Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 2 maja 2025 01:25
  • Data zakończenia: 2 maja 2025 01:39

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie polecenie należy wykorzystać, aby w terminalu pokazać przedstawione informacje o systemie Linux?

Ilustracja do pytania
A. factor 22
B. hostname
C. uptime
D. uname -a
Przy wyborze właściwego polecenia do wyświetlania informacji o systemie Linux, zrozumienie każdego z dostępnych poleceń jest kluczowe. Polecenie 'hostname' zwraca nazwę hosta systemu, co jest przydatne w kontekście sieci, ale nie dostarcza szczegółowych informacji o systemie operacyjnym, takich jak wersja jądra. Nie jest to więc odpowiednie narzędzie do uzyskania pełnego obrazu systemu. Z kolei 'factor 22' to polecenie służące do faktoryzacji liczby, które obliczy czynniki pierwsze liczby 22, ale nie ma nic wspólnego z uzyskiwaniem informacji o systemie operacyjnym. Jest to typowy błąd myślowy oparty na niezrozumieniu zastosowania danego polecenia. Polecenie 'uptime' pokazuje czas działania systemu, co jest przydatne dla monitorowania wydajności i stabilności, ale również nie dotyczy szczegółowej charakterystyki systemu. Wybór polecenia 'uname -a' bazuje na jego zdolności do dostarczania kompleksowych informacji o systemie operacyjnym, co jest standardową praktyką w administracji systemami Linux. Właściwy wybór narzędzia do zadania jest kluczowy, a zrozumienie różnicy w działaniu poszczególnych poleceń pomaga uniknąć błędów w praktyce zawodowej.

Pytanie 2

Analiza tłumienia w kablowym systemie przesyłowym umożliwia ustalenie

A. spadku mocy sygnału w danej parze przewodu
B. czasu opóźnienia propagacji
C. różnic między przesłuchami zdalnymi
D. błędów instalacyjnych związanych z zamianą pary
Pomiar tłumienia w kablowym torze transmisyjnym jest kluczowym aspektem oceny jakości transmisji sygnału. Tłumienie odnosi się do spadku mocy sygnału, który występuje na skutek przejścia przez medium transmisyjne, w tym przypadku parę przewodów. Właściwe pomiary tłumienia pozwalają zidentyfikować, jak dużo sygnału traci na drodze od nadajnika do odbiornika. W praktyce, dla kabli telekomunikacyjnych i sieci komputerowych, normy takie jak ETSI, IEC oraz TIA/EIA określają dopuszczalne wartości tłumienia, co pozwala na zapewnienie odpowiedniej jakości usług. Właściwe pomiary tłumienia mogą pomóc w określeniu, czy instalacja spełnia obowiązujące standardy, a także w diagnostyce problemów z siecią, takich jak spadki jakości sygnału mogące prowadzić do przerw w komunikacji. Dodatkowo, zrozumienie oraz umiejętność interpretacji wyników pomiarów tłumienia jest niezbędne podczas projektowania i budowy nowoczesnych sieci telekomunikacyjnych, gdzie odpowiednie parametry są kluczowe dla optymalnej wydajności systemu.

Pytanie 3

Czym jest kopia różnicowa?

A. kopiowaniem jedynie tej części plików, która została dodana od momentu stworzenia ostatniej kopii pełnej
B. kopiowaniem jedynie tych plików, które zostały stworzone lub zmodyfikowane od momentu wykonania ostatniej kopii pełnej
C. kopiowaniem tylko plików, które powstały od ostatniej kopii pełnej
D. kopiowaniem wyłącznie plików, które zostały zmienione od utworzenia ostatniej kopii pełnej
Wybór niewłaściwej odpowiedzi na temat kopii różnicowej może wynikać z nieporozumienia dotyczącego tego, jakie dane są faktycznie kopiowane. Odpowiedzi wskazujące jedynie na pliki utworzone lub zmienione, ale w węższym zakresie, jak tylko pliki utworzone lub tylko zmienione, są nieprawidłowe, ponieważ ignorują istotny aspekt działania kopii różnicowej, który opiera się na pełnej ocenie stanu plików od ostatniej kopii pełnej. Warto zrozumieć, że kopia różnicowa nie jest ani kopią pełną, ani kopią inkrementalną, ale stanowi połączenie obu tych metod, co czyni ją najbardziej efektywną w wielu scenariuszach. Ponadto, odpowiedź sugerująca kopiowanie tylko części plików, które zostały dopisane, wprowadza w błąd, ponieważ kopia różnicowa nie koncentruje się na fragmentach plików, lecz na całych plikach, które zostały zmodyfikowane. Tego rodzaju myślenie może prowadzić do błędnych praktyk przy tworzeniu strategii tworzenia kopii zapasowych, co z kolei może wpłynąć na zdolność organizacji do przywracania danych w przypadku awarii. Zrozumienie tych koncepcji jest kluczowe, aby skutecznie zarządzać danymi i minimalizować ryzyko utraty informacji.

Pytanie 4

Rodzajem złośliwego oprogramowania, którego podstawowym zamiarem jest rozprzestrzenianie się w sieciach komputerowych, jest

A. robak
B. trojan
C. keylogger
D. backdoor
Robak to złośliwe oprogramowanie, które ma zdolność do samodzielnego rozprzestrzeniania się w sieciach komputerowych. W przeciwieństwie do wirusów, które potrzebują hosta do reprodukcji, robaki są autonomiczne i mogą kopiować się z jednego komputera na drugi bez potrzeby interakcji użytkownika. Przykładem robaka jest Blaster, który w 2003 roku wykorzystał lukę w systemie Windows, aby zainfekować miliony komputerów na całym świecie. Robaki często wykorzystują protokoły sieciowe, takie jak TCP/IP, do komunikacji i rozprzestrzeniania się, co czyni je szczególnie niebezpiecznymi. Dobre praktyki w zakresie bezpieczeństwa obejmują regularne aktualizowanie oprogramowania, aby eliminować znane luki, edukowanie użytkowników na temat zagrożeń związanych z otwieraniem nieznanych załączników oraz stosowanie zapór sieciowych, które mogą blokować nieautoryzowane połączenia. Zrozumienie mechanizmów działania robaków jest kluczowe dla skutecznej ochrony przed nimi oraz w odpowiedzi na incydenty związane z bezpieczeństwem sieciowym.

Pytanie 5

Zarządzaniem czasem procesora dla różnych zadań zajmuje się

A. cache procesora.
B. system operacyjny.
C. chipset.
D. pamięć RAM.
System operacyjny odgrywa kluczową rolę w zarządzaniu zasobami komputera, w tym przydzielaniu czasu procesora poszczególnym zadaniom. Odpowiada za efektywne zarządzanie wielozadaniowością, co oznacza, że może jednocześnie obsługiwać wiele procesów. Dzięki algorytmom planowania, system operacyjny decyduje, które zadanie powinno uzyskać dostęp do procesora w danym momencie, co jest kluczowe dla wydajności i responsywności systemu. Na przykład, w systemie Windows używany jest algorytm o nazwie 'Round Robin', który zapewnia, że każde zadanie dostaje równą ilość czasu na wykonanie. Praktyczne zastosowanie tej technologii można zauważyć w codziennym użytkowaniu komputera, gdzie użytkownicy mogą jednocześnie korzystać z przeglądarki, edytora tekstu i aplikacji komunikacyjnej bez zauważalnych opóźnień. Standardowe dobre praktyki obejmują również monitorowanie wykorzystania procesora w narzędziach systemowych, co pozwala na optymalizację wydajności i szybsze rozwiązywanie problemów. Współczesne systemy operacyjne, takie jak Linux, także stosują zaawansowane techniki zarządzania wieloma rdzeniami procesora, co jeszcze bardziej zwiększa efektywność pracy.

