Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 7 maja 2025 13:39
  • Data zakończenia: 7 maja 2025 14:13

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką kwotę stanowi kosztorysowa wartość robocizny montażu systemu solarnego i wymiennika, gdyby pracował jeden monter oraz jego asystent, zakładając stawkę 50,00 zł za godzinę pracy montera oraz 25,00 zł za godzinę pracy pomocnika? Czas robocizny wynosi 3 godziny.

A. 175,00 zł
B. 75,00 zł
C. 225,00 zł
D. 150,00 zł
Odpowiedź to 225,00 zł. Skąd to się bierze? Musimy obliczyć koszty robocizny związane z montażem grupy solarnej. Mamy tutaj montera, którego stawka to 50,00 zł za godzinę i pomocnika, który zarabia 25,00 zł za godzinę. Całkowity czas pracy to 3 godziny, które dzielimy między tych dwóch pracowników. Obliczając to: 3 godziny pracy montera kosztują nas 150,00 zł, a 3 godziny pracy pomocnika to dodatkowe 75,00 zł. Jak to podsumujemy: 150,00 zł + 75,00 zł daje nam 225,00 zł. W branży remontowo-budowlanej takiej wiedzy nie można zlekceważyć. Wiedza o kosztach jest kluczowa, bo pozwala na przygotowanie ofert i budżetów projektowych. Pamiętaj, że precyzyjne obliczenia, zwłaszcza w projektach solarnych, mają ogromne znaczenie dla rentowności i konkurencyjności na rynku.

Pytanie 2

Jak należy podłączyć instalację solarną do wymiennika ciepła?

A. szeregowo do górnej i dolnej wężownicy wymiennika
B. równolegle do górnej i dolnej wężownicy wymiennika
C. do dolnej wężownicy wymiennika
D. do górnej wężownicy wymiennika
Podłączenie instalacji solarnej do dolnej wężownicy wymiennika ciepła to naprawdę ważna sprawa, jeśli chodzi o przekazywanie energii słonecznej do systemu ogrzewania. Dolna wężownica jest zazwyczaj tym miejscem, gdzie ciepło z wody, ogrzewanej przez kolektory słoneczne, jest najpierw odbierane. Na przykład, w systemach z bojlerem solarnym, ciepła woda z kolektorów wpływa do dolnej części wymiennika, co pozwala na efektywne wykorzystanie energii słonecznej. Moim zdaniem, dobrze zaprojektowane podłączenie zwiększa wydajność systemu, zwłaszcza latem, gdy słońca jest najwięcej. Trzeba też pamiętać, że odpowiednie ustawienie dolnej wężownicy zmniejsza straty ciepła i pozwala na lepsze działanie automatycznych systemów, co przekłada się na wyższą efektywność całego ogrzewania.

Pytanie 3

W celu stworzenia kosztorysu dla inwestora, jakie narzędzia są wykorzystywane?

A. protokół odbioru częściowego
B. katalogi nakładów rzeczowych
C. protokół odbioru końcowego
D. dziennik budowy
Katalogi nakładów rzeczowych są fundamentalnym narzędziem stosowanym w procesie opracowywania kosztorysów inwestorskich. Zawierają one szczegółowe informacje na temat ilości i kosztów materiałów oraz robót budowlanych, co pozwala na precyzyjne oszacowanie całkowitych wydatków związanych z realizacją projektu. Przykładowo, w katalogach można znaleźć stawki kosztów dla różnych rodzajów robót, takich jak wykopy, fundamenty czy prace wykończeniowe, co pozwala na ich bezpośrednie zastosowanie w kosztorysie. W praktyce, korzystanie z katalogów zmniejsza ryzyko błędów w obliczeniach, ponieważ są one oparte na rzeczywistych danych z rynku budowlanego. Ponadto, stosowanie katalogów nakładów rzeczowych jest zalecane przez standardy branżowe, takie jak Zasadnicze Zasady Kosztorysowania (ZKZ), co czyni je niezbędnym elementem profesjonalnego kosztorysowania. Warto również zaznaczyć, że katalogi te mogą być dostosowane do specyfiki danego projektu, co zwiększa ich użyteczność.

Pytanie 4

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 50%
B. 40%
C. 20%
D. 30%
Wzrost mocy nominalnej elektrowni wodnej można obliczyć, analizując zależność Pn = 9,81 x Qn x Hu x η, gdzie Pn to moc nominalna, Qn to przełyk znamionowy, Hu to spad użyteczny, a η to sprawność turbiny. W przypadku tego zadania, przełyk znamionowy Qn wzrósł o 20%, co oznacza, że nowy Qn wynosi 1,2 x Qn (stare). Dodatkowo, spad użyteczny Hu wzrósł z 1,6 m do 2 m, co stanowi wzrost o 25% (2 m / 1,6 m = 1,25). Łączny wzrost mocy można obliczyć mnożąc te dwa czynniki: (1,2) x (1,25) = 1,5, co oznacza wzrost o 50%. Przykład zastosowania tej wiedzy można zobaczyć w praktyce modernizacji elektrowni, gdzie inżynierowie starają się maksymalizować efektywność energetyczną poprzez optymalizację zarówno turbiny, jak i parametrów hydraulicznych. Zmiany te są zgodne z najlepszymi praktykami w branży, które dążą do zwiększenia wydajności systemów energetycznych. Warto również zauważyć, że poprawa parametrów turbiny przyczyni się do lepszej wykorzystania dostępnej energii wody, co jest kluczowe w kontekście zrównoważonego rozwoju energetyki wodnej.

Pytanie 5

Warunkiem, który nie wpływa na ważność gwarancji na system solarny, jest

A. złożony protokół uruchomienia
B. rachunek za zrealizowaną instalację
C. dokumentacja fotograficzna instalacji
D. właściwie uzupełniona karta gwarancyjna
Dokumentacja fotograficzna instalacji nie jest warunkiem obowiązywania gwarancji na instalację solarną, ponieważ nie stanowi formalnego dowodu wykonania usługi ani nie potwierdza spełnienia wymogów technicznych. W przypadku gwarancji kluczowe jest posiadanie prawidłowo wypełnionej karty gwarancyjnej, która zawiera informacje o wykonawcy oraz szczegóły dotyczące samej instalacji. Ponadto, wypełniony protokół uruchomienia dokumentuje, że system został poprawnie uruchomiony i działa zgodnie z zaleceniami producenta. Faktura za wykonaną instalację jest niezbędnym dowodem zakupu, który potwierdza wykonanie usługi i stanowi podstawę do roszczeń gwarancyjnych. Przykładowo, brak odpowiedniej dokumentacji może prowadzić do odrzucenia reklamacji, dlatego tak ważne jest, aby inwestorzy byli świadomi wymogów dotyczących gwarancji i dokładnie przestrzegali standardów branżowych.

