Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 15 kwietnia 2025 12:24
  • Data zakończenia: 15 kwietnia 2025 12:47

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Co oznacza zapis 192.168.1/24 w kontekście maski podsieci?

A. 255.255.255.024
B. 255.255.255.0
C. 255.255.255.240
D. 255.255.240.0
Odpowiedź 255.255.255.0 jest poprawna, ponieważ odpowiada ona zapisie CIDR 192.168.1/24. W systemie CIDR /24 oznacza, że pierwsze 24 bity adresu IP są używane do identyfikacji sieci, a pozostałe 8 bitów do identyfikacji hostów w tej sieci. W przypadku maski 255.255.255.0, pierwsze trzy oktety (255.255.255) ustawione są na wartość maksymalną, co oznacza, że są one częścią identyfikatora sieci. Czwarty oktet (0) wskazuje, że wszystkie adresy IP od 192.168.1.1 do 192.168.1.254 mogą być używane jako adresy hostów. Taka konfiguracja jest powszechnie stosowana w małych sieciach lokalnych, co czyni ją idealną do zastosowań domowych oraz w małych biurach. Dzięki zastosowaniu odpowiedniej maski podsieci, administratorzy sieci mogą skutecznie zarządzać adresacją IP, unikając konfliktów adresów oraz optymalizując wykorzystanie zasobów sieciowych. Przykład zastosowania to np. sieć domowa, w której router rozdziela adresy IP w podanej puli na różne urządzenia, zapewniając dostęp do Internetu oraz umożliwiając komunikację między nimi.

Pytanie 2

Program CHKDSK jest wykorzystywany do

A. naprawy logicznej struktury dysku
B. naprawy fizycznej struktury dysku
C. zmiany rodzaju systemu plików
D. defragmentacji nośnika danych
CHKDSK, czyli Check Disk, to narzędzie w systemach operacyjnych Windows, które służy do analizy i naprawy logicznej struktury dysku. Jego głównym zadaniem jest identyfikacja i eliminacja błędów w systemie plików, takich jak uszkodzone sektory, błędne wpisy w tabeli alokacji plików oraz inne problemy, które mogą prowadzić do utraty danych. Przykładowo, jeśli system operacyjny zgłasza problemy z uruchomieniem lub ostrzega o błędach w plikach, przeprowadzenie skanowania przy użyciu CHKDSK może pomóc w rozwiązaniu tych problemów, przywracając integralność danych. Warto dodać, że narzędzie to można uruchomić w trybie graficznym lub z linii poleceń, co sprawia, że jest dostępne dla szerokiego kręgu użytkowników. Dobre praktyki branżowe zalecają regularne korzystanie z CHKDSK jako części konserwacji systemu, szczególnie po nieprawidłowym zamknięciu systemu czy awariach zasilania, aby zapewnić stabilność pracy systemu oraz zabezpieczyć przechowywane dane.

Pytanie 3

Który protokół służy do wymiany danych o trasach oraz dostępności sieci pomiędzy routerami w ramach tego samego systemu autonomicznego?

A. RIP
B. TCP
C. HTTP
D. RARP
TCP (Transmission Control Protocol) to protokół komunikacyjny, który zapewnia niezawodną, uporządkowaną i sprawdzoną dostawę danych między aplikacjami działającymi na różnych urządzeniach w sieci. Jego głównym celem jest zapewnienie transferu danych, a nie wymiana informacji o trasach, co czyni go nieodpowiednim wyborem w kontekście zarządzania trasami w sieciach. HTTP (Hypertext Transfer Protocol) jest protokołem służącym do przesyłania danych w Internecie, głównie do komunikacji między przeglądarkami a serwerami www. Nie jest on zaprojektowany do zarządzania trasami w sieciach, a jego ograniczenia w tym zakresie są oczywiste. RARP (Reverse Address Resolution Protocol) jest protokołem używanym do mapowania adresów IP na adresy MAC w przypadku, gdy urządzenie nie zna swojego adresu IP. To znacznie odbiega od celu wymiany informacji o trasach. Typowym błędem jest mylenie roli tych protokołów; TCP i HTTP są odpowiednie dla przesyłania danych, a RARP dla rozwiązywania adresów, ale żaden z nich nie jest używany do zarządzania trasami w sieciach. Właściwe zrozumienie funkcji poszczególnych protokołów w architekturze sieciowej jest kluczowe dla efektywnego projektowania i zarządzania infrastrukturą sieciową. W kontekście wymiany informacji o trasach w systemie autonomicznym, protokoły takie jak RIP są zdecydowanie bardziej odpowiednie.

Pytanie 4

Które stwierdzenie odnoszące się do ruterów jest prawdziwe?

A. Działają w warstwie łącza danych
B. Podejmują decyzje o przesyłaniu danych na podstawie adresów IP
C. Podejmują decyzje o przesyłaniu danych na podstawie adresów MAC
D. Działają w warstwie transportowej
Ruterzy są urządzeniami, które pełnią kluczową rolę w przesyłaniu danych w sieciach komputerowych, ale ich działanie nie jest związane z warstwą transportową ani z warstwą łącza danych, jak sugerują niepoprawne odpowiedzi. Warstwa transportowa, zgodnie z modelem OSI, obejmuje protokoły takie jak TCP i UDP, które odpowiedzialne są za zapewnienie niezawodności transmisji danych oraz zarządzanie przepływem. Rutery nie podejmują decyzji w tej warstwie, lecz koncentrują się na warstwie sieciowej, gdzie operują na adresach IP. Z kolei warstwa łącza danych, obejmująca protokoły takie jak Ethernet, zajmuje się przesyłaniem danych w obrębie pojedynczej sieci lokalnej. Odpowiedzi koncentrujące się na adresach MAC są mylące, ponieważ rutery nie wykorzystują tych adresów, które są używane głównie w ramach lokalnych sieci do komunikacji między urządzeniami. Ruterzy działają w oparciu o protokoły routingu, które operują na wyższej warstwie adresowania, co jest niezbędne do efektywnego kierowania pakietów przez różne sieci. Typowym błędem myślowym jest mieszanie funkcji różnych warstw modelu OSI, co prowadzi do nieporozumień na temat roli ruterów. Aby poprawnie zrozumieć działanie sieci komputerowych, ważne jest, aby mieć na uwadze, jak różne warstwy komunikują się ze sobą oraz jakie protokoły są odpowiedzialne za konkretne zadania.

Pytanie 5

Który z wymienionych protokołów umożliwia nawiązanie szyfrowanego połączenia z witryną internetową?

A. TCP
B. SPX
C. NetBEUI
D. HTTPS
HTTPS, czyli Hypertext Transfer Protocol Secure, to rozszerzenie protokołu HTTP, które zapewnia szyfrowanie danych przesyłanych pomiędzy przeglądarką a serwerem. Dzięki zastosowaniu protokołów SSL (Secure Sockets Layer) lub TLS (Transport Layer Security), HTTPS chroni integralność i poufność danych. W praktyce oznacza to, że informacje takie jak hasła, dane osobowe czy numery kart kredytowych są szyfrowane i nie mogą być łatwo przechwycone przez osoby trzecie. Użycie HTTPS jest szczególnie istotne w przypadku stron internetowych, które przetwarzają dane wrażliwe lub umożliwiają logowanie użytkowników. Warto również zauważyć, że wiele przeglądarek internetowych oznacza strony korzystające z HTTPS jako bezpieczne, co zwiększa zaufanie użytkowników. W kontekście standardów branżowych, Google promuje użycie HTTPS jako element SEO, co wpływa na widoczność strony w wynikach wyszukiwania. W związku z tym, każda organizacja powinna dążyć do implementacji HTTPS na swoich stronach, aby zapewnić bezpieczeństwo danych oraz zgodność z aktualnymi standardami najlepszych praktyk w dziedzinie bezpieczeństwa informacji.