Pytanie 6

Ile adresów urządzeń w sieci jest dostępnych dzięki zastosowaniu klasy adresowej C w systemach opartych na protokołach TCP/IP?

A. 254
B. 200
C. 256
D. 100
Wybór 100 jako liczby dostępnych adresów w klasie C jest wynikiem nieporozumienia dotyczącego konstrukcji adresów IP. Klasa C nie ogranicza się tylko do 100 adresów, a zrozumienie, jak działa segmentacja adresów IP, jest kluczowe. Liczba 200 również nie ma podstaw, ponieważ po odjęciu adresów zarezerwowanych nie możemy uzyskać takiej liczby dostępnym adresów w tej klasie. Warto również zauważyć, że 256 to liczba teoretyczna, ale w rzeczywistości, ze względu na zarezerwowane adresy, dostępnych jest tylko 254. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych odpowiedzi, to ignorowanie zarezerwowanych adresów oraz niewłaściwe zrozumienie podziału na segmenty sieciowe i hostów. Kluczowe jest zrozumienie, że adresy IP są zorganizowane w klasy, a każda klasa ma swoje zasady dotyczące rozdzielania adresów na część sieciową i część hosta. Dodatkowo, administracja siecią wymaga znajomości nie tylko liczby adresów, ale także ich efektywnego wykorzystania, co jest istotne w kontekście rozwoju Internetu oraz zarządzania adresami w organizacjach.

Pytanie 7

Aby przekształcić zeskanowany obraz na tekst, należy użyć oprogramowania, które stosuje techniki

A. OCR
B. OMR
C. DPI
D. DTP
DPI, czyli dots per inch, to miara rozdzielczości obrazu, która wskazuje, ile punktów atramentu lub pikseli mieści się na cal. DPI jest kluczowe w kontekście jakości druku i wyświetlania obrazów, ale nie ma bezpośredniego związku z zamianą zeskanowanego obrazu na tekst. Wysoka rozdzielczość obrazu wpływa na jakość skanowania, lecz sama wartość DPI nie przekształca obrazu w tekst. Z kolei DTP, czyli desktop publishing, to proces tworzenia publikacji za pomocą komputerów, który może obejmować skład tekstu i grafiki, ale także nie jest odpowiedzialny za konwersję obrazów na tekst. DTP skupia się bardziej na estetyce i układzie materiałów drukowanych niż na ich zawartości tekstowej. OMR, czyli Optical Mark Recognition, to technologia służąca do rozpoznawania zaznaczeń, takich jak odpowiedzi na testach wielokrotnego wyboru. Choć OMR jest przydatna w określonych kontekstach, takich jak przetwarzanie formularzy, nie ma zastosowania w rozpoznawaniu tekstu, co czyni ją nieodpowiednią w kontekście tego pytania. Pojęcia te są często mylone, ponieważ wszystkie dotyczą przetwarzania informacji, ale ich zastosowania są różne, co prowadzi do błędnych wniosków i nieporozumień w zrozumieniu funkcji technologii.

Pytanie 8

Co nie ma wpływu na utratę danych z dysku HDD?

A. Zniszczenie talerzy dysku
B. Sformatowanie partycji dysku
C. Fizyczne uszkodzenie dysku
D. Utworzona macierz dyskowa RAID 5
Utworzenie macierzy dyskowej RAID 5 pozwala na zwiększenie bezpieczeństwa danych przechowywanych na dyskach twardych. W tej konfiguracji dane są rozdzielane pomiędzy kilka dysków, a dodatkowo stosuje się parzystość, co oznacza, że nawet w przypadku awarii jednego z dysków, dane mogą być odtworzone. Jest to szczególnie przydatne w środowiskach, gdzie bezpieczeństwo danych ma kluczowe znaczenie, np. w serwerach plików czy systemach bazodanowych. RAID 5 jest standardem, który łączy w sobie zarówno wydajność, jak i odporność na awarie, co czyni go popularnym wyborem wśród administratorów systemów. Przykładowo, w firmach zajmujących się obróbką wideo, gdzie duże pliki są często zapisywane i odczytywane, stosowanie RAID 5 pozwala na zachowanie danych w przypadku awarii sprzętu, co może zaoszczędzić czas i koszty związane z utratą danych. W ramach dobrych praktyk, zawsze zaleca się regularne tworzenie kopii zapasowych, nawet w przypadku korzystania z macierzy RAID.

Pytanie 9

W systemie Windows przy użyciu polecenia assoc można

A. zmienić listę kontroli dostępu do plików
B. zmieniać powiązania z rozszerzeniami plików
C. sprawdzić zawartość dwóch plików
D. zobaczyć atrybuty plików
Pomimo tego, że zarządzanie plikami w systemie Windows jest kluczowym aspektem, polecenia opisane w odpowiedziach nie są związane z funkcją 'assoc'. Nie jest prawdą, że 'assoc' pozwala na porównanie zawartości dwóch plików, ponieważ do tego celu służą inne narzędzia, takie jak 'fc' (file compare). Użycie 'fc' umożliwia użytkownikom analizę różnic między plikami tekstowymi, co jest przydatne w kontekście programowania i analizy danych. Z kolei modyfikacja listy kontroli dostępu do plików (ACL) jest realizowana za pomocą innych narzędzi, takich jak 'icacls'. ACL pozwala na precyzyjne zarządzanie uprawnieniami dostępu do plików, co jest istotne dla bezpieczeństwa danych. Zmiana atrybutów plików, na przykład ich ukrycie czy oznaczenie jako tylko do odczytu, również nie jest funkcją 'assoc', lecz można to zrobić za pomocą polecenia 'attrib'. Warto zrozumieć, że każde z tych narzędzi ma swoją specyfikę i jest przeznaczone do konkretnych zadań. Ignorowanie tego faktu może prowadzić do błędów w zarządzaniu systemem oraz nieefektywności w pracy z danymi. Dlatego kluczowe jest zrozumienie różnic i zastosowań poszczególnych poleceń w systemie Windows.

Pytanie 10

W ramce przedstawiono treść jednego z plików w systemie operacyjnym MS Windows. Jest to plik

[boot loader]
Time out=30
Default=Multi(0)disk(0)rdisk(0)partition(1)WINDOWS
[operating system]
Multi(0)disk(0)rdisk(0)partition(1)WINDOWS="Microsoft Windows XP Home Edition"/
fastdetect/NoExecute=OptOut

A. dziennika, zawierający dane o zainstalowanych urządzeniach
B. tekstowy, zawierający wykaz zainstalowanych systemów operacyjnych
C. wsadowy, przeznaczony do uruchamiania instalatora
D. wykonywalny, otwierający edytor rejestru systemowego
Plik przedstawiony w ramce to plik "boot.ini" używany w starszych wersjach systemu operacyjnego Windows takich jak Windows XP i Windows 2000. Ten plik jest tekstowy, co oznacza, że można go edytować za pomocą standardowego edytora tekstu jak Notatnik. Plik ten zawiera listę zainstalowanych systemów operacyjnych, umożliwiając użytkownikowi wybór, który system ma zostać uruchomiony przy starcie komputera. Jest to kluczowy element w procesie startowym systemu, ponieważ definiuje ścieżki do plików systemowych potrzebnych do uruchomienia konkretnych wersji Windows. Dobrą praktyką jest, aby przed dokonaniem jakichkolwiek zmian w pliku "boot.ini", wykonać jego kopię zapasową, co pozwala na odzyskanie go w przypadku błędnej edycji. Zawartość takiego pliku może zawierać ważne informacje konfiguracyjne, jak timeout, czyli czas oczekiwania na wybór systemu, oraz domyślną ścieżkę do uruchamiania systemu. W kontekście bezpieczeństwa i stabilności systemu, prawidłowe zarządzanie plikami startowymi jest ważnym aspektem administracji IT i stanowi część profesjonalnych standardów zarządzania systemami operacyjnymi.