Pytanie 6

Zgodnie z danymi zawartymi w przedstawionej w tabeli suma długości 2 obiegów w instalacji z pompą ciepła DHP-C wielkości 8 nie może przekraczać

Maksymalne długości obiegu
DHP-H,
DHP-C,
DHP-L
Obliczona, maksymalna długość obiegów w m
Wielkość1 obieg2 obiegi3 obiegi4 obiegi
6< 390< 2 x 425
8< 300< 2 x 325
10< 270< 2 x 395
12< 190< 2 x 350
16< 70< 2 x 175< 3 x 1834 x 197

A. 690 m
B. 700 m
C. 630 m
D. 650 m
Wybór odpowiedzi 650 m jako maksymalnej długości dwóch obiegów dla pompy ciepła DHP-C o wielkości 8 jest poprawny. Dane w tabeli jasno określają, iż dla tej konkretnej wielkości pompy, długość obiegów nie powinna przekraczać 650 metrów, aby zapewnić efektywność i prawidłowe działanie systemu grzewczego. Przekroczenie tej długości może prowadzić do spadku efektywności energetycznej oraz zwiększenia zużycia energii, co jest niekorzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. W praktyce, odpowiednia długość obiegów ma kluczowe znaczenie dla optymalizacji pracy pompy ciepła, co potwierdzają normy oraz zalecenia branżowe, takie jak te zawarte w dokumentacji producentów i standardach instalacyjnych. Na przykład, zbyt długie obiegi mogą skutkować większym oporem hydraulicznych, co wpływa na obniżenie wydajności systemu i może prowadzić do jego uszkodzenia. Utrzymanie odpowiedniej długości obiegów jest zatem kluczowe dla długotrwałego działania instalacji grzewczej.

Pytanie 7

Jaką minimalną odległość powinny mieć rurociągi w poziomym wymienniku gruntowym, aby została zachowana odpowiednia normatywność?

A. 200 cm
B. 80 cm
C. 20 cm
D. 400 cm
Minimalna odległość pomiędzy rurociągami poziomego wymiennika gruntowego wynosząca 80 cm jest zgodna z obowiązującymi standardami projektowania systemów geotermalnych. Ustalenie odpowiedniej odległości pomiędzy rurociągami jest kluczowe dla zapewnienia efektywności wymiany ciepła oraz uniknięcia problemów związanych z przepływem cieczy. Zbyt mała odległość może prowadzić do niedostatecznego przewodzenia ciepła, co w efekcie obniża wydajność instalacji. Na przykład, w zastosowaniach komercyjnych, takich jak ogrzewanie budynków, zachowanie tego odstępu może znacząco wpłynąć na koszty operacyjne i efektywność energetyczną systemu. Dodatkowo, w praktyce inżynieryjnej, projektanci uwzględniają również czynniki takie jak rodzaj gruntu, ciśnienie cieczy oraz warunki hydrologiczne, co podkreśla znaczenie właściwych odległości w kontekście bezpieczeństwa i wydajności. Warto również zaznaczyć, że normy techniczne, takie jak EN 15316-4-3, wskazują na te minimalne odległości jako standardowe praktyki, co sprawia, że ich przestrzeganie jest niezbędne dla zapewnienia prawidłowego funkcjonowania systemów geotermalnych.

Pytanie 8

Aby zobrazować za pomocą symboli graficznych ogólny przebieg oraz wyposażenie instalacji grzewczej podczas jej funkcjonowania, należy skorzystać z rysunku

A. szczegółowego
B. aksonometrycznego
C. schematycznego
D. zasadniczego
Odpowiedź schematycznego rysunku jest poprawna, ponieważ takie rysunki są powszechnie stosowane do przedstawiania ogólnych przebiegów oraz wyposażenia instalacji grzewczych. Rysunki schematyczne umożliwiają zrozumienie ogólnej struktury systemu bez wchodzenia w szczegóły poszczególnych komponentów. Za pomocą symboli graficznych i uproszczonych przedstawień, schematy te ułatwiają identyfikację kluczowych elementów instalacji, takich jak kotły, pompy, grzejniki oraz ich wzajemne połączenia. Zastosowanie rysunków schematycznych jest zgodne z normami branżowymi, takimi jak PN-EN 13306, które podkreślają znaczenie jednolitych symboli i oznaczeń w dokumentacji technicznej. Dzięki nim zarówno inżynierowie, jak i technicy mają możliwość szybkiej analizy oraz komunikacji dotyczącej systemów grzewczych. Przykładem zastosowania takiego rysunku mogą być projekty instalacji w budynkach mieszkalnych, gdzie schematy pomagają w planowaniu i późniejszym serwisowaniu systemu grzewczego.

Pytanie 9

Jaki typ kotła powinien być użyty do spalania pelletu?

A. Zgazowujący
B. Z podajnikiem tłokowym
C. Z podajnikiem ślimakowym
D. Zasypowy
Kocioł z podajnikiem ślimakowym jest optymalnym rozwiązaniem do spalania pelletu, ponieważ umożliwia automatyczne i precyzyjne podawanie paliwa do komory spalania. Podajniki ślimakowe są zaprojektowane w taki sposób, aby zapewnić stały i kontrolowany przepływ pelletu, co przekłada się na efektywność energetyczną i minimalizację strat ciepła. W praktyce tego typu kotły mogą być stosowane zarówno w systemach grzewczych dla domów jednorodzinnych, jak i w większych instalacjach przemysłowych. Dzięki zastosowaniu podajników ślimakowych, użytkownicy mogą cieszyć się wygodą automatycznego załadunku paliwa oraz mniejszą ilością ręcznej obsługi. Dodatkowo, kotły te często wyposażane są w systemy sterowania, które monitorują temperaturę i ilość podawanego paliwa, co pozwala na dalsze zwiększenie wydajności i oszczędności paliwa. W wielu krajach, w tym w Polsce, tego typu kotły są zgodne z normami ekologicznymi i wydajnościowymi, co czyni je odpowiednim wyborem dla osób dbających o środowisko oraz chcących korzystać z odnawialnych źródeł energii.

Pytanie 10

Jakie urządzenie jest używane do pomiaru natężenia przepływu czynnika roboczego w słonecznej instalacji grzewczej?

A. refraktometr
B. higrometr
C. rotametr
D. manometr
Rotametr jest przyrządem pomiarowym, który służy do określenia natężenia przepływu cieczy lub gazów w instalacjach przemysłowych, w tym w słonecznych systemach grzewczych. Działa na zasadzie pomiaru przepływu w odpowiednio ukształtowanej rurze, w której porusza się pływak. Wraz ze wzrostem natężenia przepływu pływak unosi się wyżej w rurze, co jest wskaźnikiem przepływu. Rotametry są szeroko stosowane w różnych branżach, w tym w energetyce odnawialnej, gdzie precyzyjny pomiar przepływu czynnika roboczego jest kluczowy dla efektywności systemu. W kontekście instalacji solarnych, rotametry mogą pomóc w optymalizacji wydajności, zapewniając, że odpowiednia ilość medium roboczego przepływa przez kolektory słoneczne, co ma bezpośredni wpływ na efektywność konwersji energii słonecznej na ciepło. Dobrą praktyką jest regularne kalibrowanie rotametrów oraz monitorowanie ich stanu technicznego, aby zapewnić dokładne pomiary i zapobiec ewentualnym awariom systemu.

