Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 15 maja 2025 12:11
  • Data zakończenia: 15 maja 2025 12:28

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wyłącznik silnikowy może zadziałać na skutek

A. braku jednej fazy zasilającej silnik
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. użycia stałego napięcia w obwodzie sterowania silnika
D. uruchomienia silnika przy niewielkim obciążeniu
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 2

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
B. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
C. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
D. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 3

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. ADD
B. GND
C. DC
D. AC
Odpowiedź DC jest poprawna, ponieważ oscyloskop w trybie DC umożliwia pomiar i obserwację składowej stałej napięcia oraz sygnałów zmiennych. W przypadku napięcia, które składa się ze składowej stałej i składowej zmiennej, tryb DC pozwala na "zdjęcie" wartości średniej napięcia, która reprezentuje składową stałą. W praktyce, gdy analizujemy układy elektroniczne, często spotykamy się z takimi napięciami, gdzie napięcie stałe jest nałożone na sygnał zmienny, co jest typowe w zasilaczach czy układach analogowych. W zastosowaniach przemysłowych, taka analiza jest istotna, by ocenić poprawność działania systemów, na przykład w monitorowaniu zasilania silników elektrycznych, gdzie składowa stała może odpowiadać za poziom napięcia zasilającego. Ponadto, w kontekście pomiarów i przetwarzania sygnałów, standardy takie jak IEC 61000 wymagają odpowiednich metodologii pomiarowych, w tym umiejętności rozdzielania składowych sygnałów. Zrozumienie, jak działa tryb DC na oscyloskopie, jest kluczowe dla analizy i diagnostyki systemów elektronicznych oraz zapewnienia ich niezawodności.

Pytanie 4

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. amplitudy impulsu
B. zmianę szerokości impulsu
C. częstotliwości
D. zmianę fazy impulsu
Twoja odpowiedź na temat zmiany szerokości impulsu jest naprawdę na miejscu! Pulse Width Modulation, czyli PWM, to świetna technika, gdzie szerokość impulsu sygnału zmienia się, żeby lepiej sterować mocą dostarczaną do różnych urządzeń. W przypadku PWM okres sygnału zostaje taki sam, a to, co się zmienia, to właśnie szerokość impulsu, co bezpośrednio wpływa na średnią moc. Dzięki temu można precyzyjnie kontrolować na przykład silniki, regulować jasność diod LED, albo przekształcać sygnały cyfrowe w analogowe. Weźmy przykładowo regulację prędkości silnika DC – zmieniając szerokość impulsu, można fajnie ustawić obroty silnika. To naprawdę przydatne, bo PWM pozwala efektywnie wykorzystywać energię i ograniczać straty w systemach elektronicznych, co jest mega ważne w inżynierii.

Pytanie 5

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na pomiar parametrów procesowych prasy
B. na wizualizację przebiegu pracy prasy
C. na odczyt wartości zmierzonych parametrów
D. na załączanie i wyłączanie pracy prasy
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 6

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Pojemnościowy
B. Hallotronowy
C. Ultradźwiękowy
D. Tensometryczny
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 7

Rozpoczęcie demontażu elektrozaworu w systemie elektropneumatycznym wymaga najpierw odłączenia

A. ciśnienia zasilającego układ
B. przewodów pneumatycznych
C. przewodów elektrycznych
D. napięcia zasilającego
Odłączenie napięcia zasilającego jest kluczowym krokiem przed demontażem elektrozaworu w układzie elektropneumatycznym. Zgodnie z zasadami bezpieczeństwa, zawsze należy najpierw wyłączyć zasilanie elektryczne, aby uniknąć ryzyka porażenia prądem oraz uszkodzenia komponentów. W praktyce, przed przystąpieniem do demontażu, operator powinien upewnić się, że urządzenie zostało odłączone od źródła zasilania i oznakować miejsce pracy, aby uniknąć przypadkowego włączenia. W standardach branżowych, takich jak PN-EN 60204-1, podkreśla się znaczenie stosowania procedur blokowania źródeł energii w celu zapewnienia bezpieczeństwa pracowników. Przykładem dobrych praktyk jest również stosowanie multimetru do sprawdzenia, czy nie ma napięcia w obwodzie przed przystąpieniem do prac serwisowych. W ten sposób można zminimalizować ryzyko wypadków oraz zapewnić prawidłowe funkcjonowanie systemu po ponownym zainstalowaniu elektrozaworu.

Pytanie 8

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 36 000 Ω
B. 36 Ω
C. 360 Ω
D. 3600 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 9

Który z elementów tyrystora ma funkcję sterowania?