Pytanie 11

Jaki element sieci SIP określamy jako telefon IP?

A. Serwerem Proxy SIP
B. Serwerem rejestracji SIP
C. Terminalem końcowym
D. Serwerem przekierowań
Telefon IP jest klasyfikowany jako terminal końcowy w architekturze SIP (Session Initiation Protocol). Terminal końcowy to urządzenie końcowe, które umożliwia użytkownikowi nawiązywanie, odbieranie oraz zarządzanie połączeniami głosowymi, wideo lub innymi formami komunikacji w sieci. W kontekście SIP, terminale końcowe, takie jak telefony IP, są odpowiedzialne za kończenie sesji komunikacyjnych. Przykładem zastosowania może być sytuacja w biurze, gdzie pracownicy używają telefonów IP do prowadzenia rozmów przez Internet, co pozwala na oszczędności kosztowe i lepszą jakość dźwięku w porównaniu do tradycyjnych linii telefonicznych. Współczesne telefony IP obsługują również dodatkowe funkcje, takie jak integracja z systemami CRM, co pozwala firmom na zwiększenie efektywności komunikacji. Zgodnie z najlepszymi praktykami, terminale końcowe powinny być zgodne z odpowiednimi standardami, takimi jak RFC 3261, aby zapewnić interoperacyjność oraz bezproblemową komunikację w różnych sieciach.

Pytanie 12

Aby zminimalizować ryzyko wyładowań elektrostatycznych podczas wymiany komponentów komputerowych, technik powinien wykorzystać

A. okulary ochronne
B. odzież poliestrową
C. matę i opaskę antystatyczną
D. rękawice gumowe
Stosowanie maty i opaski antystatycznej jest kluczowym środkiem zapobiegawczym w procesie wymiany podzespołów komputerowych. Mata antystatyczna służy do uziemienia sprzętu i osób pracujących, co skutecznie minimalizuje ryzyko powstania ładunków elektrostatycznych. Opaska antystatyczna, noszona na nadgarstku, również jest podłączona do uziemienia, co zapewnia ciągłe odprowadzanie ładunków. W praktyce oznacza to, że gdy technik dotyka podzespołów, takich jak płyty główne czy karty graficzne, nie stwarza ryzyka uszkodzenia związanego z wyładowaniami elektrostatycznymi (ESD). W branży IT stosowanie tych środków ochrony jest szeroko rekomendowane, jako część dobrych praktyk w zakresie bezpiecznego zarządzania sprzętem. Zgodnie z normą ANSI/ESD S20.20, przedsiębiorstwa powinny wdrażać odpowiednie procedury ESD, aby ochronić swoje zasoby. Dbanie o zapobieganie ESD nie tylko chroni sprzęt, ale również wydłuża jego żywotność i stabilność działania, co jest kluczowe w kontekście zarządzania infrastrukturą IT.

Pytanie 13

Urządzenie sieciowe, które łączy pięć komputerów w tej samej sieci, minimalizując ryzyko kolizji pakietów, to

A. koncentrator
B. most
C. ruter
D. przełącznik
Ruter (router) to urządzenie, które działa na warstwie trzeciej modelu OSI i jest odpowiedzialne za kierowanie ruchu między różnymi sieciami. Jego rola polega na analizowaniu adresów IP i podejmowaniu decyzji o tym, którędy dane powinny być przesyłane w obrębie większych sieci, takich jak Internet. W przypadku lokalnej sieci, ruter nie jest najlepszym rozwiązaniem do łączenia komputerów, ponieważ jego funkcje są bardziej związane z komunikacją między różnymi sieciami niż z zarządzaniem danymi w obrębie jednej sieci lokalnej. Most (bridge) jest urządzeniem, które łączy dwie lub więcej segmentów sieci, działając na warstwie drugiej modelu OSI. Mimo że most może redukować kolizje, to jego zdolności w zarządzaniu ruchem są ograniczone w porównaniu do przełącznika, który jest w stanie analizować i kierować pakiety do konkretnych urządzeń. Koncentrator (hub) to urządzenie, które działa na warstwie fizycznej i przesyła dane do wszystkich portów bez analizy, co prowadzi do licznych kolizji w sieci. Użytkownicy często mylą te urządzenia, nie zdając sobie sprawy, że przełącznik oferuje znacznie lepszą wydajność i możliwości zarządzania ruchem. Kluczowym błędem myślowym jest utożsamianie funkcji różnych urządzeń sieciowych bez zrozumienia ich specyfikacji i zastosowań, co może prowadzić do nieefektywnych rozwiązań w projektowaniu i zarządzaniu siecią.

Pytanie 14

Jakie informacje zwraca polecenie netstat -a w systemie Microsoft Windows?

A. Wszystkie aktywne połączenia protokołu TCP
B. Aktualne parametry konfiguracyjne sieci TCP/IP
C. Statystykę odwiedzin stron internetowych
D. Tablicę trasowania
Polecenie netstat -a w systemach Microsoft Windows jest niezwykle przydatnym narzędziem służącym do monitorowania aktywnych połączeń sieciowych. Wyświetla ono wszystkie aktualnie otwarte połączenia protokołu TCP, co pozwala administratorom na bieżąco śledzić, które aplikacje korzystają z sieci oraz jakie porty są używane. Przykładowo, dzięki temu poleceniu można szybko zidentyfikować, czy na danym porcie działa nieautoryzowana aplikacja, co jest kluczowe w kontekście bezpieczeństwa sieci. Dobre praktyki w zakresie zarządzania siecią sugerują regularne korzystanie z netstat w celu audytu aktywnych połączeń, co może pomóc w wykrywaniu potencjalnych zagrożeń. Warto także pamiętać, że polecenie to można łączyć z innymi narzędziami, takimi jak tracert czy ping, aby uzyskać bardziej kompleksowy obraz stanu sieci. Również, interpretacja wyników z netstat może być ułatwiona poprzez znajomość numerów portów oraz standardów przypisanych do poszczególnych usług, co podnosi efektywność diagnostyki i administracji siecią.

Pytanie 15

Narzędzie pokazane na ilustracji służy do

Ilustracja do pytania
A. ściągania izolacji z kabla
B. weryfikacji poprawności połączenia
C. zaciskania wtyków RJ45
D. instalacji przewodów w złączach LSA
Narzędzie przedstawione na rysunku to tzw. punch down tool, które jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami telekomunikacyjnymi i sieciowymi. Służy ono do montażu przewodów w złączach typu LSA, które są standardem w gniazdach sieciowych i panelach krosowych. Złącza LSA, nazywane również złączami IDC (Insulation Displacement Connector), umożliwiają szybkie i pewne połączenie przewodów bez konieczności zdejmowania izolacji. Punch down tool umożliwia wciśnięcie przewodu w złącze, zapewniając trwały i niezawodny kontakt. Narzędzie to jest wyposażone w ostrze, które automatycznie przycina nadmiar przewodu, co minimalizuje ryzyko zwarć i zapewnia estetykę instalacji. Zastosowanie punch down tool jest zgodne ze standardami telekomunikacji, takimi jak TIA/EIA-568, które określają zasady poprawnej instalacji kabli i urządzeń sieciowych. Dzięki temu narzędziu można szybko skalibrować i zoptymalizować działanie sieci, co jest kluczowe w nowoczesnych rozwiązaniach IT, gdzie niezawodność połączeń jest priorytetem. Stosowanie punch down tool jest zalecane szczególnie w miejscach o dużym natężeniu ruchu sieciowego, gdzie jakość połączeń ma bezpośredni wpływ na wydajność całego systemu.

