Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 09:31
  • Data zakończenia: 1 kwietnia 2025 09:54

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć współczynnik zawartości harmonicznych na wyjściu wzmacniacza audio, co należy wykorzystać?

A. miernik zniekształceń nieliniowych
B. rejestrator przebiegów elektrycznych
C. oscyloskop
D. wobuloskop
Miernik zniekształceń nieliniowych jest narzędziem dedykowanym do oceny jakości sygnału audio, w szczególności do pomiaru współczynnika zawartości harmonicznych. Jego zasadniczą funkcją jest analiza zniekształceń, które mogą występować w sygnale audio na wyjściu wzmacniacza. Dzięki zastosowaniu odpowiednich algorytmów, miernik ten potrafi wyodrębnić i zmierzyć harmoniczne, co pozwala na określenie, w jakim stopniu sygnał odbiega od idealnego. Przykładem praktycznego zastosowania jest kalibracja wzmacniaczy audio w studiach nagraniowych, gdzie zniekształcenia muszą być minimalizowane, aby zapewnić najwyższą jakość dźwięku zgodną z standardami branżowymi, takimi jak AES (Audio Engineering Society). Oprócz pomiaru współczynnika THD (Total Harmonic Distortion), miernik zniekształceń nieliniowych pozwala również na analizę intermodulacji i ocenę czystości sygnału, co jest kluczowe w produkcji audio i inżynierii dźwięku.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby podłączyć czujkę kontaktronową w trybie NC do systemu alarmowego, należy użyć przewodu o co najmniej

A. czteroparowym UTP z dwoma rezystorami
B. sześciożyłowym z dwoma rezystorami
C. czterożyłowym z jednym rezystorem
D. dwużyłowym bez rezystorów
Odpowiedź dwużyłowego bez rezystorów jest poprawna w kontekście podłączenia czujki kontaktronowej do systemu alarmowego w konfiguracji NC (normalnie zamkniętej). Czujki kontaktronowe działają na zasadzie zamykania obwodu, gdy magnes zbliża się do czujnika, co aktywuje alarm. W tej konfiguracji nie jest wymagane stosowanie rezystorów, ponieważ czujki te mogą być bezpośrednio podłączone do centrali alarmowej. Zastosowanie dwużyłowego przewodu jest wystarczające do przesyłania sygnału z czujki do systemu, co czyni instalację prostszą i bardziej ekonomiczną. W praktyce, wykorzystanie dwużyłowego przewodu minimalizuje koszty materiałowe, a również czas potrzebny na instalację. Warto również pamiętać o zgodności z normami instalacyjnymi, które zalecają stosowanie odpowiednich przewodów w zależności od zastosowania, co w tym przypadku potwierdza wybór dwużyłowego przewodu bez rezystorów jako najodpowiedniejszego rozwiązania. Właściwe połączenie jest kluczowe dla prawidłowego funkcjonowania systemu alarmowego, a nieprawidłowe podłączenia mogą prowadzić do fałszywych alarmów lub błędów w działaniu systemu.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa A
B. Klasa C
C. Klasa B
D. Klasa AB
Klasa A, B, i AB to typy wzmacniaczy, które są powszechnie stosowane w przetwarzaniu sygnałów akustycznych, każda z nich ma swoje charakterystyczne zalety i ograniczenia. Wzmacniacze klasy A są znane ze swojej doskonałej linearności i niskiego poziomu zniekształceń, co czyni je idealnymi do aplikacji audio, gdzie jakość dźwięku jest kluczowa. Charakteryzują się tym, że w każdym cyklu pracy tranzystor zawsze przewodzi prąd, co zapewnia ich wysoką jakość dźwięku, ale jednocześnie prowadzi do niskiej efektywności energetycznej. Klasa B to rozwiązanie, które poprawia efektywność, ponieważ tylko jedna połówka sygnału jest wzmacniana, co jednak prowadzi do zniekształceń w punkcie, gdzie obie połówki sygnału się łączą. Klasa AB, z kolei, to kompromis między klasą A i B, oferujący lepszą efektywność niż klasa A, ale przy zachowaniu niskiego poziomu zniekształceń. Wzmacniacze klasy C, mimo że są efektywne w zastosowaniach RF, nie nadają się do wzmacniania sygnałów akustycznych z powodu dużych zniekształceń nieliniowych, które generują. Wybór odpowiedniej klasy wzmacniacza powinien być zawsze uzależniony od specyficznych wymagań danej aplikacji, z uwzględnieniem zarówno jakości dźwięku, jak i efektywności energetycznej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. Mostek Wiena
B. UM-112B
C. IMI-341
D. Mostek Thomsona
IMI-341 to nowoczesny miernik izolacji, który jest powszechnie stosowany do pomiaru rezystancji izolacji kabli. Jego kluczową funkcją jest ocena stanu izolacji, co ma istotne znaczenie w kontekście bezpieczeństwa instalacji elektrycznych. Miernik ten może przeprowadzać pomiary przy różnych napięciach, co pozwala na dokładną diagnozę jakości izolacji. Przykładem jego zastosowania jest okresowe badanie instalacji elektrycznych w budynkach przemysłowych, gdzie nieodpowiedni stan izolacji może prowadzić do poważnych awarii i zagrożeń. IMI-341 jest zgodny z normami IEC 61010 oraz IEC 61557, co zapewnia jego niezawodność i bezpieczeństwo podczas eksploatacji. Dbanie o rezystancję izolacyjną jest kluczowe w zapobieganiu porażeniom elektrycznym oraz w redukcji ryzyka pożarów, co jest zgodne z najlepszymi praktykami w dziedzinie bezpieczeństwa elektrycznego.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas pomiaru rezystancji przy użyciu metody technicznej, woltomierz oraz amperomierz wskazują odpowiednio 40 V i 20 mA. Jaką wartość ma mierzona rezystancja?