Pytanie 11

Instalacja paneli fotowoltaicznych nie wymaga uzyskania pozwolenia na budowę, o ile jej wysokość nie jest większa niż 3 m, a moc elektryczna wynosi mniej niż

A. 40 kW
B. 30 kW
C. 10 kW
D. 20 kW
Montaż instalacji fotowoltaicznej nie wymaga pozwolenia na budowę, jeśli jej wysokość nie przekracza 3 m, a moc elektryczna jest mniejsza niż 40 kW. Odpowiedź 40 kW jest zatem prawidłowa, ponieważ zgodnie z przepisami prawa budowlanego w Polsce, instalacje o mocy do 40 kW mogą być zrealizowane na podstawie zgłoszenia zamiast pozwolenia. To z kolei ułatwia proces instalacji, co jest szczególnie korzystne dla małych systemów, które często są stosowane w gospodarstwach domowych lub małych przedsiębiorstwach. Na przykład, instalacja o mocy 30 kW może pokryć zapotrzebowanie na energię w przeciętnym domu jednorodzinnym, co skutkuje znacznymi oszczędnościami na rachunkach za energię elektryczną. Dodatkowo, stosowanie instalacji fotowoltaicznych o mocy poniżej 40 kW jest zgodne z zasadami zrównoważonego rozwoju i wspiera transformację energetyczną, redukując emisję dwutlenku węgla. Warto także zaznaczyć, że przed przystąpieniem do montażu warto zasięgnąć porady specjalistów oraz sprawdzić lokalne regulacje, aby upewnić się, że instalacja spełnia wszelkie wymagania techniczne i prawne.

Pytanie 12

Aby połączyć dwie stalowe rury o identycznej średnicy z gwintem zewnętrznym, jakie złącze należy zastosować?

A. łącznika zaprasowywanego.
B. złączki wkrętnej, znanej jako nypl.
C. złączki nakrętnej, określanej jako mufy.
D. łącznika zaprasowywano-gwintowanego.
Złączka nakrętna, czyli mufa, jest idealnym rozwiązaniem do łączenia dwóch stalowych rur o tej samej średnicy, które zakończone są gwintem zewnętrznym. Mufa dysponuje wewnętrznymi gwintami, co pozwala na ich nakręcenie na zewnętrzne gwinty rur. Tego rodzaju połączenie jest niezwykle trwałe i pozwala na uzyskanie szczelności, co jest kluczowe w instalacjach hydraulicznych i grzewczych. W praktyce, mufa jest często stosowana w systemach wodociągowych oraz w instalacjach gazowych, gdzie bezpieczeństwo i szczelność są niezbędne. Dobrą praktyką jest również stosowanie odpowiednich smarów lub uszczelek podczas montażu, aby zminimalizować ryzyko nieszczelności. Warto zaznaczyć, że zgodnie z normami branżowymi, zastosowanie mufy w takich sytuacjach jest powszechnie akceptowane i rekomendowane przez specjalistów w dziedzinie hydrauliki. Dzięki temu połączenie jest nie tylko funkcjonalne, ale również spełnia wysokie standardy bezpieczeństwa.

Pytanie 13

Jaki kolor izolacji powinien mieć przewód neutralny?

A. niebieskiego
B. żółto - zielonego
C. czarnego lub czerwonego
D. brązowego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ według Polskich Norm (PN) oraz przepisów dotyczących instalacji elektrycznych, przewód neutralny musi być oznaczony kolorem niebieskim. Ta norma ma na celu zapewnienie jednoznaczności w identyfikacji przewodów elektrycznych, co jest niezbędne w celu bezpieczeństwa oraz prawidłowego funkcjonowania instalacji. Użycie koloru niebieskiego dla przewodów neutralnych jest standardem przyjętym w wielu krajach, co ułatwia współpracę i rozumienie projektów elektroutwardzonych na poziomie międzynarodowym. Przykładowo, w instalacjach domowych przewód neutralny prowadzi prąd z powrotem do źródła zasilania, a jego poprawne oznaczenie jest kluczowe, aby uniknąć pomyłek, które mogą prowadzić do niebezpiecznych wypadków elektrycznych. Przewody ochronne, oznaczane kolorem żółto-zielonym, mają zupełnie inną funkcję - mają na celu zabezpieczenie przed porażeniem elektrycznym, co podkreśla znaczenie znajomości tych standardów w praktyce.

Pytanie 14

Dokumentacja robót budowlanych nie obejmuje

A. przypisów dokumentacji robót.
B. strony tytułowej.
C. wykazów działów dokumentacji robót.
D. cen jednostkowych.
Przedmiar robót budowlanych jest kluczowym dokumentem w procesie realizacji projektów budowlanych, który służy do szczegółowego przedstawienia zakresu prac do wykonania. Wiele osób błędnie sądzi, że przedmiar powinien zawierać ceny jednostkowe, co jest nieścisłe. Ceny jednostkowe są elementem kosztorysu, który jest odrębnym dokumentem, mającym na celu oszacowanie całkowitych kosztów realizacji projektu. Przygotowanie przedmiaru robót powinno koncentrować się na zestawieniu i szczegółowym opisaniu robót, ich ilości oraz charakterystyki technicznej, co pozwala na precyzyjne zdefiniowanie zakresu projektu. Często mylone są również pojęcia karty tytułowej i tabeli przedmiaru. Karta tytułowa jest istotnym elementem, który identyfikuje projekt, natomiast tabela przedmiaru służy do zorganizowania poszczególnych pozycji robót. Zrozumienie, że przedmiar nie obejmuje cen jednostkowych, jest kluczowe dla skutecznego zarządzania projektem. Właściwe oddzielenie tych dwóch dokumentów wspiera precyzyjne planowanie oraz oszczędności związane z realizacją projektów budowlanych. W branży budowlanej stosowanie przedmiaru robót jako narzędzia komunikacji między inwestorem a wykonawcą jest normą, a niewłaściwe podejście do tego dokumentu może prowadzić do nieporozumień i problemów w trakcie realizacji inwestycji.

Pytanie 15

Zgodnie z obowiązującymi regulacjami, jaka powinna być minimalna odległość między budynkiem mieszkalnym a elektrownią wiatrową, której maksymalna wysokość wieży razem z promieniem skrzydeł wynosi 150 m?

A. 1500 m
B. 500 m
C. 1000 m
D. 2000 m
Wybór krótszych odległości, jak 500 m, 1000 m czy 2000 m, nie jest dobrym pomysłem, bo opiera się na błędnych założeniach o wpływie elektrowni wiatrowych na ich otoczenie. Odpowiedzi te nie biorą pod uwagę, że wyższe wieże i dłuższe skrzydła generują hałas, a do tego mogą powodować cień, co naprawdę wpływa na ludzi w pobliskich budynkach. Ustawienie elektrowni za blisko, jak 500 m, może spowodować dużo skarg na hałas i inne problemy w codziennym życiu. 1000 m też nie wystarcza, bo nie uwzględnia lokalnych warunków, które mogą nasilać dźwięki. Choć 2000 m może się wydawać lepsze, to z kolei może być niepraktyczne dla rozwoju przestrzeni i ekonomiki inwestycji. Ważne, żeby zrozumieć, że regulacje dotyczące minimalnych odległości opierają się na badaniach i doświadczeniach z całego świata, a nieprawidłowe podejście do tych spraw może prowadzić do konfliktów i spowolnienia rozwoju odnawialnych źródeł energii.

