Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 11:42
  • Data zakończenia: 25 maja 2025 12:00

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. mikrometrem
B. stoperem
C. czujnikiem zegarowym
D. miliwoltomierzem
Mikrometr, miliwoltomierz i czujnik zegarowy to narzędzia pomiarowe, które służą do różnych celów i nie są odpowiednie do bezpośredniego mierzenia czasu wykonania skoku siłownika elektrycznego. Mikrometr jest narzędziem do precyzyjnego pomiaru wymiarów liniowych, a jego zastosowanie w kontekście pomiaru czasu jest błędne, ponieważ nie ma on zdolności do rejestrowania upływu czasu ani do analizy dynamiki ruchu. Miliwoltomierz służy do pomiaru napięcia elektrycznego, co również nie ma związku z pomiarem czasu. Użycie miliwoltomierza do określenia wydajności siłownika mogłoby prowadzić do niepoprawnych wniosków, ponieważ nie dostarcza informacji o czasach reakcji. Czujnik zegarowy, chociaż może mierzyć czas, w kontekście skoków siłowników elektrycznych nie jest optymalnym rozwiązaniem ze względu na jego specyfikę stosowania. Czujniki te często wymagają manualnej obsługi i mogą nie być wystarczająco szybkie oraz dokładne w przypadku dynamicznych ruchów. W praktyce, aby uzyskać precyzyjne pomiary czasu reakcji siłowników elektrycznych, zaleca się użycie stopera, który oferuje automatyzację i większą dokładność, co jest istotne w kontekście wydajności i niezawodności systemów automatyzacji przemysłowej. Typowe błędy myślowe, które mogą prowadzić do wyboru niewłaściwego narzędzia, obejmują mylenie pomiarów fizycznych z czasem reakcji oraz brak zrozumienia specyfiki narzędzi pomiarowych.

Pytanie 2

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 25 V DC
B. 15 V DC
C. 30 V DC
D. 20 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 3

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. zbyt wysokie napięcie zasilające
B. wysyłanie impulsów sterujących w błędnej kolejności
C. brak modyfikacji częstotliwości impulsów z kontrolera
D. nadmierne obciążenie silnika
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 4

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. roboczą trudnopalną
B. roboczą standardową
C. termoaktywną
D. bawełnianą w formie kombinezonu
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 5

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
B. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
C. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
D. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 6

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. wprowadzić płynne spoiwo pomiędzy te elementy.
B. stopić je w miejscu zetknięcia bez użycia spoiwa.
C. docisnąć je podczas podgrzewania miejsca łączenia.
D. stopić je w miejscu styku z użyciem spoiwa.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 7

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. rozmiarem
B. poziomem skomplikowania
C. formą
D. kolejnością montażu
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 8

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Litowy
B. Silikonowy
C. Grafitowy
D. Molibdenowy
Smar silikonowy jest idealnym wyborem do smarowania gumowych elementów ze względu na swoje właściwości chemiczne i fizyczne. Silikon wykazuje doskonałą adhezję do powierzchni gumowych, co przekłada się na długotrwałą ochronę przed zużyciem. Jest odporny na wysokie temperatury, co czyni go odpowiednim do zastosowań, w których gumowe elementy mogą być narażone na działanie ciepła. Ponadto, smar silikonowy nie powoduje degradacji materiałów elastomerowych, w przeciwieństwie do innych smarów, które mogą prowadzić do pęknięć lub twardnienia gumy. Przykłady zastosowania smaru silikonowego obejmują uszczelki w oknach, elementy zawieszenia w samochodach, a także w urządzeniach gospodarstwa domowego, takich jak pralki czy zmywarki. Stosując smar silikonowy, można znacznie wydłużyć żywotność gumowych części oraz poprawić ich działanie poprzez redukcję tarcia. Zgodnie z dobrymi praktykami branżowymi, smar silikonowy powinien być stosowany w każdej aplikacji wymagającej smarowania elementów gumowych, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 9

Jaką metodę pomiaru prędkości obrotowej powinno się zastosować do uwzględnienia ustalonej prędkości małego obiektu, gdy przerwanie procesu produkcyjnego jest niemożliwe, a miejsce pomiaru jest trudno dostępne?