Pytanie 6

Program "VirtualPC", dostępny do pobrania z witryny Microsoft, jest przeznaczony do korzystania:

A. z osobistego konta o pojemności 1 GB w serwerze wirtualnym Microsoft
B. z bezpłatnego konta o pojemności 100 MB w hostingu Microsoft
C. z wirtualnych systemów operacyjnych na lokalnym dysku
D. z darmowej pomocy technicznej TechNet.Soft firmy Virtual Soft
Program VirtualPC to oprogramowanie wirtualizacyjne, które pozwala na uruchamianie wielu systemów operacyjnych na jednym fizycznym komputerze, wykorzystując lokalny dysk twardy jako bazę. Jest to narzędzie przydatne dla deweloperów, testerów oprogramowania oraz administratorów systemów, którzy muszą pracować w różnych środowiskach. Dzięki VirtualPC można tworzyć wirtualne maszyny, co umożliwia testowanie aplikacji w różnych systemach operacyjnych, takich jak Windows, Linux, czy inne. To podejście jest zgodne z najlepszymi praktykami w branży IT, które zakładają minimalizację ryzyka przez izolację testów od głównego środowiska operacyjnego. Przy użyciu VirtualPC można także eksperymentować z konfiguracjami systemów bez obawy o destabilizację głównego systemu, co jest szczególnie istotne w kontekście ochrony danych i bezpieczeństwa. Ponadto, można w łatwy sposób przenosić wirtualne maszyny między różnymi komputerami, co zwiększa elastyczność i wygodę pracy.

Pytanie 7

Oznaczenie CE świadczy o tym, że

A. producent ocenił produkt pod kątem wydajności i ergonomii
B. wyrób jest zgodny z normami ISO
C. wyrób został wyprodukowany na terenie Unii Europejskiej
D. wyrób spełnia wymagania dotyczące bezpieczeństwa użytkowania, ochrony zdrowia oraz ochrony środowiska
Oznakowanie CE to taki symbol, który mówi, że produkt jest zgodny z unijnymi dyrektywami, które dotyczą bezpieczeństwa, zdrowia i ochrony środowiska. To bardzo ważne, zwłaszcza w przypadku rzeczy, które mogą wpływać na bezpieczeństwo, jak na przykład zabawki, sprzęt elektroniczny czy różne maszyny. Żeby uzyskać oznaczenie CE, producent musi przejść przez różne testy, które potwierdzają, że jego produkt spełnia normy. Na przykład zabawki powinny być zgodne z normami bezpieczeństwa EN 71, a sprzęt elektryczny z dyrektywami LVD i EMC. Dzięki temu, kupując coś, możemy być spokojni, że to jest bezpieczne i zgodne z unijnymi standardami, co jest ważne dla naszego zdrowia oraz dla środowiska.

Pytanie 8

Który z protokołów funkcjonuje w warstwie aplikacji modelu ISO/OSI, umożliwiając wymianę informacji kontrolnych między urządzeniami sieciowymi?

A. SNMP
B. POP3
C. DNS
D. SMTP
SNMP (Simple Network Management Protocol) to protokół, który działa w warstwie aplikacji modelu ISO/OSI i jest kluczowy dla zarządzania sieciami. Umożliwia wymianę informacji kontrolnych pomiędzy urządzeniami sieciowymi, takimi jak routery, przełączniki czy serwery. Protokół ten jest wykorzystywany do monitorowania i zarządzania sprzętem sieciowym, co pozwala administratorom na zbieranie danych o stanie urządzeń, wydajności, czy ewentualnych błędach. Przykładem zastosowania SNMP może być sytuacja, gdy zdalny serwer monitorujący zbiera informacje o obciążeniu CPU i ilości dostępnej pamięci RAM na urządzeniach w sieci. Dzięki SNMP administratorzy mogą szybko reagować na problemy, optymalizować konfiguracje oraz planować rozbudowę infrastruktury sieciowej. Standardy SNMP, takie jak SNMPv2 czy SNMPv3, wprowadzają dodatkowe funkcje, jak większe bezpieczeństwo i wydajność, co czyni ten protokół niezbędnym w zarządzaniu nowoczesnymi sieciami komputerowymi.

Pytanie 9

Schemat ilustruje ustawienia karty sieciowej dla urządzenia z adresem IP 10.15.89.104/25. Można z niego wywnioskować, że

Ilustracja do pytania
A. serwer DNS znajduje się w tej samej podsieci co urządzenie
B. adres IP jest błędny
C. adres maski jest błędny
D. adres domyślnej bramy pochodzi z innej podsieci niż adres hosta
Adres IP 10.15.89.104 z maską 255.255.255.128 niby wydaje się być okej, bo 104 jest w zakresie hostów tej podsieci. Maska 255.255.255.128 znaczy, że pierwsze 25 bitów to część sieci, co jakby daje możliwość podzielenia sieci na podsieci z 128 adresami (126 do wykorzystania). Ale to wszystko może być mylące, bo źle to zrozumieć to można przypisać adresy niewłaściwie. Jeśli chodzi o serwer DNS 8.8.8.8, to on jest publiczny i wcale nie musi być w tej samej podsieci co urządzenie, bo dostęp do DNS idzie przez bramę. Często się myśli, że wszystkie serwery muszą być w tej samej podsieci co host, ale dla DNS to nie jest wymagane. Problem zaczyna się, gdy brama nie jest w tej samej podsieci co adres IP hosta. Musi być w zasięgu, żeby mogła przepychać ruch do innych sieci. Dla adresu IP 10.15.89.104/25, poprawna brama powinna być w podsieci 10.15.89.0/25, a nie w 10.15.89.128/25. Brama 10.15.89.129 jest w sąsiedniej podsieci, co utrudnia komunikację z nią bez dodatkowych tras. W konfiguracji sieci ważne jest, żeby rozumieć jak działają zakresy adresów i jak je przypisuje, bo inaczej mogą być problemy z komunikacją poza lokalną podsiecią. Złe ustawienia mogą prowadzić do kłopotów w zarządzaniu siecią oraz w jej bezpieczeństwie. Wiedza o tym, jak przypisywać adresy i dlaczego to robić jest kluczowa dla administratorów sieci.

Pytanie 10

Do czego służy program firewall?

A. ochrony dysku przed przepełnieniem
B. ochrony sieci LAN oraz systemów przed intruzami
C. zabezpieczenia systemu przed błędnymi aplikacjami
D. zapobiegania przeciążeniu procesora przez system
Firewall, lub zapora sieciowa, to kluczowy element zabezpieczeń, który chroni sieci LAN oraz systemy przed nieautoryzowanym dostępem i atakami intruzów. Pełni on funkcję filtrowania ruchu sieciowego, analizując pakiety danych, które przychodzą i wychodzą z sieci. Dzięki regułom skonfigurowanym przez administratorów, firewall może blokować niebezpieczne połączenia oraz zezwalać na ruch zgodny z politykami bezpieczeństwa. Przykładem zastosowania firewallu może być jego użycie w przedsiębiorstwie, gdzie zabezpiecza on wewnętrzną sieć przed atakami z zewnątrz, takimi jak skanowania portów czy ataki DDoS. Istnieją różne typy firewalli, w tym zapory sprzętowe oraz programowe, które są stosowane w zależności od potrzeb organizacji. Dobre praktyki w zarządzaniu firewallami obejmują regularne aktualizacje reguł, monitorowanie logów oraz audyty bezpieczeństwa, aby zminimalizować ryzyko nieautoryzowanego dostępu. W kontekście rosnących zagrożeń w cyberprzestrzeni, odpowiednia konfiguracja i utrzymanie firewalli jest niezbędne dla zapewnienia integralności i poufności danych.

