pneumatycznym może prowadzić do poważnych problemów, dlatego kluczowe jest zrozumienie, że to właśnie regularne jego usuwanie jest najważniejszym elementem dbałości o sprawność systemu. Prawidłowe zrozumienie tych aspektów konserwacji pozwala na unikanie kosztownych napraw oraz przestojów w produkcji.

Pytanie 31

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Podkładki
B. Zawleczki
C. Uszczelki
D. Płytki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. trój fazowy na prąd jednofazowy
B. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
C. zmienny o częstotliwości 50 Hz na prąd stały
D. stały na prąd zmienny o regulowanej częstotliwości
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Zgrzewanie
C. Lutowanie miękkie
D. Sklejanie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.