A. Optyczną
B. Elektromagnetyczną
C. Mechaniczną
D. Stroboskopową
Wybór metody pomiaru prędkości obrotowej, która nie jest odpowiednia dla specyficznych warunków pracy, może prowadzić do wielu problemów w procesie produkcyjnym. Metoda mechaniczna, na przykład, często wymaga fizycznego kontaktu z obiektem pomiarowym, co może być niemożliwe w sytuacji, gdy dostęp do maszyny jest ograniczony. Taki pomiar może także zakłócić pracę urządzenia, co jest szczególnie niepożądane w dynamicznych środowiskach produkcyjnych. Z kolei metoda elektromagnetyczna, która opiera się na detekcji zmian w polu magnetycznym, może być mniej precyzyjna w przypadku małych obiektów lub w środowisku o dużym poziomie zakłóceń elektromagnetycznych. Właściwe zrozumienie zasad działania tych metod jest kluczowe, aby uniknąć błędnych pomiarów, które mogą prowadzić do fałszywych wniosków o stanie maszyny. Na przykład, przy pomiarach mechanicznych często występuje błąd wynikający z tarcia lub nieodpowiedniego ustawienia narzędzi, a w przypadku pomiarów elektromagnetycznych, pojawiające się zakłócenia mogą zafałszować odczyty. Dlatego tak ważne jest, aby wybierać metody pomiarowe, które są dostosowane do specyficznych wymagań danego procesu oraz środowiska operacyjnego.

Pytanie 10

Który rodzaj smaru powinien być zastosowany do lubrykantowania elementów wykonanych z plastiku?

A. Smar grafitowy
B. Smar molibdenowy
C. Smar litowy
D. Smar silikonowy
Smar silikonowy jest odpowiednim wyborem do smarowania elementów plastikowych z kilku istotnych powodów. Przede wszystkim, silikon jest materiałem, który nie reaguje chemicznie z większością tworzyw sztucznych, co minimalizuje ryzyko ich degradacji czy uszkodzeń. Działa również jako doskonały środek smarny, który zmniejsza tarcie między ruchomymi częściami, co prowadzi do dłuższej żywotności elementów. Smary silikonowe są często stosowane w przemyśle motoryzacyjnym oraz przy produkcji zabawek i sprzętu AGD, gdzie plastikowe komponenty są powszechnie używane. Dodatkowo, smary silikonowe są odporne na działanie wysokich temperatur oraz wilgoci, co czyni je uniwersalnym rozwiązaniem w wielu zastosowaniach. Warto również zauważyć, że smar silikonowy nie przyciąga kurzu, co jest kluczowe w przypadku zastosowań, gdzie czystość powierzchni jest istotna. Zastosowanie smaru silikonowego w odpowiednich aplikacjach jest zgodne z zaleceniami producentów i dobrymi praktykami branżowymi, co zapewnia optymalne funkcjonowanie elementów plastikowych.

Pytanie 11

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
B. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
C. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
D. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 12

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. komutatora.
B. uzwojenia.
C. łożysk.
D. szczotek.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 13

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Zwiększa prąd
C. Izoluje galwanicznie sygnały
D. Wytwarza sygnały sinusoidalne
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 14

