Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 22 maja 2025 11:26
  • Data zakończenia: 22 maja 2025 15:37

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
B. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
C. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
D. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 2

Zgodnie z aktualnymi przepisami prawa budowlanego, w nowych budynkach konieczne jest montowanie gniazdek z zabezpieczeniami.

A. w sypialniach.
B. w łazienkach.
C. we wszystkich pomieszczeniach.
D. w holach.
Odpowiedź 'w łazienkach' jest poprawna, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz normami bezpieczeństwa, w łazienkach powinny być instalowane gniazda z kołkami ochronnymi. Gniazda te mają na celu zwiększenie bezpieczeństwa użytkowników poprzez minimalizację ryzyka porażenia prądem elektrycznym, co jest szczególnie istotne w pomieszczeniach narażonych na wilgoć. Właściwe zastosowanie takich gniazd w łazienkach jest zgodne z normą PN-IEC 60364-7-701, która reguluje wymagania dotyczące instalacji elektrycznych w pomieszczeniach mokrych. Praktycznie oznacza to, że wszelkie urządzenia elektryczne, które mogą być używane w łazienkach, powinny być podłączone do gniazd z zabezpieczeniem przeciwporażeniowym, co znacznie podnosi poziom bezpieczeństwa użytkowników. Na przykład, podłączenie pralki czy suszarki do gniazd z kołkami ochronnymi jest kluczowe, aby zapewnić pełne bezpieczeństwo w codziennym użytkowaniu. W związku z tym, projektując nowe budynki, warto stosować się do tych wymogów, aby chronić użytkowników przed potencjalnymi zagrożeniami elektrycznymi.

Pytanie 3

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. pokryć je lakierem elektroizolacyjnym
B. wstawić w nie kliny ochronne
C. wyłożyć je izolacją żłobkową
D. pokryć je olejem elektroizolacyjnym
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 4

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Szczypiec typu Segera.
B. Szczypiec uniwersalnych.
C. Wkrętaka imbusowego.
D. Wkrętaka płaskiego.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.

Pytanie 5

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 1,5 mm2
B. 6 mm2
C. 4 mm2
D. 2,5 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 6

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 766,7 Ω
B. 166,7 Ω
C. 6,0 Ω
D. 1,3 Ω
Wybór wartości różnych rezystancji uziemienia, takich jak 766,7 Ω, 6,0 Ω czy 1,3 Ω, wskazuje na nieporozumienie dotyczące zasadności obliczeń i norm bezpieczeństwa związanych z instalacjami elektrycznymi. Wartość 766,7 Ω jest zbyt wysoka, co oznacza, że w przypadku uszkodzenia izolacji, prąd różnicowy nie zostanie skutecznie odłączony, co stwarza ryzyko porażenia. Z kolei 6,0 Ω i 1,3 Ω są nieadekwatne w kontekście wymaganej maksymalnej rezystancji dla wyłącznika różnicowoprądowego o tak dużym prądzie różnicowym. W praktyce, zbyt niska rezystancja może prowadzić do nieprawidłowego działania systemu ochrony i fałszywych wyzwalań, co jest nie do przyjęcia w instalacjach elektrycznych. Właściwe zrozumienie tego zagadnienia wymaga znajomości wzorów na obliczanie rezystancji uziemienia oraz znajomości zależności między napięciem dotykowym, prądem różnicowym i rezystancją. Każda z tych wartości odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji, a ich niewłaściwe dobieranie może prowadzić do nr. 1 zagrożeń w elektryczności, jakim jest porażenie prądem. Wartości rezystancji powinny być starannie dobierane zgodnie z zaleceniami norm, a ich zrozumienie jest niezbędne dla każdego inżyniera zajmującego się projektowaniem i wdrażaniem instalacji elektrycznych.