A. Źródło
B. Anoda
C. Katoda
D. Bramka
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 10

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Ciśnienie
B. Przyspieszenie
C. Przesunięcie kątowe
D. Moment obrotowy
Enkoder absolutny jednoobrotowy służy do pomiaru przesunięcia kątowego, co oznacza, że pozwala na określenie dokładnej pozycji obiektu w zakresie jednego obrotu. Działa na zasadzie rejestrowania unikalnej wartości kodu dla każdej pozycji kątowej, co sprawia, że jest niezwykle precyzyjny. Zastosowanie tego typu enkodera w aplikacjach takich jak robotyka, automatyka przemysłowa czy mechatronika jest powszechne, gdyż pozwala na dokładne określenie położenia elementów ruchomych. Przykładem zastosowania może być kontrola położenia silnika krokowego, gdzie dokładne informacje o kącie obrotu są kluczowe dla precyzyjnego sterowania ruchem. Enkodery absolutne jednoobrotowe są również zgodne z normami branżowymi, takimi jak IEC 61131, co zapewnia ich wysoką jakość i niezawodność. Dzięki swojej konstrukcji, eliminują problem utraty pozycji po wyłączeniu zasilania, co jest istotne w wielu aplikacjach przemysłowych.

Pytanie 11

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. oceny stopnia naprężenia
B. weryfikacji czystości paska
C. analizy stopnia zużycia
D. sprawdzenia wymiarów
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 12

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. przewlekanego
B. zaciskowego
C. skręcanego
D. powierzchniowego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 13

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Woltomierz
B. Miernik mocy
C. Miernik prądu
D. Miernik oporności
Woltomierz jest przyrządem pomiarowym, który służy do pomiaru napięcia elektrycznego w obwodach. W przypadku cewki elektrozaworu, której działanie zależy od odpowiedniego napięcia zasilającego, użycie woltomierza pozwala na precyzyjne określenie wartości tego napięcia. Prawidłowy pomiar napięcia jest kluczowy, ponieważ zbyt niskie napięcie może prowadzić do nieprawidłowego działania cewki, a w konsekwencji do awarii systemu. W praktyce, aby zmierzyć napięcie na cewce elektrozaworu, należy podłączyć woltomierz równolegle do cewki, co pozwala na odczyt wartości napięcia, które w danym momencie jest dostarczane do cewki. Standardowe woltomierze cyfrowe, zgodne z normami IEC 61010, charakteryzują się wysoką dokładnością i bezpieczeństwem użytkowania, co czyni je niezastąpionym narzędziem w pracy technika. Użycie woltomierza powinno być wykonywane zgodnie z dobrymi praktykami, takimi jak zapewnienie, że urządzenie jest odpowiednio skalibrowane i że przewody pomiarowe są w dobrym stanie, aby uniknąć błędów pomiarowych.

Pytanie 14

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 90°
B. 0°
C. -90°
D. 45°
Odpowiedzi takie jak 45°, 0° i -90° są nieprawidłowe z perspektywy teorii przesunięcia fazowego w regulatorach PD. Sugerowanie, że przesunięcie fazowe wynosi 45° jest błędne, ponieważ odpowiada to określonej konfiguracji układów, która nie jest charakterystyczna dla regulatorów PD. Tego typu wartości przesunięcia są związane z bardziej złożonymi układami, które uwzględniają dodatkowe elementy, takie jak filtry lub inne formy regulacji. Natomiast odpowiedź 0° implikuje, że sygnał wyjściowy jest synchroniczny z wejściowym, co jest sprzeczne z zamierzeniem regulatora PD, który zawsze wprowadza pewne opóźnienie. W przypadku odpowiedzi -90°, sugeruje to, że sygnał wyjściowy jest opóźniony w przeciwnym kierunku, co również nie znajduje potwierdzenia w teorii. W inżynierii, zrozumienie przesunięcia fazowego jest kluczowe dla zapewnienia stabilności systemu regulacji. Błędy w ocenie przesunięcia fazowego mogą prowadzić do oscylacji lub niestabilności, co stanowi jeden z najczęstszych problemów w praktyce inżynierskiej. Dlatego ważne jest, aby dokładnie analizować odpowiedzi na temat przesunięcia fazowego, aby uniknąć błędów projektowych i osiągnąć optymalne działanie systemów automatyki.