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Generator fali stojącej oraz woltomierz
B. Amperomierz i oscyloskop
C. Generator i oscyloskop
D. Częstościomierz i miernik uniwersalny
Generator i oscyloskop to naprawdę ważne narzędzia, które pomagają w określaniu parametrów filtrów pasmowych. Generator wytwarza różne sygnały o różnych częstotliwościach, co jest super przydatne, bo pozwala na testowanie, jak filtr reaguje na różne pasma. Dzięki temu, można sprawdzić, które częstotliwości przechodzą, a które są tłumione. Oscyloskop natomiast wizualizuje te sygnały, więc dokładnie można analizować kształt i amplitudę sygnału wyjściowego filtru w odpowiedzi na sygnał wejściowy. Na przykład, kiedy analizujemy filtr dolnoprzepustowy, ustawiamy różne częstotliwości za pomocą generatora, a oscyloskop pokazuje, jak filtr tłumi sygnały, które są wyższe niż jego częstotliwość graniczna. To wszystko jest zgodne z najlepszymi praktykami w inżynierii elektronicznej i pozwala na precyzyjne projektowanie oraz testowanie układów elektronicznych.

Pytanie 15

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu pokarmowego
B. dermatologicznych
C. układu słuchu
D. układu sercowego
Silnie rozgrzana ciecz hydrauliczna, która tworzy mgłę olejową w pomieszczeniach o słabej wentylacji, może prowadzić do problemów dermatologicznych. Wysoka temperatura oraz skład chemiczny cieczy hydraulicznej mogą powodować podrażnienie skóry, a nawet alergie kontaktowe. Osoby narażone na długotrwały kontakt z taką mgłą mogą doświadczać objawów takich jak wysypka, swędzenie czy inne zmiany skórne. Dobrą praktyką w środowisku pracy jest stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice ochronne oraz odzież długą, a także zapewnienie odpowiedniej wentylacji pomieszczeń, co jest zgodne z normami BHP. Standardy te są szczególnie istotne w przemysłach, gdzie wykorzystywane są substancje chemiczne, aby minimalizować ryzyko zdrowotne dla pracowników. Warto również przeprowadzać regularne szkolenia dla pracowników dotyczące zagrożeń związanych z substancjami chemicznymi oraz zasad ochrony zdrowia w miejscu pracy.

Pytanie 16

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. płaskiego
C. imbusowego
D. nasadowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 17

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z jednostronnym tłoczyskiem
B. Tłokowa z dwustronnym tłoczyskiem
C. Teleskopowa
D. Nurnikowa
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 18

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Multimetr
B. Częstościomierz
C. Oscyloskop
D. Mostek RLC
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 19

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,3 mm
B. 1,9 mm
C. 2,0 mm
D. 2,1 mm
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 20

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Wilgotność powietrza
B. Spust kondensatu
C. Ciśnienie w systemie
D. Poziom oleju
Poziom oleju w smarownicy jest kluczowym parametrem, który należy kontrolować, aby zapewnić prawidłowe funkcjonowanie systemu pneumatycznego. Olej jest niezbędny do smarowania ruchomych elementów maszyn oraz do redukcji tarcia, co bezpośrednio wpływa na ich żywotność oraz efektywność pracy. Zbyt niski poziom oleju może prowadzić do nadmiernego zużycia komponentów, a w skrajnych przypadkach do ich uszkodzenia. W praktyce, regularne kontrole poziomu oleju powinny być częścią rutynowego przeglądu technicznego instalacji pneumatycznej, zgodnie z zaleceniami producentów urządzeń oraz normami branżowymi, takimi jak ISO 8573. Konsekwentne monitorowanie poziomu oleju oraz jego jakości w smarownicach przyczynia się do zwiększenia niezawodności systemów pneumatycznych, co jest kluczowe w procesach przemysłowych, gdzie ciągłość produkcji jest priorytetem.