Pytanie 16

W kontekście adresacji IPv6, użycie podwójnego dwukropka służy do

A. wielokrotnego zastąpienia dowolnych bloków zer oddzielonych blokiem jedynek
B. jednorazowego zastąpienia jednego lub więcej kolejnych bloków składających się wyłącznie z zer
C. jednorazowego zastąpienia jednego bloku jedynek
D. wielokrotnego zastąpienia dowolnych bloków jedynek
Podwójny dwukropek (::) w adresacji IPv6 jest specjalnym skrótem, który pozwala na uproszczenie i skrócenie notacji adresów zawierających sekwencje zer. Jego zastosowanie ogranicza się do jednorazowego zastępowania jednego lub więcej bloków złożonych wyłącznie z zer, co ma na celu zwiększenie czytelności adresów. Na przykład, adres IPv6 2001:0db8:0000:0000:0000:0000:0000:0001 może być zapisany jako 2001:db8::1, gdzie "::" zastępuje pięć bloków zer. Zgodnie z dokumentem RFC 5952, który opisuje najlepsze praktyki dotyczące reprezentacji adresów IPv6, stosowanie podwójnego dwukropka ma na celu uproszczenie zapisu, jednak powinno być stosowane ostrożnie, aby uniknąć niejasności. Zrozumienie tej zasady jest kluczowe dla inżynierów sieciowych, którzy pracują z IPv6, ponieważ umożliwia im efektywne zarządzanie i konfigurację adresów w skomplikowanych środowiskach sieciowych."

Pytanie 17

Który z protokołów służy do synchronizacji czasu?

A. FTP
B. HTTP
C. NNTP
D. NTP
FTP, HTTP i NNTP to protokoły, które pełnią różne funkcje w sieciach komputerowych, ale żaden z nich nie jest przeznaczony do synchronizacji czasu. FTP (File Transfer Protocol) jest protokołem używanym do transferu plików pomiędzy klientem a serwerem, a jego głównym celem jest umożliwienie przesyłania danych, a nie synchronizowanie czasu. HTTP (Hypertext Transfer Protocol) jest protokołem odpowiedzialnym za przesyłanie danych w Internecie, zwłaszcza w kontekście stron WWW. Jego główną funkcją jest umożliwienie przeglądania treści w sieci, a nie synchronizacja zegarów. NNTP (Network News Transfer Protocol) jest przeznaczony do przesyłania wiadomości w grupach dyskusyjnych i również nie ma zastosowania w kontekście synchronizacji czasu. Często mylone jest używanie protokołów komunikacyjnych z funkcjonalnością zarządzania czasem, co prowadzi do nieporozumień. Synchronizacja czasu jest kluczowa w systemach informatycznych, a NTP jest protokołem, który został zaprojektowany z myślą o tej specyficznej potrzebie. Warto pamiętać, że w kontekście nowoczesnych rozwiązań IT, dokładność czasowa jest niezbędna do zapewnienia efektywnego działania aplikacji i systemów, a niewłaściwe zrozumienie roli protokołów może prowadzić do poważnych problemów operacyjnych.

Pytanie 18

Zgodnie z zamieszczonym fragmentem testu w systemie komputerowym zainstalowane są

Ilustracja do pytania
A. pamięć fizyczna 0,50 GB i plik wymiany 1,00 GB
B. pamięć fizyczna 0,49 GB i plik wymiany 1,20 GB
C. pamięć fizyczna 0,49 GB i plik wymiany 1,22 GB
D. pamięć fizyczna 0,70 GB i plik wymiany 1,22 GB
Niepoprawne odpowiedzi dotyczą różnic w interpretacji i odczycie wartości pamięci fizycznej oraz pliku wymiany. Napotykane błędy wynikają często z błędnego rozumienia jednostek miary oraz mechanizmów zarządzania pamięcią przez systemy operacyjne. Pamięć fizyczna odnosi się do zainstalowanego RAM, podczas gdy plik wymiany to logiczna przestrzeń na dysku twardym, której system operacyjny używa jako wirtualnego rozszerzenia pamięci RAM. Niepoprawne odczytanie tych wartości może wynikać z pomylenia jednostek miary takich jak MB i GB, co jest powszechnym problemem w interpretacji danych systemowych. Niezrozumienie tego, jak system wykorzystuje pamięć fizyczną i wirtualną, prowadzi do błędnych wniosków dotyczących wydajności komputera. Użytkownicy często nie uwzględniają różnic między pamięcią używaną a dostępną, co jest kluczowe, by odpowiednio zarządzać zasobami systemowymi. W kontekście zawodowym takie nieporozumienia mogą prowadzić do niewłaściwych decyzji związanych z zakupem czy konfiguracją sprzętu komputerowego. Dlatego tak ważne jest, aby regularnie poszerzać swoją wiedzę na temat zarządzania pamięcią w systemach komputerowych oraz umiejętnie interpretować dane związane z jej użyciem i alokacją w celu optymalizacji wydajności systemu.

Pytanie 19

Jaką topologię fizyczną sieci komputerowej przedstawia załączony rysunek?

Ilustracja do pytania
A. Siatka
B. Gwiazda rozszerzona
C. Magistrala
D. Podwójny pierścień
Topologia podwójnego pierścienia jest stosowana w sieciach komputerowych, gdzie dwa pierścienie zapewniają redundancję i większą niezawodność. W przypadku awarii jednego z pierścieni, dane mogą być przekazywane w przeciwnym kierunku, co minimalizuje ryzyko przerwania komunikacji. Technologie takie jak FDDI (Fiber Distributed Data Interface) często wykorzystują podwójny pierścień, aby zapewnić szybkie i niezawodne przesyłanie danych na duże odległości w sieciach korporacyjnych. W praktyce topologia ta jest szczególnie użyteczna w sieciach o znaczeniu krytycznym, takich jak sieci bankowe czy systemy kontroli ruchu lotniczego, gdzie ciągłość działania jest kluczowa. Zgodnie z standardami IEEE, taka konfiguracja zwiększa przepustowość i odporność na błędy, przy jednoczesnym zachowaniu prostoty zarządzania. Dzięki dwóm niezależnym ścieżkom komunikacyjnym topologia ta umożliwia inteligentne zarządzanie ruchem sieciowym i zapewnia dodatkową warstwę ochrony przed utratą danych.

Pytanie 20

Jak nazywa się interfejs wewnętrzny w komputerze?

A. AGP
B. PCMCIA
C. D-SUB
D. IrDA
Interfejsy IrDA, D-SUB i PCMCIA są wykorzystywane w różnych kontekstach, ale nie pełnią roli interfejsu wewnętrznego komputera w taki sposób, jak AGP. IrDA (Infrared Data Association) to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą promieniowania podczerwonego. Jego zastosowanie obejmuje głównie bezprzewodowe połączenia między urządzeniami, co sprawia, że nie jest on związany z wewnętrzną architekturą komputerów stacjonarnych. D-SUB, z kolei, to typ złącza analogowego używanego do podłączenia monitorów, które także nie odnosi się do komunikacji wewnętrznej systemu komputerowego. Wreszcie, PCMCIA (Personal Computer Memory Card International Association) jest standardem dla kart rozszerzeń w laptopach, co również dotyczy bardziej zewnętrznych rozszerzeń niż komunikacji wewnętrznej. Stąd wynika mylne przekonanie, że te interfejsy mogą być klasyfikowane jako wewnętrzne; w rzeczywistości zajmują one różne miejsca w ekosystemie komputerowym, wypełniając inne funkcje niż AGP, który jest zoptymalizowany do bezpośredniej współpracy z kartami graficznymi w kontekście wewnętrznej architektury komputera.