Pytanie 11

Jaki jest adres rozgłoszeniowy w sieci mającej adres IPv4 192.168.0.0/20?

A. 192.168.255.254
B. 192.168.15.255
C. 192.168.255.255
D. 192.168.15.254
Adresem rozgłoszeniowym w podsieci IPv4 192.168.0.0/20 jest 192.168.15.255. Aby zrozumieć, dlaczego ta odpowiedź jest poprawna, należy przyjrzeć się strukturze adresacji IPv4 oraz zasadom tworzenia podsieci. Adres 192.168.0.0/20 oznacza, że mamy 20 bitów przeznaczonych na część sieci, co pozostawia 12 bitów na część hosta. Obliczając zakres adresów, możemy stwierdzić, że adresy hostów w tej podsieci zaczynają się od 192.168.0.1 i kończą na 192.168.15.254, gdzie 192.168.15.255 jest adresem rozgłoszeniowym. Adres rozgłoszeniowy jest wykorzystywany do wysyłania pakietów do wszystkich urządzeń w danej podsieci. W praktyce, gdy urządzenie w sieci chce skomunikować się z innymi urządzeniami jednocześnie, wykorzystuje ten adres. Uwzględniając standardy IETF, takie jak RFC 791, właściwe określenie adresów sieciowych i rozgłoszeniowych jest kluczowe dla prawidłowego zarządzania i konfiguracji sieci.

Pytanie 12

Na ilustracji pokazano przekrój kabla

Ilustracja do pytania
A. koncentrycznego
B. optycznego
C. S/UTP
D. U/UTP
Kabel koncentryczny to rodzaj przewodu elektrycznego, który charakteryzuje się centralnym przewodnikiem otoczonym warstwą izolatora oraz ekranem zewnętrznym, co jest dokładnie przedstawione na rysunku. Centralny przewodnik przewodzi sygnał, podczas gdy zewnętrzny ekran, wykonany zwykle z oplotu miedzianego lub folii, działa jako osłona przed zakłóceniami elektromagnetycznymi. Takie konstrukcje są kluczowe w zastosowaniach wymagających wysokiej jakości transmisji sygnału, takich jak telewizja kablowa, internet szerokopasmowy czy instalacje antenowe. Kabel koncentryczny jest ceniony za swoją zdolność do przenoszenia sygnałów o wysokiej częstotliwości na duże odległości z minimalnymi stratami. W standardach IEEE oraz ITU uznaje się go za niezawodne medium transmisji w wielu aplikacjach telekomunikacyjnych. Jego konstrukcja zapewnia dobre właściwości ekranowania, co jest kluczowe w środowiskach z dużym natężeniem zakłóceń elektromagnetycznych. Wiedza o kablach koncentrycznych jest niezbędna dla specjalistów zajmujących się instalacją sieci telekomunikacyjnych oraz systemów telewizji kablowej, co czyni tę tematykę istotnym elementem edukacji zawodowej w tej dziedzinie.

Pytanie 13

Jaką maksymalną liczbę adresów można przypisać urządzeniom w sieci 10.0.0.0/22?

A. 1024 adresy
B. 1022 adresy
C. 512 adresów
D. 510 adresów
W analizie błędnych odpowiedzi warto zauważyć, że niektóre z nich wynikają z nieporozumień dotyczących zasad obliczania dostępnych adresów IP w danej sieci. Odpowiedzi, które sugerują liczbę 512 adresów, wynikają z błędnego zrozumienia maski podsieci. Maska /22 jest często mylona z maską /23, która rzeczywiście daje 512 adresów, co prowadzi do zamieszania w obliczeniach. Inna odpowiedź, która proponuje 510 adresów, również jest nieprawidłowa, ponieważ jest wynikiem pomyłki w obliczeniach, gdzie ktoś mógłby odjąć dodatkowy adres, nie uwzględniając prawidłowego schematu rezerwacji adresów. Warto pamiętać, że każda sieć wymaga zrozumienia, że dwa adresy są zawsze zarezerwowane, co jest kluczowe w kontekście tworzenia efektywnych i funkcjonalnych schematów adresowania. Wprowadzenie takiego myślenia w praktyce pozwala na lepsze zarządzanie IP oraz uniknięcie konfliktów, co jest istotne w dużych środowiskach sieciowych. Dlatego ważne jest, aby dobrze rozumieć podstawowe zasady adresacji IP i maskowania, aby uniknąć typowych błędów i nieporozumień, które mogą prowadzić do niskiej wydajności sieci lub problemów z komunikacją.

Pytanie 14

Na ilustracji przedstawiono diagram funkcjonowania

Ilustracja do pytania
A. karty graficznej
B. kontrolera USB
C. modemu
D. karty dźwiękowej
Schemat przedstawia działanie karty dźwiękowej, co jest poprawną odpowiedzią. Karta dźwiękowa jest urządzeniem służącym do przetwarzania dźwięku w komputerze. Schemat ilustruje elementy takie jak DSP (Digital Signal Processor), przetworniki A/C (analogowo-cyfrowe) i C/A (cyfrowo-analogowe) oraz wzmacniacz audio. Współczesne karty dźwiękowe umożliwiają konwersję sygnałów analogowych na cyfrowe i odwrotnie, co jest niezbędne dla odtwarzania i nagrywania dźwięku. W praktyce oznacza to, że umożliwiają one podłączenie mikrofonu oraz głośników do komputera, przetwarzanie dźwięku na poziomie sprzętowym oraz jego miksowanie. Karty dźwiękowe mogą obsługiwać różne technologie, takie jak synteza FM czy Wave Table, co pozwala na generowanie realistycznych dźwięków. Ważnym aspektem jest również zgodność z standardami audio, co zapewnia wysoką jakość dźwięku i kompatybilność z różnorodnym oprogramowaniem. Karty dźwiękowe znajdują zastosowanie zarówno w profesjonalnych studiach nagrań, jak i w domowych komputerach do gier czy multimediów.

Pytanie 15

Zrzut ekranu ilustruje aplikację

Ilustracja do pytania
A. typu recovery
B. typu firewall
C. antywirusowy
D. antyspamowy
Firewall to mega ważny element w zabezpieczeniach sieci komputerowych. Działa jak taka bariera pomiędzy naszą siecią a światem zewnętrznym. Jego głównym zadaniem jest monitorowanie i kontrolowanie ruchu w sieci, oczywiście na podstawie reguł, które wcześniej ustaliliśmy. Na zrzucie ekranu widać listę reguł przychodzących, co pokazuje, że mamy do czynienia z typowym firewall'em. Firewalle mogą być hardware'owe albo software'owe i często można je ustawiać w taki sposób, żeby filtrowały pakiety, zmieniały adresy sieciowe czy sprawdzały stan połączeń. Dobrze skonfigurowany firewall chroni przed nieautoryzowanym dostępem, zapobiega atakom DOS i kontroluje, kto ma dostęp do naszych zasobów. Korzysta się z nich w różnych miejscach, od domowych sieci po te wielkie korporacyjne. Dobrze jest regularnie aktualizować reguły firewalla, sprawdzać logi w poszukiwaniu dziwnych rzeczy i łączyć go z innymi narzędziami bezpieczeństwa, jak systemy wykrywania intruzów. Jak się to wszystko dobrze poustawia, można znacząco poprawić bezpieczeństwo i chronić nasze wrażliwe dane przed zagrożeniami w sieci.

Pytanie 16

Który typ macierzy RAID zapewnia tzw. mirroring dysków?