Pytanie 21

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik hydrostatyczny
B. Czujnik pojemnościowy
C. Czujnik ultradźwiękowy
D. Czujnik pływakowy
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 22

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Bezszczotkowy
B. Szeregowy
C. Obcowzbudny
D. Bocznikowy
Silniki obcowzbudne, bocznikowe i bezszczotkowe, choć mają swoje zastosowania, nie nadają się najlepiej do obsługi bardzo ciężkich przepustnic. Silniki obcowzbudne charakteryzują się stałym momentem obrotowym, co sprawia, że przy dużych obciążeniach mogą mieć problemy z dostarczeniem wymaganego momentu w niskich prędkościach. W praktyce oznacza to, że silnik tego typu może nie zapewnić wystarczającej siły do otwarcia ciężkiej przepustnicy, co może prowadzić do niewłaściwego działania systemu. Silniki bocznikowe, choć oferują lepsze właściwości w zakresie regulacji prędkości, również nie generują takiego momentu obrotowego przy rozruchu jak silniki szeregowe, co jest kluczowe w sytuacji, gdy konieczne jest pokonanie dużego oporu przy uruchamianiu. Bezszczotkowe silniki prądu stałego, z kolei, chociaż oferują wiele zalet, takich jak mniejsze zużycie i wyższa efektywność, w kontekście zastosowań wymagających dużych momentów obrotowych przy rozruchu, mogą nie spełniać oczekiwań. Wybór niewłaściwego typu silnika w krytycznych aplikacjach może prowadzić do awarii systemów oraz zwiększonego zużycia energii. Dlatego kluczowe jest zrozumienie specyfiki i wymagań aplikacji, a także właściwego doboru komponentów w oparciu o rzetelną analizę ich charakterystyk. Wydajność, niezawodność i bezpieczeństwo systemu napędowego muszą być zawsze priorytetem.

Pytanie 23

Jaką odległość określa skok siłownika?

A. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
B. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
C. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
D. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
Skok siłownika definiuje odległość pomiędzy jego skrajnymi położeniami, czyli w stanie całkowitego wsunięcia oraz całkowitego wysunięcia tłoczyska. Ta definicja jest kluczowa dla zrozumienia funkcji siłowników, które znajdują zastosowanie w wielu dziedzinach inżynierii, takich jak automatyka, robotyka czy przemysł motoryzacyjny. Przykładem praktycznym mogą być siłowniki hydrauliczne używane w prasach czy systemach podnoszenia, gdzie precyzyjne określenie skoku jest niezbędne do zapewnienia prawidłowego działania maszyn. W standardach branżowych, takich jak ISO 6432, definiowane są parametry siłowników, w tym skok, co pozwala na ich odpowiednie dobieranie do konkretnych zastosowań. Zrozumienie tej koncepcji umożliwia inżynierom właściwe projektowanie systemów, a także przeprowadzanie skutecznych analiz działania urządzeń. W praktyce, znajomość skoku siłownika jest kluczowa przy planowaniu układów automatyzacji oraz w procesie konserwacji i diagnostyki urządzeń.

Pytanie 24

Jakie metody wykorzystuje się do produkcji prętów?

A. odlewanie
B. walcowanie
C. wytłaczanie
D. tłoczenie
Odpowiedzi takie jak odlewanie, wytłaczanie i tłoczenie, choć są powszechnie stosowane w przemyśle metalowym, nie są odpowiednie dla procesu produkcji prętów. Odlewanie polega na wlewaniu ciekłego metalu do form, gdzie stwardnieje w pożądanym kształcie. Ta metoda, choć efektywna dla produkcji części o skomplikowanych kształtach, nie zapewnia wymaganego stopnia jednorodności ani kontrolowanej struktury mikro w prętach, co jest kluczowe dla ich późniejszego zastosowania. Wytłaczanie, z drugiej strony, polega na formowaniu metalu poprzez przepychanie go przez matrycę; chociaż jest to skuteczna technika dla tworzenia długich elementów, pręty wymagają specyficznych wymiarów i właściwości mechanicznych, które lepiej osiągnąć poprzez walcowanie. Tłoczenie, będące procesem kształtowania blachy lub cienkowarstwowych materiałów poprzez użycie nacisku, nie jest także odpowiednie do produkcji prętów, które wymagają szczególnej precyzji w grubości i długości. Zrozumienie różnicy między tymi metodami obróbki jest kluczowe dla wyboru odpowiedniego procesu w zależności od zamierzonych zastosowań prętów. Typowym błędem myślowym jest traktowanie wszystkich metod obróbczych jako równoważnych, bez uwzględnienia ich specyfiki oraz wymagań technicznych danego produktu. Właściwe podejście do wyboru technologii obróbczej ma kluczowe znaczenie dla jakości i wydajności produkcji.