A. 20 kΩ
B. 200 kΩ
C. 2 kΩ
D. 0,2 kΩ
Analizując pozostałe odpowiedzi, istotne jest zrozumienie, czym jest opór w kontekście prawa Ohma oraz jak właściwie obliczać rezystancję. W przypadku pierwszej możliwości, 0,2 kΩ, zauważamy, że jest to wartość znacznie niższa od oczekiwanej. Taki wynik mógłby sugerować błędne odczytanie natężenia prądu lub napięcia, co jest często spotykanym błędem. Niektórzy mogą mylnie przeliczać jednostki, ignorując, że 20 mA to 0,02 A, a nie 0,2 A, co prowadzi do znacznych różnic w wyniku. Z kolei odpowiedź 20 kΩ również jest niepoprawna, ponieważ sugeruje bardzo dużą rezystancję w stosunku do podanego napięcia i natężenia prądu, co jest sprzeczne z prawem Ohma. Takie myślenie może prowadzić do nieporozumień w obliczeniach, zwłaszcza w kontekście analizy układów z niewielkimi wartościami rezystancji. W przypadku 200 kΩ, otrzymujemy wynik, który również nie znajduje uzasadnienia w podanych danych. Warto zauważyć, że prawidłowe pomiary wymagają nie tylko znajomości wzorów, ale także umiejętności przeliczenia i zrozumienia jednostek miar. Typowe błędy myślowe, takie jak pomylenie jednostek lub nieprawidłowe zrozumienie zależności między napięciem, natężeniem a rezystancją, mogą prowadzić do znacznych nieprawidłowości w pomiarach. W praktycznych zastosowaniach, takich jak naprawa urządzeń elektronicznych, kluczowe jest posługiwanie się poprawnymi wartościami i procedurami, aby uniknąć kosztownych błędów w diagnostyce i eksploatacji urządzeń.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Skrętki nieekranowanej
B. Koncentrycznego
C. Skrętki ekranowanej
D. Symetrycznego
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 15