A. RAID-2
B. RAID-0
C. RAID-1
D. RAID-5
RAID-2 nie jest odpowiednim rozwiązaniem do mirroringu dysków, ponieważ skupia się na rozdzielaniu danych i wykorzystywaniu dysków do równoległego zapisu, co nie zapewnia ochrony danych poprzez ich duplikację. RAID-5, z kolei, korzysta z parzystości rozdzielonej pomiędzy dyski, co pozwala na rekonstrukcję danych w przypadku awarii jednego z dysków, jednak nie oferuje pełnego mirroringu, który jest kluczowym elementem RAID-1. RAID-0 to konfiguracja, która zwiększa wydajność poprzez striping, ale nie zapewnia żadnej redundancji, co czyni ją nieodpowiednią dla zastosowań wymagających ochrony danych. Typowe błędy w myśleniu o RAID wynikają z mylenia terminów związanych z wydajnością i bezpieczeństwem. Użytkownicy mogą błędnie zakładać, że wszystkie poziomy RAID oferują podobny poziom ochrony, podczas gdy w rzeczywistości różnią się one istotnie pod względem zabezpieczeń i metod zapisu danych. Dlatego tak ważne jest zrozumienie podstawowych różnic między konfiguracjami RAID oraz ich zastosowaniem w praktyce, co pozwala na podejmowanie świadomych decyzji w zakresie architektury systemów pamięci masowej.

Pytanie 17

Możliwości zmiany uprawnień dostępu do plików w systemie Windows 10 można uzyskać za pomocą komendy

A. verify
B. icacls
C. set
D. convert
Polecenie icacls (ang. Integrity Control Access Control Lists) jest narzędziem w systemie Windows 10, które umożliwia zarządzanie uprawnieniami dostępu do plików i folderów. Używając icacls, administratorzy mogą modyfikować, wyświetlać, tworzyć oraz przywracać uprawnienia dostępu do zasobów systemowych. Przykładowo, aby nadać użytkownikowi pełne uprawnienia do pliku, można użyć komendy: icacls \"ścieżka\do\pliku\" /grant Użytkownik:F. To polecenie przyznaje użytkownikowi pełne (F - Full) uprawnienia do modyfikowania i odczytywania pliku. Ponadto, icacls pozwala na automatyzację zarządzania uprawnieniami poprzez skrypty, co jest zgodne z najlepszymi praktykami w administracji systemami operacyjnymi. Dzięki tym funkcjom, narzędzie to jest niezwykle przydatne w kontekście zapewnienia bezpieczeństwa systemów Windows, umożliwiając precyzyjne zarządzanie dostępem do danych. Warto również zaznaczyć, że icacls obsługuje różne poziomy uprawnień, takie jak odczyt, zapis, czy pełna kontrola, co daje administratorom dużą elastyczność w zarządzaniu dostępem do zasobów."

Pytanie 18

Jakie narzędzie służy do delikatnego wygięcia blachy obudowy komputera i przykręcenia śruby montażowej w trudno dostępnych miejscach?

Ilustracja do pytania
A. Rys. A
B. Rys. B
C. Rys. D
D. Rys. C
Szczypce przedstawione na rysunku D są idealnym narzędziem do manipulacji blachą i śrubami w trudno dostępnych miejscach. Ich długi, wąski zakończenie pozwala na precyzyjne działanie, co jest kluczowe w przypadku montażu komponentów komputerowych, gdzie przestrzeń operacyjna jest często ograniczona. Szczypce te są zaprojektowane tak, aby zapewniać pewny chwyt i umożliwiać operacje w wąskich szczelinach, co jest szczególnie przydatne, gdy chcemy lekko odgiąć blachę obudowy, nie ryzykując jej uszkodzenia, oraz gdy musimy zamocować śrubę w miejscu, do którego inne narzędzia nie mają dostępu. W branży IT i serwisowaniu sprzętu komputerowego używanie szczypiec o cienkich końcówkach jest standardem ze względu na ich wszechstronność i precyzję. Ponadto, w kontekście standardów bezpieczeństwa, tego rodzaju narzędzia minimalizują ryzyko uszkodzenia delikatnych komponentów elektronicznych, co czyni je nieocenionymi w codziennej pracy techników i inżynierów sprzętu komputerowego. Dbałość o użycie odpowiednich narzędzi to dobra praktyka w każdej profesji technicznej, zwłaszcza gdy mamy do czynienia z wrażliwym sprzętem komputerowym.

Pytanie 19

W laserowej drukarce do utrwalania wydruku na papierze stosuje się

A. taśmy transmisyjne
B. głowice piezoelektryczne
C. rozgrzane wałki
D. promienie lasera
W drukarce laserowej do utrwalenia obrazu na kartce wykorzystuje się rozgrzane wałki, które nazywane są również wałkami utrwalającymi. Proces ten polega na podgrzewaniu tonera, który został nałożony na papier. Gdy papier przechodzi przez wałki, ich wysoka temperatura powoduje, że toner topnieje i wnika w strukturę papieru, co sprawia, że wydruk staje się trwalszy i odporniejszy na ścieranie. Takie rozwiązanie jest kluczowe do uzyskania wysokiej jakości wydruków, ponieważ zapewnia równomierne pokrycie tonera oraz zapobiega zacieraniu się drukowanych obrazów. W nowoczesnych drukarkach laserowych stosuje się technologie, które pozwalają na osiąganie różnych temperatur w zależności od rodzaju papieru oraz wymagań dotyczących jakości wydruku. Dobre praktyki w branży drukarskiej zalecają regularne konserwowanie wałków utrwalających, aby zapewnić ich efektywne działanie i przedłużyć żywotność urządzenia, co jest istotne zarówno w biurach, jak i w drukarniach komercyjnych.

Pytanie 20

Który z adresów protokołu IP w wersji 4 jest poprawny pod względem struktury?

A. 192.21.140.16
B. 192.0.FF.FF
C. 192.309.1.255
D. 192.10.255.3A
Adres IP w wersji 4 (IPv4) składa się z czterech oktetów oddzielonych kropkami, a każdy oktet jest liczbą całkowitą w zakresie od 0 do 255. Odpowiedź 192.21.140.16 spełnia te kryteria, gdyż wszystkie cztery oktety są w odpowiednich granicach. Przykład ten jest typowym adresem przypisanym do urządzeń w sieci i jest używany w wielu lokalnych oraz globalnych konfiguracjach sieciowych. W praktyce adresy IPv4 są wykorzystywane do routingu pakietów danych w Internecie oraz w sieciach lokalnych. Zgodnie z protokołem Internetowym (RFC 791), ważne jest, aby adresy IP były poprawnie skonstruowane, aby zapewnić ich poprawne przesyłanie i odbieranie w sieci. Dodatkowo, w kontekście bezpieczeństwa i zarządzania siecią, administrowanie adresami IP wymaga ich prawidłowej struktury, co pozwala na skuteczne zarządzanie ruchem sieciowym oraz unikanie konfliktów adresowych.

Pytanie 21

Który z poniższych protokołów nie jest wykorzystywany do konfiguracji wirtualnej sieci prywatnej?

A. SSTP
B. SNMP
C. PPTP
D. L2TP
L2TP, PPTP i SSTP to protokoły, które są fundamentalne w kontekście konfiguracji wirtualnych sieci prywatnych. L2TP jest protokołem tunelowym, który często jest używany w połączeniu z IPsec, co zapewnia wysoki poziom bezpieczeństwa. W praktyce oznacza to, że L2TP samodzielnie nie zapewnia szyfrowania, ale w połączeniu z IPsec oferuje kompleksowe rozwiązanie dla bezpiecznego przesyłania danych. PPTP, pomimo krytyki za lukę w bezpieczeństwie, jest często stosowany ze względu na łatwość konfiguracji i szybkość implementacji, co sprawia, że jest popularny w mniej wymagających środowiskach. SSTP, z kolei, wykorzystuje protokół HTTPS do tunelowania, co czyni go bardziej odpornym na blokady stosowane przez niektóre sieci. W kontekście SNMP, wielu użytkowników myli jego zastosowanie, sądząc, że może on pełnić funkcję zabezpieczania połączeń VPN. To nieporozumienie wynika z faktu, że SNMP jest protokołem zarządzania, a nie tunelowania czy szyfrowania. Zrozumienie, że SNMP służy do monitorowania i zarządzania urządzeniami sieciowymi, a nie do zabezpieczania komunikacji, jest kluczowe dla efektywnego zastosowania technologii sieciowych. Często myśli się, że każde narzędzie używane w kontekście sieci powinno mieć zdolności zabezpieczające, co prowadzi do błędnych wniosków i wyborów technologicznych.