Pytanie 25

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. dławiące
B. redukujące
C. rozdzielające
D. odcinające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 26

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Siłownika jednostronnego działania
B. Siłownika dwustronnego działania
C. Zbiornika oleju hydraulicznego
D. Zbiornika sprężonego powietrza
Podłączenie przyłącza oznaczonego literą T do zbiornika oleju hydraulicznego jest kluczowe dla prawidłowego funkcjonowania systemu hydraulicznego. Przyłącze T, znane również jako przyłącze powrotne, służy do odprowadzania oleju hydraulicznego po jego przejściu przez układ. W standardowych zaworach hydraulicznych 4/2, przyłącze T łączy się z zbiornikiem, umożliwiając powrót oleju do obiegu, co zapobiega nadciśnieniu i pozwala na efektywne zarządzanie ciśnieniem w systemie. W praktyce, gdy ciśnienie w systemie wzrasta, olej jest kierowany do zbiornika, gdzie może być schłodzony i ponownie wykorzystywany. Zgodnie z dobrymi praktykami, ważne jest, aby przyłącze T było właściwie zabezpieczone i miało odpowiednią średnicę, aby uniknąć zatorów, co mogłoby prowadzić do uszkodzeń systemu hydraulicznego. Wiele aplikacji przemysłowych, takich jak maszyny budowlane czy linie produkcyjne, korzysta z tego rozwiązania, co potwierdza jego znaczenie w hydraulice.

Pytanie 27

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. wibracji
B. hałasów
C. prędkości
D. ciepłoty
Wybór pomiaru drgań, szumów czy temperatury do oceny stanu łożysk tocznych wydaje się sensowny, ale pomiar prędkości nie ma tak solidnych podstaw. Drgania są kluczowe w diagnostyce maszyn, bo ich analiza może pomóc w wczesnym wykrywaniu problemów, jak uszkodzenia czy niewłaściwe ustawienie. Pomiar szumów też jest ważny, bo może ujawniać nieprawidłowości w pracy łożysk. Monitorowanie temperatury jest istotne, żeby zapobiec przegrzewaniu łożysk, co jest ważne dla ich trwałości. Samo mierzenie prędkości obrotowej nie daje wystarczających informacji o stanie łożysk, bo nie bierze pod uwagę czynników, które mogą wpływać na ich wydajność, jak uszkodzenia czy zużycie. Te dwa pojęcia często się myli, co prowadzi do błędnych wniosków. Lepiej skupić się na kompleksowej analizie drgań, która lepiej oddaje stan łożysk. Warto zrozumieć, że diagnostyka łożysk wymaga różnych metod, a nie tylko pomiaru prędkości.

Pytanie 28

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Szczypiec płaskich
B. Szczypiec uniwersalnych
C. Kluczy oczkowych
D. Kluczy płaskich
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 29

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. pochłonięciu
B. wzmocnieniu
C. odbiciu
D. rozproszeniu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 30

Co oznaczają kolory przewodów w trójprzewodowych czujnikach zbliżeniowych prądu stałego?