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 20 V DC
B. 200 V AC
C. 200 V DC
D. 20 V AC
Odpowiedź 20 V AC jest prawidłowa, ponieważ odpowiada charakterystyce napięcia wtórnego transformatora, które wynosi 12 V. W kontekście pomiarów elektrycznych, ważne jest, aby stosować przyrządy pomiarowe w odpowiednim zakresie, co zapewnia dokładność oraz bezpieczeństwo pomiarów. Dla napięcia zmiennego (AC) o wartości 12 V, najbliższy standardowy zakres pomiarowy, który nie przekracza wartości nominalnej, to 20 V AC. Praktyczne zastosowanie tego pomiaru odnosi się do wielu sytuacji w inżynierii elektrycznej, w których musimy monitorować napięcia w obwodach zasilających urządzenia elektroniczne. Stosowanie odpowiedniej skali pomiarowej nie tylko minimalizuje ryzyko uszkodzenia sprzętu, ale także pozwala na uzyskanie precyzyjnych wyników, które są kluczowe dla diagnostyki oraz serwisu urządzeń. Zgodnie z normami IEC oraz krajowymi przepisami, pomiar napięć powinien odbywać się w bezpiecznych i przewidywalnych warunkach. W związku z tym, dobór odpowiedniego zakresu pomiarowego jest fundamentalnym krokiem w zapewnieniu wysokiej jakości pracy z urządzeniami elektrycznymi.

Pytanie 16

Czujnik typu PIR służy do wykrywania

A. ruchu
B. wilgoci
C. dymu
D. światła
Czujka typu PIR (Passive Infrared Sensor) jest urządzeniem wykrywającym ruch na podstawie analizy promieniowania podczerwonego emitowanego przez obiekty w swoim zasięgu. Działa na zasadzie detekcji zmian temperatury w polu widzenia czujnika, co jest istotne w kontekście monitorowania obszaru. Czujki te są szeroko stosowane w systemach zabezpieczeń, automatyce budynkowej oraz inteligentnych domach. Przykładem zastosowania jest system alarmowy, w którym czujka PIR uruchamia alarm w momencie wykrycia ruchu, co zwiększa bezpieczeństwo obiektu. Standardy branżowe, takie jak EN 50131, definiują wymagania dotyczące wydajności i niezawodności takich czujek, aby zapewnić ich skuteczność w detekcji ruchu. Dzięki swojej konstrukcji czujki PIR są energooszczędne, co czyni je idealnym wyborem do zastosowań w nowoczesnych systemach automatyzacji, gdzie ważna jest efektywność energetyczna. Właściwe umiejscowienie czujnika oraz jego kalibracja są kluczowe dla optymalizacji działania, co podkreśla potrzebę stosowania dobrych praktyk w instalacji i użytkowaniu tych urządzeń.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Mostek Wiena
B. Mostek Thomsona
C. Induktor
D. Wobulator
Wybór wobulatora, mostka Thomsona lub mostka Wiena jako narzędzi do pomiaru rezystancji izolacji kabli oparty jest na nieporozumieniu dotyczącym funkcji tych urządzeń. Wobulator jest narzędziem stosowanym głównie do analizy i pomiarów częstotliwościowych oraz badania jakości sygnałów elektrycznych, a nie do oceny rezystancji izolacyjnej. Mostek Thomsona służy do pomiaru rezystancji, ale jest przeznaczony do zastosowań w sytuacjach, gdzie izolacja nie jest kluczowym czynnikiem, a jego zastosowanie w kontekście kabli z izolacją może prowadzić do błędnych odczytów. Z kolei mostek Wiena jest używany w pomiarach impedancji, szczególnie w dziedzinie analizy częstotliwości, a jego zastosowanie w pomiarach izolacji jest ograniczone i nieodpowiednie, ponieważ nie uwzględnia specyfiki testowania izolacji. Typowym błędem myślowym jest mylenie różnych typów pomiarów elektrycznych i ich przeznaczenia. Kluczowe jest zrozumienie, że pomiar rezystancji izolacji wymaga zastosowania dedykowanych narzędzi, które są zgodne z odpowiednimi normami i standardami, a nie ogólnych przyrządów do analizy sygnałów czy impedancji.