Pytanie 21

Najczęstszym powodem, dla którego toner rozmazuje się na wydrukach z drukarki laserowej, jest

A. uszkodzenie rolek
B. zanieczyszczenie wnętrza drukarki
C. zbyt niska temperatura utrwalacza
D. zacięcie papieru
Zbyt niska temperatura utrwalacza w drukarce laserowej jest najczęstszą przyczyną rozmazywania się tonera na wydrukach. Proces drukowania w technologii laserowej polega na nałożeniu tonera na papier, który następnie jest utrwalany poprzez działanie wysokiej temperatury. Utrwalacz, składający się z dwóch rolek, podgrzewa toner do momentu, w którym staje się on płynny, co umożliwia trwałe wtopienie go w papier. Jeśli temperatura utrwalacza jest zbyt niska, toner nie przylega do papieru w odpowiedni sposób, co prowadzi do jego rozmazywania. Praktycznym przykładem może być wydruk na papierze o wyższej gramaturze lub w warunkach o niskiej temperaturze otoczenia, co dodatkowo wpływa na efektywność utrwalania. Zaleca się regularne sprawdzanie ustawień temperatury w drukarce oraz przeprowadzanie konserwacji sprzętu, aby zapewnić optymalne warunki drukowania zgodne z zaleceniami producenta.

Pytanie 22

Jaką liczbą oznaczono procesor na diagramie płyty głównej komputera?

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Procesor jest centralną jednostką obliczeniową komputera i znajduje się w gnieździe oznaczonym na schemacie cyfrą 2. To oznaczenie jest prawidłowe, ponieważ procesor jest kluczowym komponentem odpowiedzialnym za wykonywanie instrukcji programu poprzez operacje arytmetyczno-logiczne. Procesor łączy się z innymi elementami systemu przy użyciu magistrali systemowej, co umożliwia mu komunikację z pamięcią, urządzeniami wejścia-wyjścia i innymi komponentami. W praktyce, procesor wykonuje setki milionów operacji na sekundę, co czyni go niezbędnym do działania każdego komputera. Zrozumienie lokalizacji i funkcji procesora na płycie głównej jest kluczowe dla techników komputerowych, zwłaszcza gdy rozważamy diagnostykę sprzętu, modernizacje lub rozwiązywanie problemów z wydajnością. Procesory są także projektowane z myślą o efektywności energetycznej i kompatybilności z różnymi systemami chłodzenia, co jest istotne w kontekście budowania optymalnych i trwałych systemów komputerowych. Wiedza o tym, gdzie znajduje się procesor, pozwala na efektywne planowanie przestrzeni i zarządzanie ciepłem w obudowie komputera dostosowując system chłodzenia do jego specyfikacji i potrzeb użytkowych.

Pytanie 23

Gniazdo LGA umieszczone na płycie głównej komputera stacjonarnego pozwala na zamontowanie procesora

A. AMD Sempron
B. Athlon 64 X2
C. Intel Core i5
D. Intel Pentium II Xeon
Wybór procesora z serii Athlon 64 X2, AMD Sempron lub Intel Pentium II Xeon na gniazdo LGA jest błędny z kilku powodów. Athlon 64 X2 i Sempron to procesory produkowane przez firmę AMD, które korzystają z innego typu gniazd, takich jak Socket AM2 lub AM3, które nie są kompatybilne z gniazdami LGA. Kompatybilność gniazd jest kluczowym czynnikiem przy budowaniu komputera; każdy procesor musi być zainstalowany w odpowiednim gnieździe, aby mógł działać poprawnie. Na przykład, jeśli próbujesz zainstalować procesor Athlon 64 X2 w gnieździe LGA, napotkasz problemy z fizycznym dopasowaniem, ponieważ piny procesora nie będą pasować do gniazda. Dodatkowo, Intel Pentium II Xeon to procesor z lat 90., który nie jest kompatybilny z nowoczesnymi gniazdami LGA, które obsługują tylko nowszą architekturę procesorów Intela. Użytkownicy często popełniają błąd, myśląc, że każdy procesor można zamontować w dowolnym gnieździe, co prowadzi do nieprawidłowych wyborów podczas zakupu komponentów. Również, niektóre procesory są projektowane z myślą o konkretnych zastosowaniach, jak serwery w przypadku Xeon, co sprawia, że ich użycie w standardowych komputerach stacjonarnych może być nieefektywne. Dlatego ważne jest, aby dokładnie sprawdzić kompatybilność procesora z płytą główną przed dokonaniem zakupu.

Pytanie 24

W standardzie Ethernet 100BaseTX do przesyłania danych używane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 1, 2, 5, 6
B. 1, 2, 3, 4
C. 4, 5, 6, 7
D. 1, 2, 3, 6
W sieci Ethernet 100BaseTX wykorzystywane są cztery piny w złączu RJ-45 do przesyłania i odbierania danych. Wśród dostępnych odpowiedzi niektóre zawierają błędne kombinacje pinów. Na przykład piny 4, 5, 6 i 7 nie są używane w standardzie Ethernet 100BaseTX do transmisji danych, co może wynikać z mylnego zrozumienia, że wszystkie piny w kablu są aktywne lub że inne standardy mogą używać innych konfiguracji pinów. Piny 1, 2, 5 i 6 również nie są poprawną konfiguracją, ponieważ mimo iż zawierają dwa właściwe piny (1 i 2), to piny 5 i 6 są błędnie zgrupowane. Tego typu błędy są często wynikiem nieznajomości specyfikacji technicznych i standardów sieciowych, takich jak EIA/TIA-568A i 568B, które precyzyjnie określają, które pary przewodów mają być używane do transmisji danych. Ważne jest, aby zawsze odnosić się do oficjalnej dokumentacji, która wskazuje właściwe parowanie przewodów, aby zapewnić prawidłowe działanie sieci i uniknąć zakłóceń sygnału czy problemów z łącznością, które mogą wynikać z nieprawidłowego okablowania. Prawidłowa konfiguracja wpływa na jakość i stabilność połączeń, dlatego też każdy technik sieciowy powinien być świadomy tych standardów i ich praktycznego zastosowania w codziennej pracy z sieciami komputerowymi.

Pytanie 25

Jakiego typu rozbudowa serwera wymaga zainstalowania dodatkowych sterowników?

A. Montaż kolejnej karty sieciowej
B. Dodanie pamięci RAM
C. Instalacja kolejnego procesora
D. Dodanie dysków fizycznych
Wybór odpowiedzi dotyczący dodania pamięci RAM, montażu kolejnego procesora czy dodania dysków fizycznych nie wymaga zainstalowania dodatkowych sterowników, co często prowadzi do nieporozumień dotyczących rozbudowy sprzętu. Pamięć RAM jest komponentem, który działa bezpośrednio z płytą główną i nie potrzebuje zewnętrznych sterowników, ponieważ jest zarządzana przez system operacyjny oraz BIOS. W przypadku montażu procesora, również nie ma potrzeby dodatkowej instalacji sterowników, ponieważ większość nowoczesnych płyt głównych automatycznie rozpoznaje nowy procesor i wykorzystuje istniejące już w systemie sterowniki. Podobnie rzecz ma się z dyskami fizycznymi – chociaż mogą wymagać konfiguracji w BIOS-ie, sterowniki do dysków (np. SATA) są zazwyczaj już wbudowane w system operacyjny, co czyni proces ich instalacji prostszym. Wybierając te odpowiedzi, można popełnić błąd myślowy polegający na przypuszczeniu, że każdy nowy komponent wymaga nowych sterowników. Kluczowe jest zrozumienie, że tylko niektóre urządzenia, zwłaszcza te, które są złożone lub specjalistyczne, jak karty sieciowe czy graficzne, wymagają dedykowanych sterowników. Również zrozumienie specyfiki działania poszczególnych komponentów jest niezbędne, aby unikać takich błędów.