A. brązowy (czerwony) - minus zasilania; czarny - plus zasilania
B. brązowy (czerwony) - plus zasilania; czarny - przewód sygnałowy; niebieski - minus zasilania
C. niebieski - przewód sygnałowy; brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
D. brązowy (czerwony) - przewód sygnałowy; czarny - minus zasilania; niebieski - plus zasilania
Odpowiedź, w której brązowy (czerwony) przewód oznacza plus zasilania, czarny przewód to przewód impulsowy, a niebieski przewód to minus zasilania, jest prawidłowa i zgodna z powszechnie przyjętymi standardami branżowymi. W systemach zbliżeniowych prądu stałego kolorystyka przewodów ma kluczowe znaczenie dla zapewnienia prawidłowego działania urządzeń. Użycie brązowego lub czerwonego przewodu jako przewodu dodatniego (plus) jest normą w wielu krajach, a czarny przewód jest standardowo używany jako przewód sygnałowy lub impulsowy. Niebieski przewód w tym kontekście pełni funkcję przewodu ujemnego (minus). W praktyce, stosowanie się do tych oznaczeń ma kluczowe znaczenie dla prawidłowego podłączenia urządzeń, co zapobiega zwarciom oraz uszkodzeniom komponentów. W przypadku błędnego podłączenia, na przykład zamieniając przewody plus i minus, może dojść do uszkodzenia czujnika lub nieprawidłowego działania systemu. Przykładem zastosowania tej wiedzy może być instalacja systemów automatyki budynkowej, gdzie prawidłowe podłączenie czujników zbliżeniowych jest kluczowe dla ich efektywności.

Pytanie 31

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza płaskiego
B. wkrętaka krzyżowego
C. wkrętaka płaskiego
D. klucza imbusowego
Wkrętak płaski to najlepsze narzędzie do demontowania sterowników PLC z szyny DIN. Dlaczego? Bo te sterowniki mają często specjalne zatrzaski, które można łatwo zwolnić właśnie tym wkrętakiem. Jak to robić? Wystarczy delikatnie wsunąć końcówkę wkrętaka w szczelinę zatrzasku i lekko pchnąć, żeby go odczepić. To naprawdę działa. Używanie wkrętaka płaskiego jest też zgodne z zasadami bezpieczeństwa, bo pozwala na dokładne działanie bez ryzyka uszkodzenia zarówno sterownika, jak i szyny. W automatyce przemysłowej, jak wiadomo, odpowiednie narzędzia to podstawa, żeby urządzenia działały długo i aby nie wydawać kasy na naprawy. No i nie zapominajmy, że wkrętaki płaskie są mega uniwersalne. Można je stosować nie tylko do demontażu, ale też do instalacji i konserwacji różnych sprzętów elektrycznych. Naprawdę warto mieć je w swoim warsztacie, bo ułatwiają pracę.

Pytanie 32

Jaką rolę pełni multiplekser?

A. Kodowanie sygnałów na wejściach
B. Przesyłanie danych z wybranego wejścia na jedno wyjście
C. Porównywanie sygnałów podawanych na wejścia
D. Przesyłanie danych z jednego wejścia do wybranego wyjścia
Często zdarza się, że mylące jest zrozumienie funkcji multipleksera, co prowadzi do nieprawidłowych odpowiedzi. Na przykład, odpowiedź sugerująca, że multiplekser porównuje sygnały wejściowe, jest błędna, ponieważ jego główną rolą nie jest analiza, lecz selekcja i przesyłanie danych. Funkcje takie, jak porównywanie sygnałów, są bardziej związane z komponentami takimi jak komparatory, które mają za zadanie analizować różnice pomiędzy dwoma sygnałami. Inną mylną koncepcją jest myślenie, że multiplekser koduje sygnały wejściowe. Kodowanie sygnałów to proces, który często wiąże się z transformacją danych w formę bardziej zrozumiałą dla systemów, a nie z ich przesyłaniem na wybrane wyjście. Takie zadania realizują inne układy, takie jak enkodery. Niezrozumienie roli multipleksera może prowadzić do błędów w projektowaniu systemów cyfrowych, gdzie wybór niewłaściwych komponentów może wpłynąć na wydajność i funkcjonalność całego systemu. Warto zrozumieć, że multiplekser pełni kluczową funkcję w architekturze cyfrowej, a jego prawidłowe użycie ma ogromne znaczenie w kontekście efektywności przesyłania informacji oraz organizacji danych w skomplikowanych systemach telekomunikacyjnych.