Pytanie 16

Naturalną wentylacją nie jest

A. wentylacja przeciwpożarowa
B. wentylacja grawitacyjna
C. przewietrzanie
D. aeracja
W kontekście wentylacji, wiele osób mylnie kojarzy różne systemy z wentylacją naturalną, co prowadzi do nieporozumień. Wentylacja grawitacyjna, często uznawana za formę wentylacji naturalnej, polega na wykorzystaniu różnicy temperatur i ciśnień do wymiany powietrza w budynku. Jest to proces, który działa szczególnie dobrze w klimatach, gdzie występują znaczące wahania temperatury między porami roku. Przewietrzanie, rozumiane jako krótkotrwałe otwieranie okien, również należy do metod naturalnych, ale nie jest to zorganizowany system wentylacji. Aeracja, w kontekście napowietrzania wody, jest procesem zupełnie niezwiązanym z wentylacją powietrza w budynkach. W przypadku wentylacji przeciwpożarowej, warto zauważyć, że jest to system zaprojektowany z myślą o bezpieczeństwie, który korzysta z mechanizmów aktywnych, aby kontrolować i usuwać dym, co odróżnia go od wentylacji naturalnej. Typowym błędem jest mylenie tych dwóch koncepcji, co może prowadzić do nieprawidłowego zaprojektowania systemu wentylacji w budynkach oraz zagrożeń dla bezpieczeństwa użytkowników. Aby uniknąć tych pomyłek, istotne jest zrozumienie różnic między rodzajami wentylacji oraz ich praktycznym zastosowaniem w budownictwie, co jest kluczowe dla zapewnienia zdrowego i bezpiecznego środowiska wewnętrznego.

Pytanie 17

Jeśli całkowity opór cieplny przegrody wynosi 4,00 (m2-K)/W, to jaką wartość ma współczynnik przenikania ciepła?

A. 0,35 W/(m2-K)
B. 0,25 W/(m2-K)
C. 0,50 W/(m2K)
D. 0,10 W/(m2-K)
Współczynnik przenikania ciepła, oznaczany jako U, jest odwrotnością całkowitego oporu cieplnego R przegrody. Całkowity opór cieplny to suma oporów poszczególnych warstw materiałów budowlanych. Wzór na obliczenie współczynnika przenikania ciepła przedstawia się jako U = 1/R. W tym przypadku, mając całkowity opór cieplny R równy 4,00 (m2-K)/W, obliczamy U jako U = 1/4,00 = 0,25 W/(m2-K). W praktyce oznacza to, że przez każdy metr kwadratowy przegrody o tym oporze cieplnym przepływa 0,25 wata ciepła przy różnicy temperatur wynoszącej 1 K. Wartość współczynnika U ma istotne znaczenie w kontekście projektowania budynków, ponieważ pozwala ocenić efektywność energetyczną przegrody. Zgodnie z normami budowlanymi, niższe wartości U są pożądane, co wskazuje na lepsze właściwości izolacyjne. Przykładowo, w budynkach pasywnych współczynnik U dla ścian zewnętrznych nie powinien przekraczać 0,15 W/(m2-K).

Pytanie 18

Umiejscowienie kolektorów gruntowych należy realizować

A. na obszarze pokrytym drzewami iglastymi
B. na obszarze pokrytym drzewami liściastymi
C. na obszarze osłoniętym wysokimi krzewami
D. na obszarze nieosłoniętym przez budynki, drzewa i krzewy
Dobra odpowiedź! Ustawienie kolektorów gruntowych w miejscach, gdzie nie ma żadnych przeszkód, jak budynki czy drzewa, jest mega ważne dla działania systemów geotermalnych. Te kolektory czerpią ciepło z ziemi i ich wydajność mocno zależy od tego, jak dużo słońca do nich dociera oraz jak dobrze krąży powietrze wokół nich. Jak są osłonięte, to ciepło może być trudniej dostępne, a system mniej efektywny. Dla przykładu, w domach jednorodzinnych, jak kolektory są w odpowiednim miejscu, są w stanie super wspierać ogrzewanie, co przekłada się na niższe rachunki. W branży geotermalnej działamy według zasad, które mówią, żeby stawiać kolektory tam, gdzie słońce grzeje najlepiej, a otoczenie nie przeszkadza. Taki sposób działania jest zgodny z zaleceniami branżowymi, które kierują się maksymalizowaniem efektywności energetycznej systemów.

Pytanie 19

Materiał o najwyższym współczynniku absorpcji spośród wymienionych to

A. czarny chrom
B. czarna farba
C. blacha aluminiowa
D. blacha miedziana
Mówi się, że czarna farba jest dobra w pochłanianiu światła, ale tak naprawdę czarny chrom ma lepsze wyniki. Często można usłyszeć, że czarna farba, bo jest ciemna, powinna być lepsza, ale to nieprawda. Czarne pigmenty w farbie mają swoje ograniczenia, a to, jak naniesiemy farbę, też ma spore znaczenie. A jeśli weźmiemy blachę aluminiową czy miedzianą, to one raczej odbijają światło, bo mają gładką powierzchnię. Wiele osób myli odbicie i absorpcję, szczególnie w przypadku metali, które nie zawsze pochłaniają światło tak jak byśmy się spodziewali. Dobrze jest zrozumieć, jak działają te materiały w kontekście optyki, bo to ważne przy projektowaniu różnych systemów optycznych. Dlatego wybór czarnego chromu to nie przypadek – stoi za tym solidna wiedza naukowa.

Pytanie 20

Na podstawie fragmentu katalogu producenta regulatora ładowania dobierz zabezpieczenie do regulatora Solarix PRS 2020.

Regulator ładowania STECA Solarix PRSPRS 1010PRS 1515PRS 2020PRS 3030
Parametry operacyjne
Napięcie systemu12V (24V)
Zużycie własne< 4 mA
Strona wejściowa DC
Maksymalne napięcie obwodu otwartego Uoc paneli< 47 V
Maksymalny prąd wejściowy (Imax)10 A15 A20 A30 A
Strona wyjściowa DC
Napięcie akumulatorów9V ... 17 V (17,1 V ... 34 V)
Maksymalny prąd obciążenia10 A15 A20 A30 A
Zakończenie ładowania13,9 V (27,8 V)
Ładowanie boost14,4 V (28,8 V)
Ładowanie wyrównawcze14,7 V (29,4 V)
Załączenie po rozłączeniu (LVR)12,4 V ... 12,7 V (24,8 V ... 25,4 V)
Rozłączenie akumulatora (LVD)11,2 V ... 11,6 V (22,4 V ... 23,2 V))
Warunki pracy
Temperatura otoczenia-25°C ÷ +50°C
Montaż i podłączenie
Terminal16 mm2 / 25 mm2 - AWG 6 / 4
OchronaIP 32
Wymiary (D x W x G)187 x 96 x 45 mm
Masa345 g