Pytanie 22

Oświetlenie oparte na diodach LED w trzech kolorach wykorzystuje skanery typu

A. CIS
B. CMOS
C. CCD
D. CMYK
Wybór odpowiedzi CCD (Charge-Coupled Device) w kontekście skanowania z zastosowaniem diod LED jest błędny, ponieważ technologia ta, chociaż powszechnie stosowana w fotografii i skanowaniu, różni się zasadniczo od CIS. CCD generuje obraz poprzez gromadzenie ładunków elektrycznych w matrycy, co wymaga bardziej skomplikowanego systemu zasilania i większej ilości komponentów, co wpływa na jego większe zużycie energii oraz rozmiar. W przeciwieństwie do CIS, CCD nie jest idealnym rozwiązaniem dla aplikacji wymagających niskiego poboru energii, co czyni go mniej efektywnym z punktu widzenia nowoczesnych systemów oświetleniowych LED, które preferują efektywność energetyczną. W przypadku CMOS (Complementary Metal-Oxide-Semiconductor), jest to technologia, która również jest stosowana w skanowaniu, lecz podobnie jak CCD, nie jest optymalna przy zastosowaniach LED ze względu na różnice w konstrukcji i wymagania dotyczące zasilania. Z kolei odpowiedź CMYK (Cyan, Magenta, Yellow, Black) odnosi się do modelu kolorów wykorzystywanego w druku, a nie w technologii skanowania. Zrozumienie tych różnic jest kluczowe, aby uniknąć nieporozumień w kontekście wyboru technologii odpowiedniej do danego zastosowania. W praktyce, błędne wnioski mogą wynikać z mylenia różnych rodzajów technologii obrazowania oraz ich zastosowań w systemach oświetleniowych, co prowadzi do nieefektywnych rozwiązań, które nie odpowiadają aktualnym standardom branżowym.

Pytanie 23

Wykonanie komendy dxdiag w systemie Windows pozwala na

A. kompresję wskazanych danych na dysku twardym
B. konfigurację klawiatury, aby była zgodna z wymaganiami języka polskiego
C. uruchomienie maszyny wirtualnej z systemem Windows 10 zainstalowanym
D. uruchomienie narzędzia diagnostycznego DirectX
Wykonanie polecenia dxdiag w systemie Windows uruchamia narzędzie diagnostyczne DirectX, które jest kluczowym elementem do analizy i rozwiązywania problemów związanych z grafiką oraz dźwiękiem w systemie. Narzędzie to umożliwia użytkownikom zbieranie informacji na temat zainstalowanych komponentów sprzętowych, takich jak karty graficzne, dźwiękowe oraz sterowniki. Dzięki temu można szybko zidentyfikować potencjalne problemy z wydajnością lub zgodnością z oprogramowaniem. Przykładowo, gdy użytkownik doświadcza problemów z uruchomieniem gry, uruchomienie dxdiag pozwala sprawdzić, czy sterowniki graficzne są aktualne oraz czy sprzęt spełnia minimalne wymagania. To narzędzie jest również użyteczne dla programistów, którzy chcą zrozumieć, jak ich aplikacje działają na różnych konfiguracjach sprzętowych, zapewniając zgodność i optymalizację. W branży gier i multimediów, regularne korzystanie z dxdiag jest praktyką zalecaną, aby zapewnić, że system jest zawsze w optymalnym stanie operacyjnym, co wpisuje się w standardy zarządzania jakością oprogramowania.

Pytanie 24

Do usunięcia kurzu z wnętrza obudowy drukarki fotograficznej zaleca się zastosowanie

A. opaski antystatycznej
B. środka smarującego
C. sprężonego powietrza w pojemniku z wydłużoną rurką
D. szczotki z twardym włosiem
Użycie sprężonego powietrza w pojemniku z wydłużoną rurką to najlepsza metoda czyszczenia wnętrza obudowy drukarki fotograficznej. Sprężone powietrze efektywnie usuwa kurz i drobne zanieczyszczenia z trudno dostępnych miejsc, takich jak wnętrze mechanizmów i elementów optycznych. Wydłużona rurka pozwala na precyzyjne kierowanie strumienia powietrza, co minimalizuje ryzyko uszkodzenia delikatnych komponentów. Warto pamiętać, że przy używaniu sprężonego powietrza należy trzymać puszkę w pozycji pionowej, aby uniknąć wydostawania się cieczy, która może uszkodzić elektronikę. Czyszczenie wnętrza drukarki powinno być regularnie przeprowadzane, co pozwala na utrzymanie jej w dobrym stanie oraz wydłużenie żywotności sprzętu. Standardy branżowe zalecają czyszczenie drukarek fotograficznych co najmniej raz na pół roku, a w intensywnym użytkowaniu częściej. Używanie sprężonego powietrza jest również zgodne z praktykami zalecanymi przez producentów sprzętu.

Pytanie 25

Aby chronić sieć WiFi przed nieautoryzowanym dostępem, należy między innymi

A. dezaktywować szyfrowanie informacji
B. włączyć filtrowanie adresów MAC
C. wybrać nazwę identyfikatora sieci SSID o długości co najmniej 16 znaków
D. korzystać tylko z kanałów wykorzystywanych przez inne sieci WiFi
Włączenie filtrowania adresów MAC jest skuteczną metodą zabezpieczania sieci bezprzewodowej przed nieautoryzowanym dostępem. Filtrowanie adresów MAC polega na zezwalaniu na dostęp do sieci wyłącznie urządzeniom, których unikalne adresy fizyczne (MAC) zostały wcześniej zapisane w urządzeniu routera lub punktu dostępowego. Dzięki temu, nawet jeśli potencjalny intruz zna nazwę SSID i hasło do sieci, nie będzie mógł uzyskać dostępu, jeśli jego adres MAC nie znajduje się na liście dozwolonych. Praktyczne zastosowanie tej metody polega na regularnej aktualizacji listy dozwolonych adresów, szczególnie po dodaniu nowych urządzeń. Warto jednak pamiętać, że filtrowanie adresów MAC nie jest niezawodną metodą, ponieważ adresy MAC mogą być fałszowane przez bardziej zaawansowanych hakerów. Dlatego zaleca się stosowanie tej techniki w połączeniu z innymi metodami zabezpieczania, takimi jak silne szyfrowanie WPA3, które oferuje lepszą ochronę danych przesyłanych przez sieć. Filtrowanie adresów MAC jest zgodne z dobrymi praktykami bezpieczeństwa w sieciach lokalnych i jest szeroko stosowane w środowiskach zarówno domowych, jak i biznesowych.