Pytanie 26

Według normy PN-EN 50174 maksymalna całkowita długość kabla połączeniowego między punktem abonenckim a komputerem oraz kabla krosowniczego A+C) wynosi

Ilustracja do pytania
A. 6 m
B. 10 m
C. 3 m
D. 5 m
Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem oraz kabla krosowniczego wynosi 10 m. Wynika to z optymalizacji parametrów transmisyjnych sieci, takich jak tłumienie i opóźnienie sygnału. Dłuższe kable mogą prowadzić do pogorszenia jakości sygnału, co wpływa na szybkość i stabilność połączenia. W praktyce oznacza to, że projektując sieci komputerowe, należy starannie planować układ okablowania, aby zmieścić się w tych ograniczeniach. Dzięki temu sieć działa zgodnie z oczekiwaniami i normami branżowymi. Standard PN-EN 50174 jest często stosowany w projektach infrastruktury IT, wspierając inżynierów w tworzeniu niezawodnych i wydajnych systemów. Utrzymanie tych długości kabli zapewnia zgodność z wymaganiami technicznymi i wpływa na poprawę ogólnej wydajności sieci. W związku z tym przestrzeganie tych norm jest nie tylko zalecane, ale wręcz konieczne dla zapewnienia sprawnego funkcjonowania infrastruktury sieciowej.

Pytanie 27

Najskuteczniejszym sposobem na ochronę komputera przed wirusami jest zainstalowanie

A. hasła do BIOS-u
B. licencjonowanego systemu operacyjnego
C. zapory FireWall
D. skanera antywirusowego
Zainstalowanie skanera antywirusowego to naprawdę ważny krok, żeby chronić komputer przed wirusami i innym złośliwym oprogramowaniem. Te skanery działają tak, że identyfikują, blokują i usuwają zagrożenia, co jest niezbędne, aby system dobrze działał. Dzisiaj większość programów antywirusowych nie tylko skanuje pliki w poszukiwaniu znanych wirusów, ale też korzysta z różnych technik, żeby znaleźć nowe, nieznane zagrożenia. Na przykład, programy takie jak Norton, Bitdefender czy Kaspersky ciągle aktualizują swoje bazy danych, żeby być na bieżąco z nowymi zagrożeniami. Co więcej, wiele z tych narzędzi ma funkcje skanowania w czasie rzeczywistym, co znaczy, że mogą od razu wykrywać i neutralizować zagrożenia. Warto też pamiętać, że trzeba regularnie aktualizować oprogramowanie antywirusowe, żeby mieć jak najlepszą ochronę. Takie podejście jest zgodne z najlepszymi praktykami w branży, które mówią o wielowarstwowej ochronie w bezpieczeństwie IT.

Pytanie 28

Ile par przewodów miedzianej skrętki kategorii 5e jest używanych do transmisji danych w standardzie sieci Ethernet 100Base-TX?

A. 1
B. 3
C. 2
D. 4
Wybór jednej pary przewodów do transmisji danych w standardzie 100Base-TX jest błędny, ponieważ ten standard wymaga co najmniej dwóch par, aby umożliwić pełny dupleks. Użycie tylko jednej pary przewodów ograniczałoby komunikację do trybu półdupleksowego, co oznacza, że dane mogłyby być przesyłane lub odbierane, ale nie jednocześnie. To podejście stwarzałoby wąskie gardła w sytuacjach, gdy wiele urządzeń w sieci próbuje komunikować się jednocześnie. W kontekście standardów sieciowych, kluczowe jest zrozumienie, że pełny dupleks jest preferowany w nowoczesnych instalacjach, ponieważ znacznie zwiększa efektywność sieci. Odpowiedzi sugerujące trzy lub cztery pary również są niepoprawne, ponieważ takie połączenia są wymagane w innych standardach, takich jak 1000Base-T, gdzie wykorzystuje się wszystkie cztery pary do osiągnięcia prędkości 1 Gb/s. W praktyce, wiele organizacji stosuje standard 100Base-TX w połączeniach z urządzeniami, które nie wymagają wyższej przepustowości, jednak kluczowe jest, aby mieć świadomość, że wybór odpowiedniej liczby par przewodów zależy od wymagań konkretnej aplikacji i infrastruktury sieciowej.

Pytanie 29

Z jaką informacją wiąże się parametr TTL po wykonaniu polecenia ping?

C:\Users\Właściciel>ping -n 1 wp.pl

Pinging wp.pl [212.77.98.9] with 32 bytes of data:
Reply from 212.77.98.9: bytes=32 time=17ms TTL=54

Ping statistics for 212.77.98.9:
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 17ms, Maximum = 17ms, Average = 17ms

A. liczbą routerów biorących udział w przesyłaniu pakietu od nadawcy do odbiorcy
B. liczbą pakietów wysłanych w celu weryfikacji połączenia w sieci
C. czasem odpowiedzi z docelowego urządzenia
D. czasem trwania weryfikacji komunikacji w sieci
Parametr TTL nie jest związany z czasem trwania sprawdzenia komunikacji ani z czasem odpowiedzi z urządzenia docelowego. Są to częste błędne interpretacje wynikające z mylenia dwóch niezależnych pomiarów wykonywanych podczas korzystania z narzędzia ping. Czas trwania sprawdzenia komunikacji to rzeczywisty czas potrzebny na przesłanie pakietu w obie strony między klientem a serwerem co jest reprezentowane przez wartości czasowe w milisekundach w wynikach ping. Natomiast liczba pakietów wysłanych w celu sprawdzenia komunikacji odnosi się do całkowitej liczby wysłanych wiadomości echo ale nie ma bezpośredniego związku z TTL. TTL określa liczbę routerów przez które pakiet może przejść zanim zostanie odrzucony a nie ilość wysłanych pakietów. Mylenie tych pojęć często prowadzi do błędów w diagnozowaniu problemów sieciowych. Rozumienie czym dokładnie jest TTL oraz jak działa mechanizm pętli pakietów w sieci jest kluczowe dla skutecznego monitorowania i rozwiązywania problemów w sieciach komputerowych. Poprawne zrozumienie tych zasad umożliwia efektywne zarządzanie ruchem w sieci i zapewnia lepszą kontrolę nad zasobami IT. Takie zagadnienia są kluczowe w codziennej pracy administratorów sieci gdzie precyzyjna interpretacja danych sieciowych jest niezbędna do utrzymania wysokiej jakości usług sieciowych. Zrozumienie różnicy między czasem odpowiedzi a parametrem TTL jest także podstawą do dalszego zgłębiania wiedzy o protokołach sieciowych i ich zastosowaniu w praktyce zarządzania infrastrukturą IT. Współczesne sieci wymagają dokładności i wiedzy na temat działania różnych protokołów co podkreśla znaczenie posiadania solidnej bazy wiedzy w tym zakresie. Dobrze zrozumiane podstawy takie jak TTL stanowią fundament do projektowania i utrzymywania wydajnych i bezpiecznych sieci komputerowych.