Pytanie 15

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. różnicowoprądowy
B. nadprądowy zwłoczny
C. podnapięciowy zwłoczny
D. nadnapięciowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 16

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. hallotron
B. szczelinomierz
C. tensometr
D. pirometr
Tensometr to urządzenie służące do pomiaru deformacji materiałów, co czyni go idealnym narzędziem do pomiaru siły nacisku wytwarzanej przez prasę pneumatyczną. Działa na zasadzie pomiaru zmiany oporu elektrycznego, który jest proporcjonalny do deformacji ciała stałego. W praktyce, tensometry są często stosowane w przemyśle do monitorowania obciążeń w różnych maszynach, w tym prasach hydraulicznych i pneumatycznych. Dzięki zastosowaniu tensometrów można na bieżąco kontrolować siłę nacisku, co jest niezwykle ważne dla zapewnienia bezpieczeństwa oraz efektywności procesów produkcyjnych. W standardach branżowych, takich jak ISO, zaleca się regularne stosowanie tensometrów w aplikacjach związanych z kontrolą jakości i monitorowaniem wydajności maszyn. Dodatkowo, zrozumienie działania tensometrów pozwala inżynierom na efektywniejsze projektowanie i optymalizację systemów mechanicznych.

Pytanie 17

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Defekt silnika sprężarki
B. Nieszczelność w przewodach pneumatycznych
C. Brak smarowania powietrza
D. Zabrudzony filtr powietrza
Nieszczelność przewodów pneumatycznych jest jedną z kluczowych przyczyn zbyt częstego załączania się silnika sprężarki tłokowej. Tego rodzaju nieszczelności prowadzą do nieefektywnego przesyłu powietrza, co zmusza sprężarkę do częstszego działania w celu utrzymania wymaganego ciśnienia. W praktyce, jeśli przewody pneumatyczne są uszkodzone lub źle połączone, powietrze może uciekać na zewnątrz, co skutkuje ciągłym włączaniem się silnika sprężarki, aby zrekompensować utratę ciśnienia. Ważne jest, aby regularnie kontrolować stan przewodów i połączeń, co powinno być częścią rutynowego serwisowania urządzenia. Dobrą praktyką jest również stosowanie detektorów nieszczelności, które mogą pomóc w szybkiej identyfikacji problemów. W kontekście norm branżowych, należy przestrzegać zaleceń dotyczących konserwacji systemów pneumatycznych, co zazwyczaj obejmuje kontrolę szczelności oraz wymianę uszkodzonych przewodów.

Pytanie 18

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. gęstość
B. lepkość
C. utlenianie
D. smarność
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 19

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. zwiększyć obciążenie
B. zamienić miejscami dwa dowolne fazowe przewody zasilające
C. obniżyć częstotliwość zasilania
D. podłączyć przewód neutralny
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 20

Jakiego koloru powinna być izolacja przewodu PE?

A. Niebieski.
B. Brązowy.
C. Żółto-zielony.
D. Zielony.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 21

Silniki, które mają największy moment rozruchowy to

A. synchroniczne prądu przemiennego
B. szeregowe prądu stałego
C. bocznikowe prądu stałego
D. asynchroniczne prądu przemiennego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 22

Interfejs komunikacyjny umożliwia połączenie

A. siłownika z programatorem
B. sterownika z programatorem
C. modułu rozszerzającego z grupą siłowników
D. pompy hydraulicznej z silnikiem
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 23

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √3
B. maksymalna napięcia podzielona przez √2
C. średnia napięcia wyznaczona dla okresu
D. średnia napięcia wyznaczona dla półokresu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 24

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
B. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
C. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
D. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 25

Element oznaczony symbolem BC 107 to tranzystor?

A. germanowy mocy
B. krzemowy w.cz.
C. krzemowy m.cz.
D. germanowy impulsowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'krzemowy m.cz.' jest poprawna, ponieważ tranzystor BC 107 to tranzystor bipolarny wykonany z krzemu, który jest powszechnie stosowany w aplikacjach analogowych, zwłaszcza w obwodach wzmacniaczy niskosygnałowych. Krzem charakteryzuje się lepszymi właściwościami elektrycznymi w porównaniu do germanowych odpowiedników, co czyni go bardziej odpowiednim dla większości zastosowań. Tranzystor BC 107 ma maksymalne napięcie kolektor-emiter wynoszące 45V oraz maksymalny prąd kolektora do 100mA, co czyni go odpowiednim do niskonapięciowych zastosowań. Jego zastosowania obejmują wzmacniacze, przełączniki oraz zastosowania w układach cyfrowych. W kontekście praktycznym, użytkownicy powinni pamiętać, że dobór odpowiedniego tranzystora do aplikacji ma kluczowe znaczenie dla efektywności i niezawodności układu elektronicznego. Dlatego zawsze warto zapoznać się ze specyfikacjami technicznymi danego elementu przed jego zastosowaniem w projekcie.