Pytanie 19

Zwiększenie histerezy w regulatorze dwustawnym w systemie regulacji

A. spowoduje przesunięcie wykresu w górę o wartość pętli histerezy
B. nie wpłynie na kształt sygnału
C. spowoduje powiększenie amplitudy zmian sygnału kontrolowanego
D. spowoduje zmniejszenie amplitudy zmian sygnału kontrolowanego
Nieprawidłowe podejście do analizy histerezy w regulatorze dwustawowym wiąże się z błędnym zrozumieniem samej jej natury oraz efektów, jakie wywołuje w układzie regulacji. Odpowiedzi sugerujące, że zwiększenie histerezy nie wpłynie na przebieg sygnału lub spowoduje jego przesunięcie, są mylące. Histereza nie jest jedynie parametrem statycznym, lecz dynamicznie wpływa na zachowanie systemu. Wartości histerezy definiują progi, w których następuje zmiana stanu wyjściowego, co oznacza, że każda zmiana tych wartości ma bezpośredni wpływ na reakcję sygnału. Zwiększenie histerezy prowadzi do zmiany zakresu, w jakim sygnał może fluktuować przed osiągnięciem nowego stanu stabilnego, co w praktyce przekłada się na większe amplitudy zmian. Ponadto, koncepcje mówiące o przesunięciu przebiegu w górę o szerokość histerezy ignorują fakt, że histereza nie jest przesunięciem, a raczej różnicą pomiędzy dwoma stanami. To może prowadzić do błędnych interpretacji podczas projektowania systemów regulacji, gdzie kluczowe jest zrozumienie, że histereza pozwala na redukcję niepożądanych oscylacji i stabilizację odpowiedzi systemu. Ignorowanie aspektu dynamicznego histerezy w kontekście regulacji może skutkować zbyt dużymi fluktuacjami w sygnale sterowanym, co jest szczególnie problematyczne w procesach wymagających precyzyjnego nadzoru, takich jak kontrola temperatury czy ciśnienia w systemach przemysłowych.

Pytanie 20

Bezpiecznik topikowy stanowi komponent, który chroni przed efektami

A. nagromadzenia ładunku elektrostatycznego
B. spadku napięcia zasilającego
C. przepięć w instalacji elektrycznej
D. zwarć w obwodzie elektrycznym
Bezpiecznik topikowy jest kluczowym elementem zabezpieczeń elektrycznych, zapobiegającym skutkom zwarć w obwodzie elektrycznym. Działa na zasadzie przerywania obwodu, gdy prąd przepływający przez niego przekroczy określoną wartość. W przypadku zwarcia, prąd składający się z dużych wartości może prowadzić do przegrzania przewodów, co skutkuje uszkodzeniem urządzeń i zwiększa ryzyko pożaru. Bezpieczniki topikowe są powszechnie stosowane w instalacjach domowych i przemysłowych, zgodnie z normami takimi jak PN-EN 60269. Dobrze dobrany bezpiecznik topikowy chroni nie tylko instalację, ale również podłączone urządzenia, takie jak komputery czy sprzęt RTV. W przypadku awarii, wymiana bezpiecznika jest prostym zadaniem, które można wykonać samodzielnie, co czyni je praktycznym rozwiązaniem. Zrozumienie roli bezpiecznika topikowego w systemach zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Co obejmuje schemat montażu?