A. 10 A
B. 20 A
C. 15 A
D. 30 A
Wybranie zabezpieczenia o wartości 20 A dla regulatora ładowania Solarix PRS 2020 jest prawidłowe, ponieważ maksymalny prąd wejściowy (I_max) zgodnie z informacjami zawartymi w katalogu producenta wynosi właśnie 20 A. Dobrze dobrane zabezpieczenie jest kluczowe dla efektywnej pracy systemu fotowoltaicznego, ponieważ chroni zarówno regulator, jak i akumulatory przed nadmiernym prądem, który mógłby prowadzić do ich uszkodzenia lub skrócenia żywotności. W praktyce, zabezpieczenie powinno być dostosowane do maksymalnych parametrów urządzenia, aby zapewnić optymalne działanie. W branży fotowoltaicznej zaleca się stosowanie zabezpieczeń o wartości nieprzekraczającej maksymalnego prądu wejściowego, co zmniejsza ryzyko przeciążenia. Przy doborze zabezpieczeń niezbędne jest również uwzględnienie warunków pracy oraz specyfiki instalacji, co jest istotnym elementem w zgodności z normami bezpieczeństwa. Warto także pamiętać, że właściwe zabezpieczenie wpływa na stabilność oraz wydajność całego systemu, co jest kluczowe dla inwestycji w odnawialne źródła energii.

Pytanie 21

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Projekt budowlany szkoły
B. Plan zagospodarowania przestrzennego
C. Rachunki za energię elektryczną szkoły
D. Specyfikacja istotnych warunków zamówienia
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 22

Najwyższą efektywność energetyczną uzyskują panele fotowoltaiczne

A. amorficzne
B. organiczne
C. monokrystaliczne
D. polikrystaliczne
Monokrystaliczne fotoogniwa to naprawdę świetna opcja, mają najwyższą sprawność energetyczną. Dzieje się tak głównie przez ich strukturę i materiały, jakie wykorzystuje się do ich produkcji. W zasadzie są robione z pojedynczych kryształów krzemu, przez co lepiej zamieniają energię słoneczną na elektryczną. Ich sprawność często przekracza 22%, co sprawia, że są idealne w miejscach, gdzie trzeba maksymalnie wykorzystać dostępne miejsce, jak dachy domów czy farmy słoneczne. W branży często wybiera się monokrystaliczne ogniwa tam, gdzie miejsca jest mało, a ich dłuższy czas życia oraz mniejsze straty energii w wysokich temperaturach sprawiają, że długoterminowo są opłacalne. Co więcej, monokrystaliczne ogniwa są bardziej odporne na degradację, co zwiększa ich niezawodność i wydajność w długim okresie. Widać to szczególnie w nowoczesnej architekturze, gdzie stosuje się zintegrowane systemy fotowoltaiczne.

Pytanie 23

Płynem, który ma wysoką temperaturę wrzenia w rurce cieplnej (heat-pipe) w systemie kolektora rurowego próżniowego nie jest

A. woda
B. R410
C. butan
D. propan
Woda nie jest płynem szybko wrzącym w rurce cieplnej (heat-pipe) w kolektorze rurowym próżniowym, ponieważ jej punkt wrzenia wynosi 100°C przy normalnym ciśnieniu atmosferycznym, co czyni ją niewłaściwym wyborem w kontekście systemów, które muszą działać w niskich temperaturach oraz w próżni. W kolektorach rurowych, takich jak heat-pipe, preferuje się czynniki robocze o niższym ciśnieniu wrzenia, co zapewnia bardziej efektywne transfery ciepła. Przykładowo, butan i propan, których temperatury wrzenia wynoszą odpowiednio około -0,5°C i -42°C, umożliwiają skuteczne odprowadzanie ciepła w warunkach, które są typowe dla systemów próżniowych. Dobre praktyki w projektowaniu takich systemów zalecają użycie płynów, które w odpowiednich warunkach mogą łatwo przechodzić między fazami, co maksymalizuje ich efektywność. W przypadku zastosowań w kolektorach słonecznych, odpowiedni dobór czynnika roboczego jest kluczowy dla optymalizacji wydajności energetycznej.

Pytanie 24

W trakcie konserwacji instalacji centralnego ogrzewania do czynnika grzewczego wprowadza się inhibitory w celu

A. oczyszczenia czynnika grzewczego z zanieczyszczeń
B. pozbycia się kamienia kotłowego z systemu
C. zmniejszenia korozji instalacji
D. poprawy przewodności cieplnej czynnika grzewczego
Inhibitory korozji są substancjami chemicznymi dodawanymi do czynnika grzewczego w instalacjach centralnego ogrzewania w celu ograniczenia korozji elementów metalowych systemu. Korozja jest naturalnym procesem, który może prowadzić do intensywnego zużycia sprzętu, a w skrajnych przypadkach - do jego awarii. Inhibitory działają na zasadzie tworzenia ochronnej warstwy na powierzchni metalu, co zmniejsza kontakt z agresywnymi substancjami chemicznymi w wodzie. Przykłady zastosowania to dodawanie inhibitorów takich jak azotany czy fosforany, które są zgodne z normami takimi jak PN-EN 14731, które dotyczą jakości wody w instalacjach grzewczych. Działanie inhibitorów jest kluczowe dla wydłużenia żywotności instalacji, co przekłada się na mniejsze koszty konserwacji oraz zwiększoną efektywność energetyczną systemu.

Pytanie 25

W trakcie transportu samochodowego gruntowej pompy ciepła do klienta, gdy moduł chłodniczy jest umieszczony na dole urządzenia, należy ją przewozić

A. w pozycji leżącej na bocznej ściance
B. w pozycji stojącej pionowo
C. w pozycji pochylonej pod kątem 45°
D. w pozycji leżącej na tylnej ściance
Odpowiedź 'stojącą pionowo' jest faktycznie na miejscu. Kiedy transportujesz gruntową pompę ciepła w tej pozycji, to wszystko działa lepiej – ciśnienie w układzie chłodniczym jest ok, a ryzyko jakichś uszkodzeń się zmniejsza. Jeśli masz moduł chłodniczy na dole, to pionowa pozycja utrzymuje płyny na swoim miejscu, co z kolei jest kluczowe dla działania systemu. W praktyce, dobrze jest przewozić takie urządzenia w sposób, który nie pozwoli na przesuwanie się elementów wewnętrznych i chroni je przed wstrząsami. Przykładem może być transport klimatyzacji, gdzie jak źle je przewieziemy, to po zainstalowaniu mogą się pojawić problemy. Lepiej zawsze trzymać się wytycznych producentów i norm, bo one zazwyczaj mówią, że pionowa pozycja transportowa to najlepszy wybór, żeby sprzęt działał jak należy.