Pytanie 30

Elementem, który umożliwia wymianę informacji pomiędzy procesorem a magistralą PCI-E, jest

A. chipset
B. układ Super I/O
C. cache procesora
D. pamięć RAM
Chipset jest kluczowym elementem płyty głównej, który zarządza komunikacją między procesorem a innymi komponentami, w tym magistralą PCI-E. Jego zadaniem jest koordynacja transferu danych, co jest niezbędne do efektywnego działania systemu komputerowego. Chipset działa jako swoisty punkt pośredni, umożliwiając synchronizację i optymalizację przepływu informacji między procesorem, pamięcią RAM, a urządzeniami peryferyjnymi podłączonymi do magistrali PCI-E, takimi jak karty graficzne czy dyski SSD. W praktyce oznacza to, że dobrze zaprojektowany chipset może znacznie poprawić wydajność systemu, umożliwiając szybki i niezawodny transfer danych. Na przykład, w systemach z intensywnym przetwarzaniem grafiki, odpowiedni chipset pozwala na efektywne wykorzystanie możliwości nowoczesnych kart graficznych, co jest kluczowe dla zadań takich jak renderowanie 3D czy obróbka wideo. W branży IT standardem stało się projektowanie chipsetów, które wspierają najnowsze technologie komunikacyjne, takie jak PCIe 4.0 czy 5.0, co pozwala na jeszcze wyższe prędkości transferu danych.

Pytanie 31

Plik tekstowy wykonaj.txt w systemie Windows 7 zawiera ```@echo off``` echo To jest tylko jedna linijka tekstu Aby wykonać polecenia zapisane w pliku, należy

A. zmienić nazwę pliku na wykonaj.exe
B. dodać uprawnienie +x
C. skompilować plik przy użyciu odpowiedniego kompilatora
D. zmienić nazwę pliku na wykonaj.bat
Odpowiedź jest poprawna, ponieważ plik tekstowy zawierający polecenia skryptowe w systemie Windows, zapisany z rozszerzeniem .bat (batch), może być bezpośrednio uruchamiany przez system operacyjny. Rozszerzenie .bat informuje system, że plik zawiera komendy do wykonania w interpreterze poleceń CMD. Gdy plik jest uruchamiany, interpreter odczytuje linie poleceń, w tym przypadku polecenie echo, które wyświetla tekst na ekranie. Przykładem praktycznego zastosowania plików .bat jest automatyzacja zadań, takich jak tworzenie kopii zapasowych, uruchamianie aplikacji lub konfigurowanie środowiska. Dobre praktyki w tworzeniu skryptów .bat obejmują dodawanie komentarzy dla lepszej czytelności oraz testowanie skryptów w bezpiecznym środowisku przed ich zastosowaniem w krytycznych systemach operacyjnych. Stosując te zasady, można znacząco zwiększyć efektywność pracy z systemem Windows oraz zminimalizować ryzyko błędów.

Pytanie 32

Komputer dysponuje adresem IP 192.168.0.1, a jego maska podsieci wynosi 255.255.255.0. Który adres stanowi adres rozgłoszeniowy dla podsieci, do której ten komputer przynależy?

A. 192.168.0.31
B. 192.168.0.63
C. 192.168.0.127
D. 192.168.0.255
Adres 192.168.0.255 to adres rozgłoszeniowy dla sieci, do której należy komputer z adresem 192.168.0.1 i maską 255.255.255.0. Tak naprawdę, przy tej masce, pierwsze trzy oktety (192.168.0) wskazują na sieć, a ostatni (czyli ten czwarty) służy do adresowania urządzeń w tej sieci. Warto pamiętać, że adres rozgłoszeniowy to ten ostatni adres w danej podsieci, co w tym przypadku to właśnie 192.168.0.255. Ta funkcjonalność jest mega ważna, bo pozwala na wysłanie pakietów do wszystkich urządzeń w sieci naraz. W praktyce, rozgłoszenia są wykorzystywane w takich protokołach jak ARP czy DHCP, co pozwala na automatyczne przydzielanie adresów IP. Moim zdaniem, zrozumienie tego, jak działają adresy rozgłoszeniowe, ma znaczenie dla każdego, kto chce ogarnąć sprawy związane z sieciami komputerowymi. Właściwe użycie tych adresów naprawdę wpływa na to, jak dobrze działa sieć.

Pytanie 33

Na ilustracji zaprezentowano końcówkę kabla

Ilustracja do pytania
A. koncentrycznego
B. rodzaju skrętka
C. światłowodowego
D. telefonicznego
Zakończenie kabla przedstawionego na rysunku to typowe złącze światłowodowe SC czyli Subscriber Connector. Złącza te są standardem w instalacjach światłowodowych z uwagi na ich prostotę użycia i niezawodność. Kluczowym aspektem światłowodów jest ich zdolność do przesyłania danych na dużą odległość z minimalnymi stratami co jest nieosiągalne dla kabli miedzianych. Światłowody wykorzystują światło do przesyłania informacji co pozwala na uzyskanie znacznie większej przepustowości niż w przypadku tradycyjnych kabli. Złącza SC charakteryzują się mechanizmem wciskowym co ułatwia ich instalację i zapewnia stabilne połączenie. Są one powszechnie stosowane w telekomunikacji przesyłaniu danych i sieciach internetowych. Zastosowanie światłowodów w praktyce obejmuje zarówno sieci LAN jak i WAN oraz połączenia międzykontynentalne co czyni je kluczowym elementem infrastruktury teleinformatycznej. Dobór odpowiednich komponentów w tym złączy jest kluczowy dla zapewnienia jakości i niezawodności połączeń światłowodowych co jest istotne w kontekście dynamicznie rosnącego zapotrzebowania na szybki transfer danych.

Pytanie 34

Na ilustracji przedstawiony jest tylny panel jednostki komputerowej. Jakie jest nazewnictwo dla złącza oznaczonego strzałką?

Ilustracja do pytania
A. COM
B. LPT
C. FireWire
D. USB
Złącze oznaczone strzałką to port FireWire znany również jako IEEE 1394 lub i.LINK w zależności od producenta. FireWire został zaprojektowany do szybkiego przesyłania danych co czyni go idealnym do zastosowań takich jak edycja wideo gdzie duże pliki muszą być przesyłane między kamerą a komputerem. W porównaniu z innymi standardami jak na przykład USB 2.0 FireWire oferuje wyższą przepustowość która w wersji 800 może osiągnąć do 800 Mbps. Złącze to było popularne w profesjonalnych urządzeniach audio-wideo i często stosowane w komputerach Apple. FireWire pozwala na bezpośrednie połączenie urządzeń bez potrzeby używania komputera jako pośrednika czyli peer-to-peer co jest dużą zaletą w niektórych zastosowaniach. Standard FireWire wspiera również zasilanie urządzeń bezpośrednio przez kabel co eliminuje konieczność używania dodatkowych zasilaczy. W kontekście dobrych praktyk warto zauważyć że FireWire umożliwia hot swapping czyli podłączanie i odłączanie urządzeń bez konieczności wyłączania zasilania systemu. Chociaż jego popularność spadła z upływem lat z powodu rozwoju nowszych standardów jak USB 3.0 FireWire pozostaje ważnym elementem w historii rozwoju interfejsów komputerowych.

Pytanie 35

Jakie urządzenie jest pokazane na ilustracji?

Ilustracja do pytania
A. Punkt dostępu
B. Modem
C. Przełącznik
D. Ruter
Punkt dostępu, znany również jako Access Point (AP), to urządzenie sieciowe, które umożliwia bezprzewodowe połączenie urządzeń z istniejącą siecią przewodową. Jego główną funkcją jest rozszerzenie zasięgu sieci Wi-Fi, co jest szczególnie przydatne w dużych budynkach lub miejscach, gdzie sygnał jest tłumiony przez przeszkody. Punkt dostępu może być podłączony do routera za pomocą kabla Ethernet, co pozwala mu na przekazywanie sygnału bezprzewodowego do obszarów, które wymagają zasięgu. W praktyce punkty dostępu są szeroko stosowane w miejscach publicznych, takich jak lotniska, hotele czy biura, gdzie zapewniają ciągłość i stabilność połączenia dla wielu użytkowników jednocześnie. Ponadto punkty dostępu mogą oferować zaawansowane funkcje, takie jak zarządzanie pasmem, kontrola dostępu i monitorowanie ruchu, co czyni je kluczowymi elementami w zarządzaniu nowoczesnymi sieciami bezprzewodowymi. Standardem komunikacji dla punktów dostępu są protokoły IEEE 802.11, które definiują sposób przesyłania danych w sieciach bezprzewodowych. Dzięki możliwościom skalowania i adaptacji do różnych środowisk punkty dostępu są nieodzowne w profesjonalnym wdrażaniu sieci bezprzewodowych.