A. rysunki złożeniowe całości produktów z określonymi warunkami technicznymi
B. spis elementów zamiennych oraz zasady użytkowania urządzenia
C. metodę łączenia komponentów w urządzeniu oraz ich kolejność montażu
D. schematy blokowe ilustrujące współdziałanie części
Odpowiedź wskazująca na sposób połączenia elementów w urządzeniu oraz kolejność ich montażu jest prawidłowa, ponieważ schemat montażowy ma kluczowe znaczenie dla poprawnego złożenia i działania urządzenia. W praktyce, schemat montażowy przedstawia szczegółowe instrukcje, które są niezbędne dla techników i inżynierów zajmujących się budową maszyn lub skomplikowanych systemów. Przykładem może być montaż zespołów w silnikach, gdzie precyzyjne ukazanie kolejności oraz sposobu połączenia elementów, takich jak wały, korbowody czy tłoki, jest niezbędne do zapewnienia ich prawidłowego działania oraz długowieczności. Standardy branżowe, takie jak ISO 9001, kładą duży nacisk na dokumentację procesów oraz formy wizualne, które wspierają zrozumienie i wykonywanie zadań montażowych. Zastosowanie schematu montażowego pozwala także na szybką identyfikację błędów oraz ułatwia szkolenie nowych pracowników w zakresie technik montażowych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaki standard kompresji audio jest stosowany w Polsce w dekoderach telewizji cyfrowej naziemnej DVB-T?

A. MPEG-1
B. MPEG-3
C. MPEG-4
D. MPEG-2
Wybór złych standardów kompresji audio i wideo pewnie może wynikać z tego, że nie wszyscy wiedzą, jak technologia się rozwinęła i jak zmieniały się standardy w branży. MPEG-1 był jednym z pierwszych standardów, robiony głównie do kompresji wideo na nośniki CD, więc jest mało efektowny w dzisiejszych realiach telewizyjnych. Jego jakość i efektywność kompresji po prostu nie są wystarczające dla współczesnego nadawania, jak DVB-T. Z kolei MPEG-2, który był dość popularny w telewizji cyfrowej, dawał znacznie lepszą jakość obrazu niż MPEG-1, ale wciąż nie spełniał wymagań dotyczących transmisji w HD. W miarę jak technologia się rozwijała, pojawił się MPEG-4, który wykorzystywał bardziej zaawansowane algorytmy do kompresji, co umożliwiło lepsze przesyłanie danych. MPEG-3, który wielu myli z innymi standardami, nie stał się powszechnie uznawanym standardem do kompresji wideo, a raczej kojarzy się z muzyką, więc nie nadaje się do telewizji. Wiedza na temat tych różnic jest ważna, żeby zrozumieć, czemu MPEG-4 jest obecnie standardem w cyfrowej telewizji naziemnej.

Pytanie 25

Zawartość pamięci EPROM może zostać utracona w wyniku

A. niesprawnego układu odświeżającego
B. braku napięcia zasilającego
C. obniżenia napięcia zasilającego poniżej 2,5 V
D. bezpośredniego wpływu promieni słonecznych
Zanik napięcia zasilającego nie prowadzi do bezpośredniej utraty danych w pamięci EPROM, ponieważ pamięci te zachowują swoje dane w sposób trwały, nawet w przypadku braku zasilania. EPROM jest zaprojektowany tak, aby przechowywać dane w stanie stabilnym, co oznacza, że nawet po odłączeniu zasilania, informacje zapisane w pamięci pozostaną nienaruszone. Błąd myślowy, który może prowadzić do takiego wniosku, to mylenie EPROM z pamięciami typu RAM, które wymagają ciągłego zasilania do zachowania danych. Z kolei spadek napięcia poniżej 2,5 V również nie wpływa bezpośrednio na EPROM, ponieważ te układy nie tracą danych w wyniku chwilowych wahań napięcia zasilającego. W przypadku wadliwego układu odświeżającego, problem ten dotyczy głównie pamięci dynamicznych (DRAM), które wymagają regularnego odświeżania, aby utrzymać dane. Warto zwrócić uwagę na to, że EPROM jest pamięcią statyczną, a nie dynamiczną, co oznacza, że nie wymaga odświeżania i jest bardziej odporna na takie problemy. Takie nieporozumienia mogą wynikać z braku zrozumienia różnic pomiędzy różnymi typami pamięci, co jest kluczowe dla właściwego projektowania systemów elektronicznych. Właściwa wiedza w tym zakresie jest niezbędna przy wyborze odpowiednich rozwiązań pamięciowych do określonych zastosowań.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. ołówek i poziomica
B. wiertarka i kołki rozporowe
C. gwoździe oraz młot
D. śruby i śrubokręt
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 29