Pytanie 26

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło woda, gromadzenie energii powietrze
B. dolne źródło woda, gromadzenie energii woda
C. dolne źródło solanka, gromadzenie energii powietrze
D. dolne źródło powietrze, gromadzenie energii woda
Odpowiedź 'źródło dolne solanka, odbiornik energii powietrze' jest prawidłowa, ponieważ w kontekście sprężarkowych pomp ciepła stosuje się różne źródła dolne oraz odbiorniki energii. W tym przypadku solanka stanowi medium, które pobiera ciepło z gruntu, co jest typowe dla systemów gruntowych, a powietrze jako odbiornik energii wskazuje, że system wykorzystuje powietrze do ogrzewania budynku. Tego rodzaju rozwiązania są szczególnie efektywne w klimatach o umiarkowanych temperaturach, gdzie grunt utrzymuje względnie stałą temperaturę. Przykłady zastosowania obejmują systemy ogrzewania budynków jednorodzinnych oraz obiektów przemysłowych, gdzie nie ma możliwości zastosowania gruntowych wymienników ciepła. Ponadto, zgodnie z normami branżowymi, takie systemy wymagają odpowiedniego projektowania i dostosowania do specyficznych warunków lokalnych. Warto również zaznaczyć, że pompy ciepła oparte na solance mają wysoką efektywność energetyczną, co przekłada się na niższe koszty eksploatacji oraz mniejszy wpływ na środowisko, jeśli porównamy je do tradycyjnych systemów grzewczych.

Pytanie 27

Do zrealizowania montażu instalacji solarnych z rurą miedzianą należy wykorzystać

A. nożyc, gratownika, zgrzewarki
B. piłki, gwintownicy z narzynkami, kluczy hydraulicznych
C. obcinarki krążkowej, gratownika, palnika
D. nożyc, rozwiertaka, zaciskarki promieniowej
Obcinarka krążkowa, gratownik i palnik stanowią zestaw narzędzi niezbędnych do prawidłowego montażu instalacji solarnej z rur miedzianych. Obcinarka krążkowa jest kluczowym narzędziem, które umożliwia precyzyjne cięcie rur miedzianych, co jest istotne dla zachowania integralności systemu oraz unikania uszkodzeń. Użycie gratownika pozwala na usunięcie zadziorów, które mogą wystąpić po cięciu, co jest ważne dla uzyskania szczelnych połączeń. Palnik służy do lutowania, co jest standardową praktyką przy łączeniu elementów instalacji wykonanych z miedzi. Lutowanie miedzi jest powszechnie uznawane za jeden z najskuteczniejszych sposobów łączenia, zapewniający wysoką wytrzymałość połączeń i odporność na wysokie temperatury. W kontekście montażu instalacji solarnych, gdzie rury miedziane są często używane ze względu na ich doskonałe właściwości przewodzenia ciepła, wykorzystanie odpowiednich narzędzi jest kluczowe dla efektywności całego systemu. Dobrze wykonane połączenia zapewniają długotrwałe i bezproblemowe działanie instalacji. Takie podejście jest zgodne z najlepszymi praktykami branżowymi i standardami jakości.

Pytanie 28

Powstawanie zapowietrzenia w instalacji solarnej może być wynikiem

A. nieprawidłowym ciśnieniem wstępnym w zbiorniku przeponowym
B. użycia pompy obiegowej o niedostosowanej mocy
C. niewłaściwie wolnym wypełnianiem systemu
D. wykorzystania zbyt dużych średnic rur w instalacji
Zastosowanie zbyt dużych średnic rur instalacyjnych może być mylnie postrzegane jako przyczyna zapowietrzania instalacji solarnej, jednak jest to nieprawidłowe podejście. W rzeczywistości, większe średnice rur mogą prowadzić do zmniejszenia prędkości przepływu cieczy, co teoretycznie powinno ułatwiać odprowadzanie powietrza. Kluczowe jest to, że odpowiednia średnica rur powinna być dostosowana do specyfikacji systemu i zapotrzebowania na ciepło. W przypadku instalacji solarnych, zaleca się stosowanie rur o średnicy dostosowanej do obliczonego przepływu cieczy. Zbyt powolne napełnianie instalacji również jest postrzegane jako potencjalny problem, ale nie jest bezpośrednią przyczyną zapowietrzania. Właściwa procedura napełniania, która minimalizuje wprowadzenie powietrza, jest kluczowa, a nowoczesne systemy często wyposażone są w zawory odpowietrzające, które automatycznie usuwają powietrze z układu. Zastosowanie pompy obiegowej o niewłaściwej mocy może mieć wpływ na efektywność systemu, ale nie jest to główny czynnik zapowietrzania. W praktyce, pompa powinna być dobrana na podstawie obliczeń hydraulicznych oraz wymagań systemu, co zapewnia stabilny obieg cieczy. Zrozumienie, że zapowietrzenie jest problemem wynikającym głównie z niewłaściwego ciśnienia wstępnego, jest kluczowe dla zachowania efektywności i niezawodności instalacji solarnych.

Pytanie 29

Dokumentem dołączonym do propozycji sprzedaży sprzętu systemów odnawialnych źródeł energii, w którym znajdują się specyfikacje techniczne, zasady instalacji, diagramy montażowe oraz warunki użytkowania, są

A. projekty architektoniczne
B. potwierdzone protokoły odbiorcze montażu urządzeń
C. katalogi ofertowe
D. standardy
Podczas analizy dostępnych odpowiedzi, warto zwrócić uwagę na to, że odpowiedzi zawierające podpisane protokoły odbioru montażu, normy oraz projekty budowlane, choć istotne w kontekście realizacji projektów energetycznych, nie spełniają roli, jaką pełnią katalogi ofertowe. Protokół odbioru montażu dokumentuje zakończenie prac związanych z instalacją urządzeń, ale nie zawiera szczegółowych informacji o ich specyfikacji technicznej czy warunkach użytkowania. Normy są kluczowe dla zapewnienia zgodności z wymaganiami prawnymi i bezpieczeństwa, jednak nie dostarczają one praktycznych informacji o produktach oferowanych na rynku. Projekty budowlane koncentrują się na ogólnym planowaniu struktury budynku oraz rozmieszczeniu instalacji, ale nie zawierają szczegółowych danych technicznych dotyczących konkretnych urządzeń. Typowym błędem myślowym w analizie tego pytania jest mylenie dokumentów operacyjnych z materiałami promocyjnymi. Katalogi ofertowe są narzędziem marketingowym, które ma na celu nie tylko przedstawienie produktu, ale również dostarczenie szczegółowych informacji, które są niezbędne dla użytkowników końcowych, co różni je od innych typów dokumentacji. W związku z tym, wybór katalogów ofertowych jako odpowiedzi jest uzasadniony przez ich kluczową rolę w dostarczaniu informacji niezbędnych do podjęcia decyzji zakupowych i planowania instalacji urządzeń energetyki odnawialnej.

Pytanie 30

Z jaką minimalną separacją powinny być instalowane kolektory w stosunku do wszelkich uziemionych elementów systemu ochrony odgromowej, uziemienia oraz pozostałych metalowych struktur dachu, które nie są częścią systemu ochrony odgromowej?