Pytanie 7

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. izolacja jest uszkodzona.
B. występuje zwarcie między zwojami.
C. jest uszkodzone.
D. działa prawidłowo.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 8

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
B. Zabezpieczenia nadprądowe poszczególnych obwodów
C. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
D. Transformator słupowy z rozłącznikiem
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 9

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Miernika rezystancji uziemienia
B. Multimetru
C. Miernika rezystancji izolacji
D. Mostka rezystancyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik rezystancji uziemienia to naprawdę przydatne narzędzie, które wykorzystywane jest do pomiaru rezystancji punktu uziemienia. To bardzo ważne w przypadku systemów odgromowych, bo dobra rezystancja to bezpieczeństwo. W odróżnieniu od multimetru, który może robić dużo różnych rzeczy, miernik rezystancji uziemienia jest stworzony specjalnie do tych pomiarów, szczególnie w trudnych warunkach, gdzie różne rzeczy, jak na przykład wilgoć, mogą wpłynąć na wyniki. Przykładowo, używa się go, żeby sprawdzić, czy system odgromowy działa jak należy, zanim zacznie działać albo po jakichś zmianach. Ważne, żeby rezystancja była na poziomie mniejszym niż 10 omów, zgodnie z normami takimi jak PN-EN 62305. To pokazuje, jak istotne są regularne przeglądy, żeby zajechać ryzyko porażenia prądem i lepiej chronić się przed wyładowaniami atmosferycznymi.

Pytanie 10

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Phillips.
B. Kluczem imbusowym.
C. Wkrętakiem z nacięciem Torx.
D. Kluczem nasadowym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 11

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. E14
B. GU10
C. G9
D. MR11

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 12

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i cztery niezależne zaciski
B. Jeden klawisz i trzy niezależne zaciski
C. Dwa klawisze i trzy niezależne zaciski
D. Dwa klawisze i cztery niezależne zaciski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 13

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy B
B. Klasy D
C. Klasy C
D. Klasy A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Klasy D" jest jak najbardziej trafna. Ograniczniki tej klasy są stworzone po to, żeby chronić instalacje elektryczne przed dużymi przepięciami, które mogą się zdarzyć na przykład podczas burzy albo z powodu problemów w sieci energetycznej. To, co jest super w ogranicznikach klasy D, to ich zdolność do wchłaniania ogromnych energii w bardzo krótkim czasie, przez co świetnie sprawdzają się w systemach niskonapięciowych. Można je np. znaleźć w zasilaniu komputerowym, gdzie ochrona przed nagłymi wzrostami napięcia jest naprawdę ważna, żeby nie utracić danych. Zgodnie z normą IEC 62305, korzystanie z ograniczników klasy D jest polecane, żeby zminimalizować ryzyko zniszczenia sprzętu elektronicznego. Ważne jest, aby dobrać je do lokalnych warunków, bo to gwarantuje najlepszą ochronę.

Pytanie 14

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±2,35 mA
B. ±0,37 mA
C. ±0,02 mA
D. ±0,35 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 15

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Lampy ze rtęcią
B. Lampy fluorescencyjne
C. Żarówki
D. Lampy indukcyjne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówki tradycyjne, znane również jako żarówki wolframowe, charakteryzują się najniższą skutecznością świetlną spośród wymienionych źródeł światła. Ich efektywność świetlna, wynosząca zazwyczaj od 10 do 17 lumenów na wat, jest znacznie niższa w porównaniu do innych technologii oświetleniowych. To oznacza, że generują one mniej światła w stosunku do zużywanej energii, co czyni je mniej efektywnymi z punktu widzenia oszczędności energii. Przykładowo, w sytuacjach, gdzie długotrwałe oświetlenie jest potrzebne, takie jak w biurach czy na parkingach, wybór bardziej efektywnych źródeł światła, takich jak świetlówki czy lampy LED, może znacząco obniżyć koszty energii. W kontekście standardów branżowych, prowadzi to do przemyślenia wyboru technologii oświetleniowej, w szczególności w kontekście norm dotyczących efektywności energetycznej, takich jak dyrektywa unijna dotycząca ekoprojektu, która promuje rozwiązania optymalizujące zużycie energii.