Pytanie 33

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik prędkości
B. czujnik poziomu
C. przepływomierz
D. miernik mętności
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 34

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. odłączyć urządzenie od źródła zasilania.
B. zdjąć obudowę.
C. uziemić urządzenie.
D. zweryfikować stan izolacji.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 35

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i dużym prądzie
B. niskim napięciu i małym prądzie
C. wysokim napięciu i małym prądzie
D. wysokim napięciu i dużym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 36

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
B. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
C. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
D. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
Poprawna kolejność montażu elementów składowych zespołu przygotowania powietrza w układzie pneumatycznym zasilającym silnik pneumatyczny to filtr powietrza, reduktor ciśnienia, układ smarowania, a na końcu zawór sterujący. Filtr powietrza jest kluczowy, ponieważ usuwa zanieczyszczenia i wilgoć z powietrza, co chroni dalsze elementy układu przed uszkodzeniem i zapewnia ich dłuższą żywotność. Reduktor ciśnienia reguluje ciśnienie powietrza do odpowiedniego poziomu, co jest istotne dla prawidłowego działania silnika pneumatycznego. Następnie układ smarowania wprowadza odpowiednią ilość smaru, co jest niezbędne do prawidłowej pracy elementów ruchomych w silniku. Ostatnim elementem jest zawór sterujący, który umożliwia kontrolę nad przepływem powietrza do silnika. Taka struktura zapewnia optymalne warunki pracy i wydajność układu, zgodnie z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 37

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Dokładność pozycjonowania.
B. Najwyższa prędkość ruchu dla poszczególnych osi.
C. Gramatura wtrysku.
D. Liczba wrzecion.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 38

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. siłownik nurnikowy
B. siłownik teleskopowy
C. silnik tłokowy
D. silnik zębaty
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 39

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach skórzanych i fartuchu skórzanym
B. obuwiu z gumową podeszwą oraz fartuchu ochronnym
C. rękawicach i okularach ochronnych
D. kasku ochronnym i rękawicach elektroizolacyjnych
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 40

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. wzrostem ciśnienia sprężonego powietrza
B. powiększaniem objętości sprężonego powietrza
C. osadzaniem zanieczyszczeń na dnie zbiornika
D. skraplaniem pary wodnej oraz osuszaniem powietrza
Zwiększenie objętości sprężonego powietrza, które jest sugerowane w jednej z odpowiedzi, jest błędnym założeniem. W rzeczywistości, schładzanie czynnika roboczego w sprężarkach nie skutkuje zwiększeniem objętości, ponieważ objętość gazu w zamkniętym układzie nie zmienia się w sposób znaczący podczas tego procesu. Z kolei wzrost ciśnienia sprężonego powietrza to efekt spadku temperatury, który prowadzi do kompaktowania cząsteczek gazu. Osuszanie powietrza poprzez skraplanie pary wodnej jest również związane z innymi mechanizmami, takimi jak stosowanie separatorów czy filtrów, a nie bezpośrednio ze schładzaniem czynnika. Osadzanie zanieczyszczeń na dnie zbiornika jest również mylone z procesem schładzania, jednakże dotyczy ono głównie aspektów związanych z niewłaściwą filtracją oraz z przegrzewaniem powietrza. Takie nieporozumienia mogą wynikać z braku zrozumienia podstawowych zasad termodynamiki oraz procesów fizycznych zachodzących w sprężarkach. Ważne jest, aby zgłębić temat właściwego działania sprężarek oraz ich wpływu na jakość sprężonego powietrza, co jest kluczowe w przemyśle oraz w zastosowaniach technologicznych.