Pytanie 36

Aby przeprowadzić aktualizację zainstalowanego systemu operacyjnego Linux Ubuntu, należy wykorzystać komendę

A. apt-get upgrade albo apt upgrade
B. kernel update
C. yum upgrade
D. system update
Odpowiedź 'apt-get upgrade albo apt upgrade' jest całkowicie na miejscu, bo te komendy to jedne z podstawowych narzędzi do aktualizacji programów w systemie Linux, zwłaszcza w Ubuntu. Obie służą do zarządzania pakietami, co znaczy, że można nimi instalować, aktualizować i usuwać oprogramowanie. Komenda 'apt-get upgrade' w zasadzie aktualizuje wszystkie zainstalowane pakiety do najnowszych wersji, które można znaleźć w repozytoriach. Natomiast 'apt upgrade' to nowocześniejsza wersja, bardziej przystępna dla użytkownika, ale robi praktycznie to samo, tylko może w bardziej zrozumiały sposób. Warto pamiętać, żeby regularnie sprawdzać dostępność aktualizacji, bo można to zrobić przez 'apt update', co synchronizuje nasze lokalne dane o pakietach. Używanie tych poleceń to naprawdę dobry nawyk, bo pozwala utrzymać system w dobrym stanie i zmniejsza ryzyko związane z lukami bezpieczeństwa.

Pytanie 37

Ile różnych sieci obejmują komputery z adresami IP podanymi w tabeli oraz przy standardowej masce sieci?

A. Dwóch
B. Sześciu
C. Czterech
D. Jednej
Wybór jakiejkolwiek liczby mniejszej niż cztery wskazuje na niezrozumienie zasady klasyfikacji adresów IP oraz ich maskowania. W przypadku wyboru jednej sieci można by założyć, że wszystkie adresy IP są w jednej podsieci, co jest błędne, ponieważ każdy z wymienionych adresów IP zaczyna się od innego drugiego oktetu. Wybór dwóch lub trzech sieci sugeruje, że moglibyśmy zgrupować niektóre z tych adresów IP, co również nie jest zgodne z rzeczywistością. Na przykład, adresy 172.16.15.5 oraz 172.18.15.6 należą do różnych sieci, ponieważ różnią się w pierwszym lub drugim oktetach. Ponadto, przy zastosowaniu klasycznej metody maskowania dla klasy A, adresy IP o różnym pierwszym oktetach nie mogą być w tej samej sieci. Typowym błędem jest także mylenie pojęcia sieci z pojęciem adresu IP. W praktyce, aby poprawnie zarządzać siecią, ważne jest, aby mieć pełne zrozumienie, jak adresy IP są strukturalnie podzielone i jak wpływa to na ich klasyfikację. Bez właściwego zrozumienia tych zasad, można łatwo wpaść w pułapkę nieprawidłowych założeń, co w efekcie prowadzi do błędnych decyzji w zakresie konfiguracji i zarządzania siecią.

Pytanie 38

Ile adresów IP można wykorzystać do adresowania komputerów w sieci o adresie 192.168.100.0 oraz masce 255.255.255.0?

A. 254
B. 256
C. 253
D. 255
Wybór 255 jako liczby dostępnych adresów IP w sieci 192.168.100.0 z maską 255.255.255.0 może wynikać z niepełnego zrozumienia zasad adresacji w protokole IPv4. Użytkownicy często mylą całkowitą liczbę adresów dostępnych w danej sieci z liczbą adresów, które mogą być przypisane urządzeniom. W rzeczywistości, w każdej sieci IP, dwa adresy są zawsze zarezerwowane: jeden dla identyfikacji samej sieci, a drugi dla rozgłoszenia. W przypadku sieci 192.168.100.0, adres sieci 192.168.100.0 informuje, że jest to sieć, a adres rozgłoszeniowy 192.168.100.255 jest używany do wysyłania danych do wszystkich urządzeń w tej sieci. Dlatego, nawet gdyby na pierwszy rzut oka wydawało się, że dostępnych jest 255 adresów, tak naprawdę można wykorzystać tylko 254 z nich. Również mylenie pojęcia adresu z maską podsieci prowadzi do nieporozumień w zakresie właściwego przyporządkowania adresów IP. Kluczowe jest, aby administratorzy sieci rozumieli te zasady, aby zapobiec technicznym problemom i konfliktom adresów, co jest zgodne z najlepszymi praktykami w projektowaniu i zarządzaniu sieciami.

Pytanie 39

Która z macierzy RAID opiera się na replikacji dwóch lub więcej dysków twardych?

A. RAID 3
B. RAID 0
C. RAID 5
D. RAID 1
RAID 1, znany również jako mirroring, polega na replikacji danych na co najmniej dwóch dyskach fizycznych. W przeciwieństwie do RAID 0, który dzieli dane na dyskach i nie zapewnia redundancji, RAID 1 tworzy kopię zapasową wszystkich danych, co znacząco zwiększa bezpieczeństwo informacji. W przypadku awarii jednego dysku, system może kontynuować działanie, korzystając z drugiego dysku. Przykładem zastosowania RAID 1 są serwery, które wymagają wysokiej dostępności danych, takich jak serwery plików czy bazy danych. Dobrym praktycznym podejściem jest również wykorzystanie RAID 1 w systemach desktopowych, gdzie użytkownik przechowuje ważne dokumenty lub zdjęcia. W branżowych standardach, takich jak ANSI/TIA-942, rekomenduje się implementację rozwiązań RAID jako część planu ochrony danych, co podkreśla znaczenie RAID 1 w zapewnieniu ciągłości działania i minimalizacji utraty danych.

Pytanie 40

Podczas uruchamiania komputera wyświetla się komunikat CMOS checksum error press F1 to continue, press Del to setup) naciśnięcie klawisza Del skutkuje

A. przejściem do konfiguracji systemu Windows
B. usunięciem pliku setup
C. wejściem do BIOSu komputera
D. skasowaniem zawartości pamięci CMOS
Wciśnięcie klawisza Del przy komunikacie 'CMOS checksum error' umożliwia użytkownikowi dostęp do BIOS-u komputera. BIOS, czyli Basic Input/Output System, jest podstawowym oprogramowaniem, które uruchamia się przy starcie komputera. Zarządza on najważniejszymi ustawieniami systemu, takimi jak kolejność bootowania, konfiguracja pamięci, czy ustawienia urządzeń peryferyjnych. W przypadku komunikatu o błędzie CMOS, oznacza to, że wartości zapisane w pamięci CMOS (Complementary Metal-Oxide-Semiconductor) są nieprawidłowe, co może skutkować problemami ze startem systemu. Wejście do BIOS-u pozwala na przywrócenie domyślnych ustawień, co najczęściej rozwiązuje problem. Dobrą praktyką jest regularne sprawdzanie ustawień BIOS-u, zwłaszcza po zainstalowaniu nowego sprzętu lub aktualizacji systemu. Użytkownicy powinni również pamiętać o dokumentowaniu zmian dokonanych w BIOS-ie oraz zrozumieć wpływ tych zmian na funkcjonowanie systemu.