Pytanie 26

Interfejs graficzny systemu Windows, który wyróżnia się przezroczystością przypominającą szkło oraz delikatnymi animacjami okien, nazywa się

A. Gnome
B. Aero
C. Luna
D. Royale
Luna to interfejs wizualny, który był dominującą estetyką w systemie Windows XP i charakteryzował się bardziej płaskim i kolorowym wyglądem. Mimo że Luna wprowadziła pewne poprawki w zakresie użyteczności i estetyki w porównaniu do wcześniejszych wersji, nie posiadała zaawansowanych efektów, takich jak przezroczystość. Wybierając Lunę, można wprowadzić pewne kolory i style, ale nie oferuje ona bogatej palety animacji ani efektów wizualnych, które są kluczowe w Aero. Royale to z kolei motyw wizualny stworzony dla Windows XP i nie jest on związany z przezroczystością ani animacjami. Był to bardziej estetyczny dodatek, który jednak nie wprowadził znaczących innowacji w porównaniu do Luna. Gnome, natomiast, to środowisko graficzne dla systemów Linux, które ma inne cele i charakterystyki, nie jest zatem powiązane z interfejsem Windows. Typowym błędem myślowym jest mylenie motywów wizualnych z interfejsami użytkownika; wielu użytkowników z rozczarowaniem odkrywa, że wybór niewłaściwego interfejsu nie dostarcza oczekiwanych efektów estetycznych i funkcjonalnych. Kluczowe jest rozpoznanie różnic między tymi systemami, aby optymalnie wykorzystać dostępne możliwości w danym środowisku operacyjnym.

Pytanie 27

Zjawiskiem typowym, które może świadczyć o nadchodzącej awarii twardego dysku, jest wystąpienie

A. komunikatu CMOS checksum error
B. błędów przy zapisie i odczycie danych z dysku
C. trzech krótkich sygnałów dźwiękowych
D. komunikatu Diskette drive A error
Pojawienie się błędów zapisu i odczytu dysku jest jednym z najczęstszych i najważniejszych objawów, które mogą wskazywać na zbliżającą się awarię dysku twardego. Tego rodzaju błędy zazwyczaj oznaczają, że mechaniczne lub elektroniczne komponenty dysku zaczynają zawodzić, co prowadzi do problemów z dostępem do danych. W praktyce, gdy użytkownik zauważa takie błędy, ważne jest, aby natychmiast wykonać kopię zapasową danych, aby zminimalizować ryzyko ich utraty. Standardy dobrych praktyk w zarządzaniu danymi sugerują regularne tworzenie kopii zapasowych oraz monitorowanie stanu dysków za pomocą narzędzi diagnostycznych, które mogą wykrywać problemy, zanim staną się krytyczne. Dodatkowo, wiele nowoczesnych dysków twardych jest wyposażonych w technologie S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology), które umożliwiają wczesne wykrywanie potencjalnych problemów. Takie podejście proaktywne jest kluczowe w zarządzaniu danymi w dzisiejszym środowisku technologicznym.

Pytanie 28

Dodatkowe właściwości rezultatu operacji przeprowadzanej przez jednostkę arytmetyczno-logiczne ALU obejmują

A. rejestr flagowy
B. wskaźnik stosu
C. akumulator
D. licznik instrukcji
Odpowiedzi takie jak licznik rozkazów, akumulator i wskaźnik stosu wskazują na szereg nieporozumień dotyczących funkcji i struktury jednostki arytmetyczno-logicznej oraz ogólnej architektury komputerów. Licznik rozkazów jest odpowiedzialny za śledzenie adresu bieżącego rozkazu w pamięci, a jego zadaniem jest wskazywanie, który rozkaz ma być wykonany następnie. Nie ma on jednak związku z przechowywaniem informacji o wynikach operacji arytmetycznych, co czyni go niewłaściwym wyborem w kontekście tego pytania. Akumulator, choć istotny w kontekście operacji arytmetycznych, nie przechowuje flag ani informacji o stanie operacji. Jego rola polega na tym, że jest głównym rejestrem używanym do wykonywania operacji obliczeniowych, ale nie informuje o rezultatach tych operacji w kontekście ich statusu. Wskaźnik stosu, z kolei, zarządza lokalizacją w pamięci, gdzie przechowywane są dane tymczasowe, ale nie jest odpowiedzialny za przechowywanie flaga operacji. Kluczowym błędem myślowym, który prowadzi do tych niepoprawnych odpowiedzi, jest brak zrozumienia, że rejestr flagowy jest jedynym elementem, który bezpośrednio przechowuje status wyniku operacji wykonanych przez ALU, zatem to on dostarcza informacji niezbędnych do dalszego przetwarzania i podejmowania decyzji przez procesor.

Pytanie 29

Który z poniższych protokołów funkcjonuje w warstwie aplikacji?

A. FTP
B. UDP
C. ARP
D. TCP
UDP (User Datagram Protocol), ARP (Address Resolution Protocol) oraz TCP (Transmission Control Protocol) są protokołami, które działają w warstwie transportowej i warstwie linku, a nie w warstwie aplikacji. UDP jest protokołem bezpołączeniowym, co oznacza, że nie ustanawia połączenia przed wysłaniem danych, co może prowadzić do utraty pakietów, ale jest wydajny w aplikacjach, gdzie szybkość jest kluczowa, takich jak transmisje wideo czy gry online. Z kolei TCP jest protokołem połączeniowym, który zapewnia niezawodne przesyłanie danych poprzez potwierdzenia i retransmisję w przypadku utraty pakietów, co czyni go idealnym dla aplikacji wymagających dokładności, jak przeglądanie stron internetowych czy poczta elektroniczna. ARP z kolei jest protokołem warstwy linku, odpowiedzialnym za mapowanie adresów IP na adresy MAC w lokalnej sieci, co jest kluczowe dla komunikacji w sieciach Ethernet. Typowym błędem myślowym jest mylenie warstw modelu OSI i przypisywanie protokołów do niewłaściwych warstw, co może prowadzić do nieporozumień w kontekście ich funkcji i zastosowania. Zrozumienie tych różnic jest kluczowe dla efektywnego projektowania i wdrażania rozwiązań sieciowych oraz dla bezproblemowej komunikacji między różnymi systemami.

Pytanie 30

Jakie oznaczenie na schematach sieci LAN przypisuje się punktom rozdzielczym dystrybucyjnym znajdującym się na różnych kondygnacjach budynku według normy PN-EN 50173?

A. CD (Campus Distribution)
B. MDF (Main Distribution Frame)
C. BD (BuildingDistributor)
D. FD (Floor Distribution)
Odpowiedzi BD (Building Distributor), CD (Campus Distribution) oraz MDF (Main Distribution Frame) są nieprawidłowe w kontekście oznaczeń punktów rozdzielczych dystrybucyjnych na poszczególnych piętrach budynku. BD odnosi się do głównego punktu dystrybucyjnego w obrębie całego budynku, który obsługuje kilka pięter lub stref, ale nie jest precyzyjnie związany z lokalizacją na każdym piętrze. CD dotyczy z kolei bardziej rozległych instalacji, takich jak kampusy uniwersyteckie, gdzie sieci rozciągają się na wiele budynków, a ich struktura jest zorganizowana na poziomie kampusu, co nie odpowiada lokalnym potrzebom pięter. MDF to główny punkt rozdzielczy, który zazwyczaj znajduje się w pomieszczeniach technicznych lub serwerowniach, a jego rola polega na agregacji sygnałów z różnych FD i BD, a nie na ich dystrybucji na poziomie piętra. Te błędne odpowiedzi mogą wynikać z mylnego pojmowania struktury sieci oraz funkcji poszczególnych punktów dystrybucyjnych. Właściwe rozumienie klasyfikacji i funkcji w sieciach LAN jest kluczowe do efektywnego projektowania oraz zarządzania infrastrukturą, co z kolei wpływa na wydajność oraz niezawodność całego systemu. Zrozumienie tych różnic jest niezbędne dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 31

Jeżeli szybkość pobierania danych z sieci wynosi 8 Mb/s, to w ciągu 6 s możliwe jest pobranie pliku o maksymalnej wielkości równej

A. 6 MB
B. 2 MB
C. 8 MB
D. 4 MB
Prędkość pobierania danych wynosząca 8 Mb/s oznacza, że urządzenie jest w stanie pobrać 8 megabitów danych w ciągu jednej sekundy. Aby obliczyć, ile danych można pobrać w czasie 6 sekund, należy pomnożyć prędkość przez czas: 8 Mb/s * 6 s = 48 Mb. Ponieważ jednostki są w megabitach, przeliczenie megabitów na megabajty jest kluczowe, gdyż 1 bajt to 8 bitów. Zatem 48 Mb / 8 = 6 MB. To pokazuje, że w ciągu 6 sekund można pobrać plik o maksymalnej wielkości 6 MB. Warto zaznaczyć, że w praktyce rzeczywista prędkość pobierania może być mniejsza z powodu różnych czynników, takich jak przeciążenie sieci, ograniczenia serwera czy jakość połączenia. Dlatego znajomość tych podstawowych obliczeń i możliwości jest kluczowa, zwłaszcza przy planowaniu pobierania dużych plików z internetu, co jest często praktykowane w codziennym użytkowaniu lub podczas pracy z dużymi zbiorami danych.