A. 0,50 - 1,00 m
B. 1,50 - 2,00 m
C. 0,35 - 0,45 m
D. 0,10 - 0,20 m
Minimalna odległość 0,50 - 1,00 m, w której należy instalować kolektory od wszystkich uziemionych punktów ochrony odgromowej oraz innych metalowych konstrukcji dachu, ma kluczowe znaczenie dla zapewnienia bezpieczeństwa instalacji oraz efektywności systemu ochrony odgromowej. Wartość ta jest zgodna z wytycznymi zawartymi w normach branżowych, takich jak PN-EN 62305, które regulują kwestie związane z ochroną przed piorunami. W praktyce, odpowiednia odległość pozwala na uniknięcie ryzyka wystąpienia niebezpiecznych prądów udarowych, które mogą zostać wygenerowane podczas wyładowania atmosferycznego. Przykładowo, w instalacji fotowoltaicznej, zapewniając tę odległość, minimalizujemy ryzyko uszkodzenia elektroniki oraz zmniejszamy możliwość wystąpienia niekontrolowanych przepięć. Ponadto, zachowanie odpowiedniej odległości wspiera integrację kolektorów z innymi systemami ochrony budynku, co jest istotne dla zachowania integralności strukturalnej oraz funkcjonalności całego systemu. Przestrzeganie tych standardów i praktyk nie tylko zwiększa bezpieczeństwo, ale również wydłuża żywotność instalacji.

Pytanie 31

Jakie urządzenie wykorzystuje się do mierzenia przepływu płynu solarnego w systemie?

A. manometr
B. refraktometr
C. rotametr
D. areometr
Rotametr to urządzenie pomiarowe, które służy do określania przepływu płynów w instalacjach, w tym również w systemach solarnych. Jego działanie opiera się na zasadzie zmiany poziomu cieczy w stożkowym rurze, co pozwala na wizualne odczytanie przepływu. Rotametry charakteryzują się wysoką dokładnością oraz prostotą obsługi, co czyni je idealnym narzędziem w branży energetyki odnawialnej. Przykładowe zastosowanie rotametrów znajduje miejsce w monitorowaniu przepływu cieczy w układach chłodzenia, gdzie precyzyjne pomiary są kluczowe dla wydajności systemu. Dodatkowo, w kontekście instalacji solarnych, rotametry mogą być używane do kontroli przepływu cieczy solarnej, co bezpośrednio wpływa na efektywność wymiany ciepła i ogólną wydajność systemu. Warto zauważyć, że zgodnie z aktualnymi standardami branżowymi, rotametry powinny być regularnie kalibrowane, aby zapewnić ich dokładność i niezawodność w długoterminowym użytkowaniu.

Pytanie 32

Jakie narzędzia są potrzebne do montażu instalacji w systemie PEX skręcanym?

A. kalibrator do rur z fazownikiem, obcinak do rur oraz zaciskarka
B. obcinak do rur, gratownik i zestaw kluczy płaskich
C. kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich
D. obcinak do rur, gratownik oraz zaciskarka
No więc, wybierając kalibrator do rur z fazownikiem, obcinak do rur oraz zestaw kluczy płaskich, robisz naprawdę dobry krok w stronę prawidłowego montażu instalacji w systemie PEX. Kalibrator pomoże Ci super dopasować końcówkę rury PVC do złączek, co jest mega ważne, żeby wszystko było szczelne. Obcinak pozwala na precyzyjne cięcie rur PEX, więc nie musisz się martwić, że coś będzie krzywo, co mogłoby wprowadzić jakieś niepożądane zanieczyszczenia do systemu. A klucze płaskie? Bez nich ani rusz, bo dokręcanie połączeń to podstawa, żeby nic nie przeciekało. Jak dobrze to wszystko zrobisz, to unikniesz wycieków i problemów z instalacją, co w sumie jest najważniejsze dla bezpiecznego i sprawnego działania systemów wodno-kanalizacyjnych. Zresztą, dobrze wykonane połączenia na pewno przyczynią się do dłuższej żywotności całej instalacji, co jest zgodne z tym, co mówi się w branży.

Pytanie 33

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 10
B. pH 9
C. pH 11
D. pH 7
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 34

Kolektory słoneczne instalowane na gruncie przy użyciu konstrukcji nośnej są szczególnie narażone na

A. zwiększone straty energii cieplnej w kierunku gruntu
B. nierównomierne osiadanie fundamentów
C. większe opady śniegu niż na dachu
D. znacznie gorsze warunki nasłonecznienia w porównaniu do dachu
Kolektory słoneczne montowane na powierzchni terenu są narażone na nierówne osiadanie fundamentów z kilku powodów. Przede wszystkim, montaż kolektorów na ziemi wymaga solidnej i stabilnej konstrukcji wsporczej, aby zapewnić ich właściwą wydajność. Nierównomierne rozłożenie obciążenia na fundamenty może prowadzić do osiadania, co w rezultacie może zmieniać kąt nachylenia kolektorów oraz ich orientację do słońca. Im lepsze są warunki montażu, tym większa efektywność systemu. W praktyce, zapewniając odpowiednie fundamenty i stabilność konstrukcji, można znacznie zredukować ryzyko osiadania, co pozwala na maksymalizację wydajności systemu grzewczego. Warto także kierować się standardami budowlanymi, które określają metody i materiały, jakie należy stosować przy budowie takich instalacji. Użycie odpowiednich materiałów oraz technik montażowych jest kluczowe dla długoterminowej wydajności kolektorów słonecznych.

Pytanie 35

Utrzymanie równomiernego ciśnienia w gazowym zbiorniku można osiągnąć poprzez składowanie biogazu z wykorzystaniem

A. dzwonu gazowego
B. zbiornika komory fermentacyjnej
C. zbiornika niskociśnieniowego
D. zbiornika ciśnieniowego
Pojemnik komory gnilnej, zbiornik ciśnieniowy i zbiornik niskociśnieniowy to rozwiązania, które mają swoje specyficzne zastosowania, ale nie są optymalne do utrzymania stałego ciśnienia w kontekście magazynowania biogazu. Pojemnik komory gnilnej to element, w którym zachodzi proces fermentacji beztlenowej, jednak nie jest on zaprojektowany do regulacji ciśnienia w sposób ciągły. Jego głównym celem jest zapewnienie odpowiednich warunków do przetwarzania materiału organicznego, ale nie kontrolowania gazu wytwarzanego w tym procesie. Zbiornik ciśnieniowy, z drugiej strony, wymaga skomplikowanych systemów zabezpieczeń i regulacji, aby uniknąć niebezpieczeństw związanych z nadmiernym ciśnieniem. Utrzymanie biogazu pod ciśnieniem wiąże się z ryzykiem eksplozji, co czyni to podejście nieodpowiednim dla stabilnego magazynowania. Zbiornik niskociśnieniowy również nie jest w stanie efektywnie zarządzać ciśnieniem, co prowadzi do problemów z wypuszczaniem gazu i może skutkować stratami materiałowymi. Kluczowym błędem jest myślenie, że te zbiorniki mogą pełnić taką samą funkcję jak dzwon gazowy, co ignoruje ich podstawowe różnice i ograniczenia w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 36

Kolektory słoneczne płaskie powinny być umieszczane na dachu budynku, zwrócone w stronę