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci
B. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
C. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
D. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
Uszkodzenie urządzeń elektronicznych zasilanych z niezabezpieczonej sieci energetycznej jest wynikiem przepięć, które mogą wystąpić w takich systemach. Przepięcia mogą być spowodowane różnymi czynnikami, takimi jak wyładowania atmosferyczne, nagłe zmiany w obciążeniu sieci lub awarie w dostawie energii. Przykładowo, gdy piorun uderza w linię energetyczną, może dojść do chwilowego wzrostu napięcia, który przekracza dopuszczalne wartości dla podłączonych urządzeń. Takie przepięcia mogą prowadzić do zniszczenia komponentów elektronicznych, takich jak zasilacze, płyty główne czy inne układy scalone. Aby zminimalizować ryzyko uszkodzeń, zaleca się stosowanie urządzeń zabezpieczających, jak listwy antyprzepięciowe, które absorbują nadmiar energii. Kiedy mówimy o ochronie przed przepięciami, warto również pamiętać o standardach, takich jak IEC 61643, które definiują wymagania dla urządzeń zabezpieczających przed przepięciami (SPD). Wiedza na temat tych zagadnień jest istotna w kontekście projektowania i eksploatacji systemów elektrotechnicznych, aby zagwarantować bezpieczeństwo i długowieczność używanych urządzeń.

Pytanie 30

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Fotodiody
B. Kondensatora elektrolitycznego
C. Diody prostowniczej
D. Kondensatora ceramicznego
Fotodiody, diody prostownicze oraz kondensatory elektrolityczne to elementy elektroniczne, które wymagają uwzględnienia polaryzacji podczas ich montażu. Fotodiody działają na zasadzie efektu fotoelektrycznego, gdzie ich struktura jest wrażliwa na kierunek przepływu prądu, co sprawia, że błędne podłączenie może prowadzić do ich uszkodzenia. W przypadku diod prostowniczych, ich funkcja polegająca na przepuszczaniu prądu tylko w jednym kierunku również czyni je wrażliwymi na niewłaściwe podłączenie. Błędne ustawienie diody w obwodzie może skutkować zwarciem lub uszkodzeniem innych komponentów. Natomiast kondensatory elektrolityczne wymagają szczególnej uwagi z uwagi na ich polaryzację, co wynika z budowy ich wewnętrznych elektrod. Niewłaściwe podłączenie kondensatora elektrolitycznego może prowadzić do ich eksplozji, co jest nie tylko niebezpieczne, ale również może zniszczyć pozostałe elementy układu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, obejmują zrozumienie, że wszystkie kondensatory są niepolaryzowane, co jest błędne. Wiedza na temat polaryzacji komponentów jest kluczowa dla projektowania bezpiecznych i efektywnych układów elektronicznych.