Pytanie 32

Jaką kwotę trzeba będzie przeznaczyć na zakup kabla UTP kat.5e do zbudowania sieci komputerowej składającej się z 6 stanowisk, gdzie średnia odległość każdego stanowiska od przełącznika wynosi 9 m? Należy uwzględnić 1 m zapasu dla każdej linii kablowej, a cena za 1 metr kabla to 1,50 zł?

A. 60,00 zł
B. 120,00 zł
C. 150,00 zł
D. 90,00 zł
Koszt zakupu kabla UTP kat.5e dla sieci złożonej z 6 stanowisk komputerowych, przy średniej odległości każdego stanowiska od przełącznika wynoszącej 9 m oraz uwzględnieniu 1 m zapasu, oblicza się w następujący sposób: dla 6 stanowisk potrzebujemy 6 linii kablowych, z których każda będzie miała długość 10 m (9 m + 1 m zapasu). Łączna długość kabla wynosi więc 60 m (6 x 10 m). Jeśli cena za 1 metr kabla wynosi 1,50 zł, to całkowity koszt zakupu wyniesie 90,00 zł (60 m x 1,50 zł). Użycie kabla kat.5e jest zgodne z aktualnymi standardami sieciowymi, które zalecają stosowanie odpowiednich kategorii kabli w zależności od przewidywanej prędkości transmisji danych. Przykładem może być zastosowanie UTP kat.5e w sieciach LAN, gdzie może wspierać prędkości do 1 Gbps na długości do 100 m, co jest wystarczające dla większości biur czy małych przedsiębiorstw. Warto również pamiętać, aby stosować odpowiednie złącza oraz dbać o jakość instalacji, co ma kluczowe znaczenie dla stabilności i efektywności przesyłu danych.

Pytanie 33

Usterka przedstawiona na ilustracji, widoczna na monitorze komputera, nie może być spowodowana przez

Ilustracja do pytania
A. przegrzanie karty graficznej
B. spalenie rdzenia lub pamięci karty graficznej po overclockingu
C. uszkodzenie modułów pamięci operacyjnej
D. nieprawidłowe napięcie zasilacza
Przegrzewanie się karty graficznej może powodować różne dziwne artefakty na ekranie, bo generowanie grafiki 3D wymaga sporo mocy i ciepła. Jeśli chłodzenie karty jest za słabe albo powietrze krąży źle, to temperatura może wzrosnąć, co prowadzi do kłopotów z działaniem chipów graficznych i problemów z obrazem. Zasilacz to też sprawa kluczowa, bo jak napięcie jest złe, to może to wpłynąć na stabilność karty. Zasilacz z niewystarczającą mocą lub z uszkodzeniem może spowodować przeciążenia i wizualne problemy. Jak ktoś kręci rdzeń czy pamięć karty graficznej po overclockingu, to może dojść do błędów w wyświetlaniu, bo przekraczanie fabrycznych ograniczeń mocno obciąża komponenty i może je uszkodzić termicznie. Podsumowując, wszystkie te przyczyny, poza problemami z pamięcią RAM, są związane z kartą graficzną i jej działaniem, co skutkuje zakłóceniami w obrazie.

Pytanie 34

Jak określamy atak na sieć komputerową, który polega na łapaniu pakietów przesyłanych w sieci?

A. Skanowanie sieci
B. Nasłuchiwanie
C. ICMP echo
D. Spoofing
Skanowanie sieci to technika, która polega na analizowaniu dostępnych urządzeń i ich otwartych portów w celu zrozumienia struktury sieci. Choć skanowanie może być częścią większej strategii oceny bezpieczeństwa, nie jest to technika ataku na przechwytywanie danych. W rzeczywistości, skanowanie jest często wykorzystywane do identyfikacji potencjalnych luk w zabezpieczeniach, co różni się od nasłuchiwania, które koncentruje się na aktywnym odbiorze danych. ICMP echo, znany bardziej jako ping, to protokół używany do sprawdzania dostępności hostów w sieci, a nie do przechwytywania danych. Użycie ICMP echo w kontekście ataku jest mylące, ponieważ jego celem jest jedynie diagnostyka sieciowa, a nie monitorowanie ruchu. Spoofing natomiast odnosi się do techniki, w której atakujący podszywa się pod inny adres IP w celu oszukania systemów zabezpieczeń. Chociaż spoofing może być używany jako część ataku, nie jest bezpośrednio związany z przechwytywaniem pakietów. Bardzo ważne jest zrozumienie, że pomylenie tych pojęć może prowadzić do niewłaściwego projektowania strategii bezpieczeństwa, co zwiększa podatność na rzeczywiste ataki. Właściwe rozróżnienie terminów i technik jest kluczowe w budowaniu efektywnego systemu obrony przed zagrożeniami w sieciach komputerowych.

Pytanie 35

Z powodu uszkodzenia kabla typu skrętka utracono dostęp między przełącznikiem a stacją roboczą. Który instrument pomiarowy powinno się wykorzystać, aby zidentyfikować i naprawić problem bez wymiany całego kabla?

A. Miernik mocy
B. Multimetr
C. Analizator widma
D. Reflektometr TDR
Reflektometr TDR (Time Domain Reflectometer) to specjalistyczne urządzenie, które służy do lokalizacji uszkodzeń w kablach, takich jak skrętka. Działa ono na zasadzie wysyłania impulsu elektrycznego wzdłuż kabla, a następnie analizowania sygnału odbitego. Dzięki temu można dokładnie określić miejsce, w którym wystąpiła przerwa lub uszkodzenie, co pozwala na precyzyjne i efektywne naprawy bez konieczności wymiany całego kabla. Przykładem zastosowania reflektometru TDR może być sytuacja, gdy w biurze występują problemy z połączeniem sieciowym. Używając TDR, technik szybko zidentyfikuje, na jakiej długości kabla znajduje się problem, co znacznie skraca czas naprawy. W branżowych standardach, takich jak ISO/IEC 11801, podkreśla się znaczenie stosowania narzędzi, które minimalizują przestoje w działaniu sieci, a reflektometr TDR jest jednym z kluczowych urządzeń, które wspierają te działania.