Pytanie 16

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do prądnic tachometrycznych
B. Do transformatorów
C. Do wzmacniaczy maszynowych
D. Do indukcyjnych sprzęgieł dwukierunkowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 17

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Impregnację uzwojeń i wyważenie wirnika
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Sprawdzenie układów sterowania i sygnalizacji
D. Sprawdzenie układów rozruchowych i regulacyjnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 18

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00

A. 7,48 MΩ
B. 6,73 MΩ
C. 6,18 MΩ
D. 6,87 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 19

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt małe wzbudzenie silnika
B. Zbyt duży nacisk szczotek na komutator
C. Zbyt mała powierzchnia styku szczotek z komutatorem
D. Zbyt duże wzbudzenie silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 20

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
B. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
D. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 21

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. megaomomierz
B. miernik obwodu zwarcia
C. omomierz
D. miernik indukcyjny uziemień

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 22

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Ciągłości przewodu neutralnego
B. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
C. Rezystancji izolacji przewodu uziemiającego
D. Ciągłości przewodów fazowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja uziomu, do którego dołączona jest obudowa odbiornika, jest kluczowym pomiarem w celu sprawdzenia skuteczności ochrony przeciwporażeniowej w systemach elektrycznych, w tym w sieciach TT. Odbiorniki I klasy ochronności wymagają, aby obudowa była trwale uziemiona, co zapewnia, że w przypadku wystąpienia awarii, prąd upływowy ma możliwość przepływu do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Pomiar rezystancji uziomu powinien być wykonany zgodnie z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość ta nie przekraczała 10 Ω dla zapewnienia efektywnej ochrony. Przykładowo, w instalacjach przemysłowych, gdzie używane są urządzenia o dużej mocy, niska rezystancja uziomu jest niezbędna, aby zapewnić szybkie działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Ponadto, w praktyce, warto przeprowadzać regularne pomiary rezystancji uziomu, aby upewnić się, że warunki uziemienia nie uległy zmianie wraz z upływem czasu czy też w wyniku warunków atmosferycznych, co może wpłynąć na bezpieczeństwo użytkowników. Jest to podstawowy krok w procesie zarządzania ryzykiem w instalacjach elektrycznych.

Pytanie 23

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242

A. 4,0 mm2
B. 2,5 mm2
C. 1,5 mm2
D. 6,0 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 24

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja uziemienia jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. rezystancja izolacji miejsca pracy jest zbyt duża
D. impedancja sieci zasilającej jest zbyt niska

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektrycznych, szczególnie w układach TN-C. W przypadku, gdy impedancja pętli zwarcia jest zbyt duża, może to prowadzić do niewystarczającego prądu zwarciowego, co z kolei wpływa na czas zadziałania zabezpieczeń. W układach TN-C przy wartościach U0 = 230 V oraz Ia = 100 A, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić skuteczne wyłączenie w przypadku zwarcia. W praktyce, jeśli impedancja pętli zwarcia przekracza określone wartości, na przykład zgodnie z normą PN-EN 60364, czas reakcji wyłączników automatycznych może być zbyt długi, co stwarza potencjalne zagrożenie dla bezpieczeństwa użytkowników. Dlatego właściwe pomiary impedancji pętli zwarcia są niezbędne w każdym projekcie instalacji elektrycznej, aby upewnić się, że system będzie dostatecznie chronił przed porażeniem prądem elektrycznym. W przypadku wykrycia zbyt dużej impedancji, zaleca się poprawę uziemienia oraz optymalizację konfiguracji instalacji, aby zwiększyć skuteczność zabezpieczeń.