A. północną
B. południową
C. wschodnią
D. zachodnią
Kolektory słoneczne płaskie powinny być zorientowane w kierunku południowym, ponieważ to ustawienie maksymalizuje ilość promieniowania słonecznego, które mogą być absorbowane przez ich powierzchnię. W Polsce, ze względu na położenie geograficzne, największa ilość energii słonecznej dociera z kierunku południowego w ciągu całego dnia. To oznacza, że kolektory ustawione w tym kierunku będą generować najwięcej energii cieplnej, co jest kluczowe dla efektywności systemu. Dobrą praktyką jest również uwzględnienie kątów nachylenia kolektorów, które powinny wynosić od 30 do 45 stopni, co dodatkowo zwiększa ich wydajność. W kontekście standardów branżowych, zaleca się, aby instalacje solarne były projektowane przez wykwalifikowanych specjalistów, którzy wezmą pod uwagę także lokalne warunki meteorologiczne i architektoniczne budynków, co może wpłynąć na optymalizację wydajności systemu oraz jego długoterminową opłacalność.

Pytanie 37

Jaki powinien być minimalny czas trwania testu szczelności kolektora słonecznego?

A. 15 minut
B. 10 minut
C. 5 minut
D. 12 minut
Minimalny czas trwania próby szczelności kolektora słonecznego wynoszący 15 minut jest zgodny z zaleceniami wielu standardów branżowych, w tym normy EN 12975 dotyczącej kolektorów słonecznych. Taki okres jest wystarczający, aby upewnić się, że wszelkie potencjalne wycieki powietrza lub cieczy zostały wykryte, a także aby system osiągnął stabilny stan pracy. Przykładowo, w praktyce inżynierskiej, próby szczelności przeprowadza się poprzez zastosowanie ciśnienia wyższego od normalnego, co pozwala na identyfikację miejsc nieszczelnych. W przypadku kolektorów słonecznych, prawidłowe przeprowadzenie próby szczelności jest kluczowe dla zapewnienia ich efektywności oraz długowieczności. Nieprawidłowe uszczelnienia mogą prowadzić do strat energii, a w skrajnych przypadkach do poważnych uszkodzeń systemu. Dlatego kluczowe jest przestrzeganie zalecanych czasów trwania prób, co zapewnia zgodność z procedurami jakości oraz bezpieczeństwa.

Pytanie 38

Zbyt niska histereza w regulatorze systemu solarnego może skutkować

A. obniżeniem ciśnienia w instalacji
B. częstym włączaniem oraz wyłączaniem pompy
C. częstym działaniem zaworu bezpieczeństwa
D. szybszym zużyciem płynu solarnego
Wiele osób może błędnie sądzić, że zbyt mała histereza nie ma znaczącego wpływu na inne aspekty systemu solarnego, jak starzenie się płynu, ciśnienie w instalacji czy działanie zaworu bezpieczeństwa. Jednakże, jeśli histereza jest zbyt niska, pompa będzie działać w trybie ciągłym, co rzeczywiście może wpływać na właściwości płynu solarnego. Zbyt częste cykle włączania i wyłączania mogą prowadzić do niepożądanych zjawisk, takich jak stagnacja płynu, co z kolei może przyspieszyć jego degradację. Co więcej, nie ma bezpośredniego związku pomiędzy histerezą a ciśnieniem w instalacji, ponieważ ciśnienie jest bardziej związane z prawidłowym działaniem pomp oraz zabezpieczeń. Zakładając, że zawór bezpieczeństwa działa zgodnie z normami, powinien otwierać się tylko w sytuacjach awaryjnych, a nie z powodu zbyt częstego włączania i wyłączania pompy. Kluczowym błędem jest mylenie zjawiska histerezy z innymi parametrami pracy systemu, co może prowadzić do niepoprawnych ustawień i skutków ubocznych, takich jak zwiększone zużycie energii oraz obniżona żywotność podzespołów. Dlatego ważne jest, aby stosować się do dobrych praktyk i odpowiednich wartości histerezy, aby zapewnić efektywność oraz długowieczność systemu solarnego.

Pytanie 39

Dwóch monterów zainstalowało system grzewczy oparty na energii słonecznej w czasie 8 godzin. Stawka płacy za godzinę pracy dla jednego z nich wynosi 25,00 zł. Oblicz wartość usługi netto, jeśli inne koszty wynoszą 200,00 zł, a zysk stanowi 10% sumy wynagrodzenia pracowników oraz pozostałych wydatków.

A. 660,00 zł
B. 400,00 zł
C. 600,00 zł
D. 440,00 zł
Aby prawidłowo obliczyć wartość usługi netto, należy wziąć pod uwagę wszystkie składniki kosztów oraz zysk. W przedstawionym przypadku, wynagrodzenie dla dwóch monterów, którzy pracowali przez 8 godzin, wynosi 400,00 zł. Tę kwotę uzyskujemy, mnożąc liczbę monterów (2) przez liczbę godzin (8) oraz stawkę godzinową (25,00 zł). Następnie dodajemy koszty pozostałe, które wynoszą 200,00 zł. W ten sposób uzyskujemy łączne koszty równające się 600,00 zł. Na koniec, aby obliczyć zysk, bierzemy 10% z tej kwoty, co daje 60,00 zł. Dodając tę wartość do sumy wcześniejszych kosztów, otrzymujemy ostateczną wartość usługi netto równą 660,00 zł. Tego typu obliczenia są powszechnie stosowane w branży budowlanej i instalacyjnej, gdzie precyzyjne określenie kosztów jest kluczowe dla zachowania rentowności projektów. Przykładem może być przygotowanie ofert, w których istotne jest uwzględnienie zarówno kosztów pracy, jak i materiałów oraz zysku, co pozwala na konkurencyjność na rynku.

Pytanie 40

W trakcie transportu kolektory słoneczne powinny być chronione przed uszkodzeniami mechanicznymi?

A. obudową stalową i kołkami świadkami
B. folią ochronną i kołkami świadkami
C. folią ochronną i obudową drewnianą
D. obudową drewnianą i taśmą bitumiczną
Folia ochronna oraz drewniana obudowa to genialne rozwiązanie, żeby dobrze zabezpieczyć kolektory słoneczne podczas transportu. Folia świetnie chroni delikatne elementy przed różnymi rysami, kurzem i innymi brudami, które mogą się przydarzyć w drodze. Z kolei drewniana obudowa, to już coś solidniejszego, co świetnie ochroni kolektory przed mechanicznymi uderzeniami i zapewni stabilność w trakcie przewozu. Takie podejście jest zgodne z tym, co mówi branża, bo stosowanie odpowiednich materiałów ochronnych naprawdę zmniejsza ryzyko uszkodzenia sprzętu. W praktyce niektóre firmy zajmujące się instalacją kolektorów słonecznych korzystają z takich rozwiązań, co pozwala im utrzymać jakość i ograniczyć reklamacje. Dobrze zabezpieczone kolektory to też lepsza reputacja firmy w oczach klientów, a to w dłuższym czasie przekłada się na sukces biznesowy.