Pytanie 36

Usługa umożliwiająca przechowywanie danych na zewnętrznym serwerze, do którego dostęp możliwy jest przez Internet to

A. żadna z powyższych
B. PSTN
C. Cloud
D. VPN
Cloud, czyli chmura obliczeniowa, to usługa przechowywania danych oraz zasobów na zewnętrznych serwerach, które są dostępne przez Internet. Dzięki temu użytkownicy nie muszą inwestować w drogi sprzęt ani konfigurować lokalnych serwerów, co znacznie obniża koszty infrastruktury IT. W praktyce, usługi chmurowe oferują elastyczność oraz skalowalność, co oznacza, że użytkownicy mogą szybko dostosowywać swoje zasoby do zmieniających się potrzeb. Przykłady popularnych rozwiązań chmurowych to Amazon Web Services (AWS), Microsoft Azure czy Google Cloud Platform, które stosują standardy takie jak ISO/IEC 27001 dla zarządzania bezpieczeństwem informacji. Chmura obliczeniowa wspiera także zdalną współpracę, umożliwiając zespołom pracę zdalną oraz dostęp do zasobów z dowolnego miejsca na świecie. Warto także zwrócić uwagę na modele chmurowe, takie jak IaaS (Infrastructure as a Service), PaaS (Platform as a Service) i SaaS (Software as a Service), które oferują różne poziomy zarządzania i kontroli nad zasobami.

Pytanie 37

Podczas wymiany uszkodzonej karty graficznej, która współpracowała z monitorem posiadającym jedynie wejście analogowe, jaką kartę należy wybrać?

A. Sapphire Radeon R7 250X FLEX, 1GB GDDR5 (128 Bit), HDMI, 2xDVI, DP, LITE
B. Sapphire Radeon R7 250, 1GB GDDR5 (128 Bit), microHDMI, DVI, miniDP LP, BULK
C. ZOTAC GeForce GT 730 Synergy Edition, 4GB DDR3 (128 Bit), 2xDVI, miniHDMI
D. Gigabyte GeForce GT 740 OC, 1GB GDDR5 (128 Bit), HDMI, DVI, D-Sub
Wybór innych kart graficznych, takich jak Sapphire Radeon R7 250X FLEX, ZOTAC GeForce GT 730 Synergy Edition czy Sapphire Radeon R7 250, jest błędny ze względu na brak analogowego złącza D-Sub. Karty te oferują różne porty, takie jak HDMI, DVI czy DisplayPort, ale nie zapewniają połączenia, które jest niezbędne do współpracy z monitorami mającymi jedynie wejście analogowe. Użytkownicy często mogą mylnie sądzić, że DVI to wystarczające złącze, nie zdając sobie sprawy, że typ DVI-D nie obsługuje sygnału analogowego, co czyni go nieodpowiednim dla starszych monitorów bez wbudowanego dekodera. Często popełnianym błędem jest niedostateczne zrozumienie różnicy pomiędzy analogowymi a cyfrowymi sygnałami wideo; nie wszystkie porty DVI są stworzone do przekazywania sygnałów analogowych. Ponadto, mimo że karty z portem HDMI mogą współpracować z odpowiednimi adapterami, to złącze D-Sub pozostaje kluczowym elementem w kontekście starszej technologii. Dlatego wybierając kartę graficzną, warto skupić się na jej specyfikacji i dostępnych złączach, by uniknąć problemów podczas podłączania sprzętu. Pominięcie tego aspektu może prowadzić do frustracji oraz dodatkowych kosztów związanych z zakupem niezbędnych adapterów lub całkowitą wymianą monitorów.

Pytanie 38

Który z portów na pokazanej płycie głównej pozwala na podłączenie zewnętrznego dysku za pośrednictwem interfejsu e-SATA?

Ilustracja do pytania
A. 3
B. 2
C. 4
D. 1
Interfejs e-SATA, który jest przedstawiony pod numerem 2 na zdjęciu, jest specjalnym portem umożliwiającym podłączanie zewnętrznych dysków twardych oraz innych urządzeń pamięci masowej, oferując wyższe prędkości transferu danych niż standardowy USB. Standard e-SATA został zaprojektowany z myślą o zapewnieniu szybkiego i stabilnego połączenia z urządzeniami zewnętrznymi, co jest szczególnie korzystne w przypadku pracy z dużymi plikami czy w środowisku wymagającym wysokiej wydajności. W odróżnieniu od standardowego SATA, e-SATA zapewnia lepszą ochronę przed zakłóceniami elektromagnetycznymi, co jest kluczowe w sytuacjach, gdy urządzenia są podłączane i odłączane często. Warto zauważyć, że e-SATA nie dostarcza zasilania, w przeciwieństwie do niektórych wersji USB, co oznacza, że zewnętrzne dyski podłączane przez e-SATA często wymagają osobnego źródła zasilania. Jest to zgodne z praktykami branżowymi, gdzie e-SATA jest wykorzystywane w profesjonalnych rozwiązaniach do przechowywania danych, takich jak serwery NAS czy systemy do edycji video. Znajomość tego portu i jego zastosowań pozwala na lepsze projektowanie rozwiązań IT, które wymagają niezawodnego i szybkiego dostępu do danych.

Pytanie 39

Która z zaprezentowanych na rysunkach topologii odpowiada topologii siatki?

Ilustracja do pytania
A. Rys. D
B. Rys. C
C. Rys. B
D. Rys. A
Topologia siatki, przedstawiona na rysunku A jest strukturą sieciową, gdzie każdy węzeł jest bezpośrednio połączony z każdym innym. Tego typu topologia zapewnia najwyższy poziom redundancji i niezawodności, ponieważ awaria jednego połączenia nie wpływa na komunikację pomiędzy innymi węzłami. Przykładowo w systemach krytycznych takich jak centra danych czy sieci wojskowe, topologia siatki jest wykorzystywana do zapewnienia ciągłości działania. Standardy branżowe takie jak IEEE 802.1AX dotyczące agregacji łączy wspierają tego typu konfiguracje, umożliwiając równoważenie obciążenia i zwiększenie przepustowości. Dobre praktyki w projektowaniu takiej sieci obejmują uwzględnienie wysokich kosztów implementacji i złożoności zarządzania, jednakże zyski w postaci minimalnego opóźnienia transmisji i optymalnej niezawodności często przeważają nad wadami. Topologia siatki jest także idealna dla sieci o wysokiej dostępności wymagających dynamicznego routingu i pełnej skalowalności, umożliwiając szybkie rekonfiguracje sieci bez przestojów w działaniu systemu.

Pytanie 40

Jaki protokół stosują komputery, aby informować rutera o przynależności do konkretnej grupy multicastowej?

A. RIP
B. UDP
C. OSPF
D. IGMP
OSPF (Open Shortest Path First) to protokół routingu stosowany w sieciach IP, ale jego funkcjonalność jest zupełnie inna niż IGMP. OSPF służy do dynamicznego wykrywania i zarządzania trasami w sieci, a nie do zarządzania członkostwem w grupach multicastowych. Jego celem jest zapewnienie optymalnej ścieżki dla ruchu IP poprzez algorytmy takie jak Dijkstra, co ma kluczowe znaczenie w dużych, złożonych sieciach. UDP (User Datagram Protocol) to natomiast protokół transportowy, który umożliwia przesyłanie danych bez gwarancji dostarczenia, co czyni go nieodpowiednim do zarządzania członkostwem w grupach rozgłoszeniowych. W kontekście przesyłania multicastowego, UDP może być używany jako protokół transportowy dla strumieni danych, lecz nie zarządza on informacjami o tym, które urządzenia należą do danej grupy. RIP (Routing Information Protocol) to inny protokół routingu, który, podobnie jak OSPF, nie ma funkcji związanych z zarządzaniem grupami multicastowymi. W związku z tym, odpowiedzi związane z OSPF, UDP i RIP są nieprawidłowe, ponieważ nie odpowiadają na pytanie o sposób, w jaki komputery informują routery o członkostwie w grupach rozgłoszeniowych. Zrozumienie różnic między tymi protokołami a IGMP jest kluczowe dla prawidłowego projektowania i zarządzania sieciami, aby skutecznie wykorzystywać ich specyfikę w praktycznych zastosowaniach.