Pytanie 26

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 100 mm
B. 63 mm
C. 80 mm
D. 50 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 27

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Indukcyjnego
B. Rezystancyjnego
C. Optycznego
D. Pojemnościowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 28

Przy wykonywaniu lutowania elementów dyskretnych na płytce PCB powinno się nosić

A. rękawice odporne na wysoką temperaturę
B. obuwie ochronne z gumową podeszwą
C. okulary ochronne
D. fartuch ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fartuch ochronny jest niezbędnym elementem odzieży roboczej w pracy związanej z lutowaniem elementów dyskretnych na płytkach drukowanych. Jego główną funkcją jest ochrona pracownika przed rozpryskami cyny oraz innymi niebezpiecznymi substancjami, które mogą wydobywać się podczas procesu lutowania. Fartuch wykonany z odpowiednich materiałów odpornych na wysokie temperatury i chemikalia minimalizuje ryzyko poparzeń oraz kontaktu z substancjami szkodliwymi. W praktyce, dobrym przykładem zastosowania fartucha ochronnego mogą być stanowiska pracy w laboratoriach elektronicznych czy zakładach produkcyjnych, gdzie precyzyjne lutowanie komponentów jest kluczowe. Ponadto, fartuchy ochronne powinny być zgodne z normami bezpieczeństwa, takimi jak EN 13034, które regulują wymagania dotyczące odzieży, chroniącej przed czynnikami chemicznymi. Wybierając fartuch, warto zwrócić uwagę na jego wygodę i funkcjonalność, co wpływa na komfort pracy oraz efektywność.

Pytanie 29

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Ochronne okulary
B. Fartuch ochronny z bawełny
C. Buty z izolującą podeszwą
D. Opaskę uziemiającą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 30

Podaj możliwą przyczynę osłabienia siły nacisku generowanej przez tłoczysko siłownika hydraulicznego?

A. Niewystarczające smarowanie tłoczyska
B. Otwarty odpowietrznik filtra wlewowego
C. Nieszczelność instalacji
D. Zablokowany zawór przelewowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelność w instalacji to chyba jeden z głównych powodów, dla których siłownik hydrauliczny nie działa tak, jak powinien. Jak system ma nieszczelności, to traci ciśnienie i przez to siłownik nie ma tej mocy, której potrzebuje. W praktyce, to sprawia, że sprzęt, w którym go zainstalowaliśmy, może działać gorzej, co jest dość problematyczne. Zwykle te nieszczelności pojawiają się w miejscach złącz czy uszczelek, a ich znalezienie wymaga czasami użycia specjalistycznych narzędzi, np. detektorów nieszczelności. Z tego, co pamiętam, normy takie jak ISO 4413 mocno podkreślają, jak ważne jest dobre uszczelnienie i regularne przeglądy. Warto monitorować ciśnienie w hydraulice i wdrożyć różne procedury, żeby wcześniej wyłapać takie nieszczelności. Dzięki temu można uniknąć kosztownych napraw i przestojów w produkcji, co zawsze jest na plus.

Pytanie 31

Który rodzaj smaru powinien być zastosowany do lubrykantowania elementów wykonanych z plastiku?

A. Smar grafitowy
B. Smar silikonowy
C. Smar litowy
D. Smar molibdenowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Smar silikonowy jest odpowiednim wyborem do smarowania elementów plastikowych z kilku istotnych powodów. Przede wszystkim, silikon jest materiałem, który nie reaguje chemicznie z większością tworzyw sztucznych, co minimalizuje ryzyko ich degradacji czy uszkodzeń. Działa również jako doskonały środek smarny, który zmniejsza tarcie między ruchomymi częściami, co prowadzi do dłuższej żywotności elementów. Smary silikonowe są często stosowane w przemyśle motoryzacyjnym oraz przy produkcji zabawek i sprzętu AGD, gdzie plastikowe komponenty są powszechnie używane. Dodatkowo, smary silikonowe są odporne na działanie wysokich temperatur oraz wilgoci, co czyni je uniwersalnym rozwiązaniem w wielu zastosowaniach. Warto również zauważyć, że smar silikonowy nie przyciąga kurzu, co jest kluczowe w przypadku zastosowań, gdzie czystość powierzchni jest istotna. Zastosowanie smaru silikonowego w odpowiednich aplikacjach jest zgodne z zaleceniami producentów i dobrymi praktykami branżowymi, co zapewnia optymalne funkcjonowanie elementów plastikowych.