Pytanie 31

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. ochronnik przepięciowy
B. ochronnik termiczny
C. wyłącznik nadprądowy
D. wyłącznik różnicowoprądowy
Ochronnik przepięciowy jest urządzeniem zaprojektowanym w celu zabezpieczania instalacji elektrycznych oraz podłączonych do nich urządzeń przed skutkami przepięć, które mogą wystąpić na skutek wyładowań atmosferycznych lub innych nagłych wzrostów napięcia. Działa poprzez odprowadzanie nadmiaru energii, co minimalizuje ryzyko uszkodzenia sprzętu. Przykładem zastosowania ochronników przepięciowych są instalacje w budynkach mieszkalnych, gdzie ochrona sprzętu RTV, AGD oraz komputerów jest kluczowa. Standardy takie jak IEC 61643-11 oraz PN-EN 61643-11 określają wymagania dotyczące tych urządzeń, zapewniając ich skuteczność i bezpieczeństwo. Ważne jest, aby dobierać odpowiednie ochronniki do specyfiki instalacji oraz środowiska, w którym są używane, a także regularnie przeprowadzać ich przeglądy, aby zapewnić ich prawidłowe funkcjonowanie i przedłużyć żywotność chronionego sprzętu.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Monitorze CRT
B. Nośniku optycznym
C. Ekranie LCD
D. Dysku twardym
Twarde dyski, panele LCD oraz napędy optyczne nie bazują na zjawisku odchylania elektronów w polu elektromagnetycznym. Twarde dyski działają na zasadzie magnetyzmu i wykorzystują mechaniczne elementy do odczytu i zapisu danych, co różni się od wykorzystania elektronów w monitorach CRT. W przypadku paneli LCD, obraz jest generowany przez manipulację światłem, które przechodzi przez ciekłe kryształy, a nie przez odchylanie elektronów. Technologia LCD nie wykorzystuje elektronów w sposób, w jaki robi to CRT; zamiast tego, kontroluje intensywność światła poprzez zmiany w orientacji cząsteczek ciekłych kryształów. Napędy optyczne, takie jak napędy DVD, działają na zasadzie lasera, który odczytuje dane zapisane na płytach, co również jest całkowicie różne od zjawiska odchylania elektronów. W wyborach odpowiedzi na takie pytania, kluczowe jest zrozumienie, jak konkretne technologie działają na poziomie fizycznym i technicznym, aby uniknąć mylnych wniosków. Nieprawidłowe odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między technologiami oraz ich zastosowań w praktyce, co jest istotne w kontekście zawodów związanych z informatyką i inżynierią.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. UL7805
B. SN74151
C. NE555
D. Z80
Wybór UL7805 jako generatora impulsów prostokątnych jest błędny, ponieważ ten układ scalony jest regulatorem napięcia, a nie generatorem sygnałów. UL7805 ma na celu stabilizację napięcia zasilającego, co czyni go fundamentalnym elementem w zarządzaniu zasilaniem w obwodach elektronicznych, ale nie jest zaprojektowany do generowania impulsów. Z kolei SN74151 to multiplekser/demultiplekser, który służy do przekazywania sygnałów, ale nie generuje impulsów prostokątnych. Jest to element bardziej przeznaczony do selekcji sygnałów niż ich produkcji. Co więcej, Z80 to mikroprocesor, który wykonuje instrukcje zapisane w programie, ale nie działa jako generator impulsów. Często mylone są funkcjonalności różnych układów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każdy układ scalony ma swoje specyficzne przeznaczenie, a ich zastosowanie powinno być dostosowane do wymagań projektowych. Typowe błędy myślowe polegają na braku analizy specyfikacji technicznych układów scalonych i ich rzeczywistych zastosowań, co może prowadzić do nieefektywnego projektowania obwodów oraz wyboru niewłaściwych komponentów, co z kolei wpływa na niezawodność i wydajność całego systemu elektronicznego.