Pytanie 25

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. ciągłości przewodów ochronnych i neutralnych
B. metody zabezpieczenia przed porażeniem prądem elektrycznym
C. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
D. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 26

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. separację elektryczną
B. umiejscowienie poza zasięgiem dłoni
C. urządzenia różnicowoprądowe ochronne
D. ogrodzenia oraz obudowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Separacja elektryczna jest kluczowym środkiem ochrony przed dotykiem pośrednim, co oznacza, że ​​wszystkie elementy instalacji elektrycznej, które mogą mieć kontakt z użytkownikami, są oddzielone od przewodów pod napięciem. W praktyce oznacza to stosowanie transformatorów separacyjnych w obwodach niskonapięciowych oraz odpowiedniego projektowania instalacji, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Przykładem mogą być instalacje w obiektach medycznych, gdzie separacja elektryczna jest stosowana, aby zapewnić bezpieczeństwo pacjentów i personelu. Zgodnie z normą PN-EN 61140, separacja elektryczna jest jednym z podstawowych wymogów bezpieczeństwa, pozwalającym na zredukowanie ryzyka porażenia prądem w miejscach narażonych na dostęp osób. Warto również zaznaczyć, że separacja elektryczna może obejmować zastosowanie izolacji, dystansów oraz odpowiednich osłon, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 27

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Sterownik rolet.
B. Przekaźnik bistabilny.
C. Regulator oświetlenia.
D. Przekaźnik priorytetowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik priorytetowy, który został przedstawiony na rysunku, jest kluczowym elementem w nowoczesnych systemach automatyki budynkowej. Oznaczenie "PR-612" jednoznacznie wskazuje na ten typ urządzenia, które jest zaprojektowane do zarządzania priorytetami w zasilaniu różnych obwodów elektrycznych. W praktyce przekaźniki priorytetowe są wykorzystywane w sytuacjach, gdzie istnieje potrzeba zarządzania zasilaniem w sposób inteligentny, na przykład w przypadku awarii zasilania lub w celu oszczędności energii. Działają one na zasadzie automatycznego przełączania źródła zasilania na urządzenia o wyższym priorytecie, co zapewnia ciągłość pracy najważniejszych systemów w budynku. Zastosowanie przekaźników priorytetowych jest zgodne z normami EN 61000-3-2 dotyczącymi ograniczeń emisji harmonicznych dla urządzeń elektrycznych oraz IEC 61131-2, która reguluje normy dla urządzeń automatyki. Dzięki zastosowaniu tych elementów, można tworzyć bardziej efektywne i bezpieczne systemy zarządzania energią w budynkach.

Pytanie 28

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
C. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
D. Instrukcja obsługi urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 29

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Miernika parametrów instalacji
B. Omomierza cyfrowego
C. Czujnika zaniku fazy
D. Neonowego wskaźnika napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 30

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Silnik będzie funkcjonować w trybie jałowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 31

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Mika i silikon
B. Silikon i guma
C. Polwinit i guma
D. Polwinit i mika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 32

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 33

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
B. niemożność załączenia wyłącznika pod obciążeniem
C. prawidłowe działanie wyłącznika
D. brak możliwości zadziałania załączonego wyłącznika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 34

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
B. Naciskając przycisk TEST na załączonym wyłączniku
C. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
D. Naciskając przycisk TEST na wyłączonym wyłączniku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 35

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pn = 3 kW, Un = 230 V?

A. aR 16 A
B. aM 20 A
C. gB 20 A
D. gG 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 36

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do ściągania izolacji z żył przewodów.
B. do zaciskania końcówek oczkowych.
C. do docinania przewodów.
D. do zaciskania końcówek tulejkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 37

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
B. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
C. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
D. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 38

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. cyfrowy watomierz
B. analogowy omomierz
C. watomierz oraz amperomierz
D. amperomierz oraz woltomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 39

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Uszkodzenie izolacji przewodu zasilającego urządzenie
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Zwarcie bezpiecznika wewnętrznego urządzenia
D. Zniszczenie przewodu ochronnego PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 40

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Miedź
B. Stal
C. Aluminium
D. Brąz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.