Pytanie 32

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do zbiornika oleju hydraulicznego
B. Do siłownika dwustronnego działania
C. Do zbiornika sprężonego powietrza
D. Do siłownika jednostronnego działania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 33

Chłodzenie powietrza przy użyciu agregatu chłodniczego do ciśnienia punktu rosy na poziomie +2 °C ma na celu

A. usunięcie zanieczyszczeń
B. nasycenie powietrza parą wodną
C. zwiększenie ciśnienia
D. osuszenie powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'osuszenie powietrza' jest prawidłowa, ponieważ oziębianie powietrza za pomocą agregatu chłodniczego prowadzi do zmniejszenia jego zdolności do utrzymywania pary wodnej. Gdy powietrze jest schładzane do temperatury punktu rosy, nadmiar wilgoci kondensuje się, co skutkuje usunięciem wody z powietrza. Przykładem zastosowania tej technologii jest klimatyzacja w budynkach, gdzie odpowiednia kontrola wilgotności jest kluczowa dla komfortu mieszkańców oraz ochrony materiałów budowlanych przed wilgocią. Dobre praktyki w branży HVAC (ogrzewanie, wentylacja, klimatyzacja) zakładają, że optymalny poziom wilgotności w pomieszczeniach powinien wynosić od 30% do 50%. Dlatego agregaty chłodnicze, które działają na zasadzie osuszania, są kluczowe w zapewnieniu komfortu oraz efektywności energetycznej w różnych zastosowaniach, w tym w procesach przemysłowych oraz w serwerowniach, gdzie wilgoć może prowadzić do uszkodzeń sprzętu elektronicznego.

Pytanie 34

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. uzwojenia
B. łożysk
C. komutatora
D. szczotek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uzwojenia w silniku komutatorowym jest kluczowym krokiem w naprawie uszkodzonego silnika, który uległ długotrwałemu przeciążeniu, prowadzącemu do zwarć międzyzwojowych. Uzwojenie jest odpowiedzialne za generowanie pola magnetycznego, które umożliwia pracę silnika. W przypadku zwarć międzyzwojowych, wirujące pole magnetyczne przestaje działać efektywnie, co prowadzi do znacznych strat energetycznych i potencjalnych uszkodzeń innych komponentów silnika. Wymiana uzwojenia polega na demontażu uszkodzonych zwojów oraz na ich zastąpieniu nowymi, co wymaga precyzyjnego wykonania, aby zapewnić właściwe parametry pracy silnika. Ważne jest, aby stosować materiały o wysokiej jakości oraz przestrzegać norm dotyczących izolacji, co pozwala na długotrwałą i niezawodną pracę silnika. Praktyka pokazuje, że właściwie wymienione uzwojenie znacząco zwiększa efektywność oraz żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 35

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. konwekcją
B. adsorpcją
C. absorpcją
D. desorpcją

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces osuszania sprężonego powietrza, określany jako adsorpcja, jest kluczowym elementem w wielu zastosowaniach przemysłowych. W pierwszym etapie, węgiel aktywowany działa jako filtr, eliminując parę wodną oraz olej, co jest istotne dla zachowania jakości sprężonego powietrza. Węgiel aktywowany ma dużą powierzchnię oraz porowatą strukturę, co umożliwia efektywne wchłanianie substancji lotnych, a zatem jest powszechnie stosowany w systemach klimatyzacyjnych i wentylacyjnych. Następnie w drugim etapie, żel krzemionkowy, który również charakteryzuje się dużą powierzchnią adsorpcyjną, skutecznie absorbuje pozostałą parę wodną, co pozwala na uzyskanie wysokiej jakości powietrza o niskiej wilgotności. Przykładem zastosowania adsorpcji w przemyśle może być produkcja elektroniki, gdzie sucha atmosfera jest kluczowa dla uniknięcia uszkodzeń komponentów. Stosowanie systemów opartych na adsorpcji jest zgodne z normami, takimi jak ISO 8573, które definiują wymagania dotyczące czystości sprężonego powietrza.

Pytanie 36

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. nasadowego
C. imbusowego
D. płaskiego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 37

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 6 wejściach i 4 wyjściach
B. S7-200 o 14 wejściach i 10 wyjściach
C. S7-200 o 24 wejściach i 16 wyjściach
D. S7-200 o 8 wejściach i 6 wyjściach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 38

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn prędkości cieczy oraz czasu jej przepływu.
B. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
C. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
D. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.

Pytanie 39

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. pianową oznaczoną AF
B. proszkową oznaczoną ABC
C. proszkową oznaczoną ABC/E
D. śniegową oznaczoną BC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 40

Olej hydrauliczny klasy HL to olej

A. o polepszonych parametrach lepkości i temperatury
B. mineralny bez dodatków uszlachetniających
C. syntetyczny
D. mineralny posiadający właściwości antykorozyjne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.