Pytanie 36

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
C. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
D. Zasilacz symetryczny oraz cyfrowy multimetr
Wybór przyrządów pomiarowych jest kluczowy dla uzyskania prawidłowych wyników w testach wzmacniaczy. Odpowiedzi, które nie uwzględniają zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu, pomijają istotne elementy wymagane do przeprowadzenia analizy charakterystyki przenoszenia. Zasilacz symetryczny jest niezbędny, aby zapewnić wzmacniaczowi stabilne napięcie zasilające, co jest kluczowe w kontekście pomiaru jego wydajności. Generator funkcyjny jest także istotny, ponieważ pozwala na wytwarzanie sygnałów o różnych kształtach i częstotliwościach, co umożliwia ocenę, jak wzmacniacz odpowiada na zmiany parametrów sygnału. Pominięcie oscyloskopu, który jest narzędziem do wizualizacji sygnałów, prowadzi do utraty możliwości obserwacji i analizy dynamiki wzmacniacza. Dodatkowo, wybór multimetru cyfrowego czy zasilacza napięcia stałego nie dostarcza wymaganych możliwości do kompleksowej analizy. Multimetr cyfrowy, choć przydatny w pomiarach napięcia i prądu, nie jest wystarczający do oceny charakterystyki przenoszenia, gdyż nie pozwala na analizę sygnałów w funkcji czasu, co jest istotne w przypadku wzmacniaczy operacyjnych, które reagują na zmiany sygnałów w czasie. Dlatego kluczowe jest zastosowanie pełnego zestawu odpowiednich narzędzi do przeprowadzenia rzetelnych badań.

Pytanie 37

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. waromierze
B. watomierze
C. wariometry
D. woltomierze
Woltomierze, waromierze i wariometry to urządzenia pomiarowe, które różnią się znacząco od watomierzy w zakresie funkcji i zastosowania. Woltomierz jest używany do pomiaru napięcia elektrycznego, co oznacza, że mierzy różnicę potencjałów w obwodzie, ale nie ocenia bezpośrednio mocy czynnej. W przypadku pomiarów mocy, woltomierz mógłby być użyty w połączeniu z innymi urządzeniami, ale samodzielnie nie dostarcza informacji o mocy czynnej. Waromierz, z drugiej strony, jest przeznaczony do pomiaru mocy biernej, czyli tej, która nie wykonuje żadnej pracy, lecz krąży w obwodzie. Wariometry natomiast służą do pomiaru różnicy mocy w obwodach prądu zmiennego, ale również nie są właściwym narzędziem do pomiaru mocy czynnej. Typowym błędem jest mylenie tych urządzeń z watomierzem, co prowadzi do nieporozumień w interpretacji wyników pomiarowych. Dobrze jest pamiętać, że dla prawidłowych pomiarów mocy czynnej w instalacjach elektrycznych kluczowe jest korzystanie z watomierzy, które uwzględniają zarówno napięcie, jak i prąd oraz ich fazę, co pozwala na dokładne określenie wykorzystania energii elektrycznej w danym czasie.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. czasów narastania i opadania impulsów
B. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
C. bitowej stopy błędów
D. współczynnika zniekształceń nieliniowych
Kiedy analizujesz funkcje oscyloskopu, to trochę błędne jest myślenie, że może on mierzyć przesunięcie fazowe między sygnałami sinusoidalnymi czy jakość transmisji danych. Oscyloskop w swojej podstawowej wersji jest tak naprawdę stworzony do wizualizacji sygnałów w czasie, a nie do badania ich fazy czy jakości. Przesunięcie fazowe to sprawa, która potrzebuje bardziej zaawansowanego sprzętu, jak analizatory widma, które mogą analizować różnice fazowe między sygnałami. Jeśli chodzi o bitową stopę błędów, oscyloskop sam w sobie nie oceni jakości przesyłania danych cyfrowych, bo to wymaga analizy statystycznej błędów, niestety jego to nie obejmuje. Z kolei współczynnik zniekształceń nieliniowych także wymaga lepszej analizy, co zwykle robią analizatory sygnałów, które mogą się skupić na analizie harmonicznych. Zrozumienie, co dany sprzęt potrafi zmierzyć, jest kluczowe, żeby nie popełniać błędów przy diagnostyce problemów i odpowiednim doborze narzędzi.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.