Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 21 maja 2025 18:48
  • Data zakończenia: 21 maja 2025 18:51

Egzamin niezdany

Wynik: 3/40 punktów (7,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Napawanie to sposób na

A. czyszczenie
B. montaż
C. regenerację
D. demontaż
Napawanie to nie jest to samo co czyszczenie, ani demontaż czy montaż. Czyszczenie to tak naprawdę usuwanie brudu z powierzchni, a to zupełnie coś innego niż napawanie. Choć czyszczenie może być pierwszym krokiem przed napawaniem, to jednak nie można ich mylić. Demontaż polega na rozkładaniu elementów na części, co jest ważne, ale ma się nijak do procesu napawania. Montaż, wiadomo, to składanie różnych części w całość, a to też nie ma nic wspólnego z napawaniem. Jeśli ktoś myśli, że napawanie to to samo co te inne procesy, to może się mocno pomylić w kontekście technologii. Jak ktoś chce regenerować części maszyn, powinien wiedzieć, że napawanie to złożony proces, który wymaga odpowiednich umiejętności i znajomości materiałów. Dlatego warto się trzymać standardów branżowych i nie mylić tych podstawowych rzeczy.

Pytanie 2

Pompa niskociśnieniowa wymaga założenia uszczelki płynnej. Na podstawie zamieszonego fragmentu etykiety wskaż sposób postępowania przy jej zakładaniu.

Uszczelka płynna (fragment etykiety)
Płynne uszczelki stanowią odrębną grupę materiałów, o najlepszych wśród materiałów uszczelniających zdolnościach do dopasowywania się do uszczelnianych powierzchni. Idealnie niwelują wszelkie niedokładności powierzchni, wżery oraz wypełniają nierówności wynikające z chropowatości powierzchni. Są skutecznym rozwiązaniem we wszystkich układach o dużej sztywności elementów np. pomp, zaworów, połączeń gwintowych. Uszczelki mogą pracować w szerokim zakresie temperatur przez długi czas, zapewniają szczelność połączenia przy niskich ciśnieniach natychmiast po zmontowaniu części, oraz eliminują konieczność posiadania pełnego kompletu uszczelek stałych o różnych kształtach.

A. Wyciąć odpowiednią uszczelkę z arkusza i umieścić na wyszlifowanej powierzchni, pokryć warstwą uszczelki płynnej.
B. Oczyścić powierzchnię z pyłu i kurzu, nałożyć uszczelkę, która od razu zapewnia pełną szczelność układu.
C. Wyszlifować powierzchnię, nałożyć uszczelkę, gdy temperatura pompy spadnie do temperatury pokojowej, odczekać do uzyskania pełnej szczelności układu.
D. Wyciąć odpowiednią uszczelkę z arkusza i umieścić na oczyszczonej powierzchni, pokryć warstwą uszczelki płynnej, odczekać do uzyskania pełnej szczelności układu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na oczyszczenie powierzchni z pyłu i kurzu oraz nałożenie uszczelki, która zapewnia natychmiastową szczelność, jest zgodna z zaleceniami producentów uszczelki płynnej. Uszczelki tego typu są projektowane w taki sposób, aby ich aplikacja była szybka i efektywna. Oczyszczenie powierzchni jest kluczowym krokiem, ponieważ zanieczyszczenia mogą negatywnie wpływać na adhezję uszczelki do powierzchni, prowadząc do wycieków. W praktyce, przed nałożeniem uszczelki płynnej, warto używać odpowiednich środków czyszczących oraz narzędzi, aby upewnić się, że powierzchnia jest gładka i wolna od resztek starych uszczelek. Nałożenie uszczelki płynnej zgodnie z instrukcjami producenta zapewnia optymalne parametry techniczne, co jest szczególnie istotne w zastosowaniach przemysłowych, gdzie szczelność układu jest kluczowa dla zachowania bezpieczeństwa i efektywności operacyjnej. Warto również zaznaczyć, że uszczelki płynne mogą być stosowane w różnych warunkach temperaturowych i ciśnieniowych, co czyni je uniwersalnym rozwiązaniem w wielu aplikacjach inżynieryjnych.

Pytanie 3

Zanim podejmiemy decyzję o koksowaniu odpowiednio wyselekcjonowanej mieszanki różnych rodzajów węgla, konieczne jest pobranie próbki tej mieszanki

A. zgłębnikiem i poddać ją analizie sitowej
B. aspiratorem i poddać ją analizie na zawartość siarki
C. czerpakiem i poddać ją analizie sitowej
D. dmuchawą przemysłową i poddać ją analizie na zawartość siarki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź, czyli pobranie próbki mieszaniny węgla zgłębnikiem i poddanie jej analizie sitowej, jest kluczowym krokiem w procesie przygotowywania koksu. Zgłębnik to narzędzie, które pozwala na uzyskanie reprezentatywnej próbki, co jest niezbędne do oceny jakości węgla. Analiza sitowa umożliwia określenie rozkładu granulacji węgla, co wpływa na jego zachowanie w procesie koksowania. Granulometria ma istotne znaczenie, ponieważ różne frakcje węgla mogą mieć różne właściwości reologiczne i chemiczne, co z kolei może wpłynąć na efektywność procesu koksowania oraz jakość uzyskanego koksu. Przykładowo, zbyt gruba frakcja może prowadzić do nieodpowiedniego spalania, a zbyt drobna do tworzenia nadmiernej ilości pyłów, co ma negatywny wpływ na środowisko. Dlatego zgodnie z normami branżowymi, takie jak ISO 3310 dotyczące klasyfikacji granulometrycznej, istotne jest, aby proces pobierania próbek i analiza były przeprowadzane w sposób zgodny z ustalonymi standardami.

Pytanie 4

W jaki sposób powinny być przechowywane butle ze sprężonym siarkowodorem?

A. Na świeżym powietrzu pod zadaszeniem
B. Na najwyższym piętrze budynku
C. W ogrzewanym pomieszczeniu razem z innymi gazami technicznymi
D. W wydzielonej strefie na hali produkcyjnej
Magazynowanie butli ze sprężonym siarkowodorem na wolnym powietrzu pod zadaszeniem to najlepsza praktyka zapewniająca bezpieczeństwo. Siarkowodór jest gazem toksycznym i łatwopalnym, dlatego wymaga odpowiednich warunków składowania. Zadaszenie chroni butle przed działaniem niekorzystnych warunków atmosferycznych, takich jak deszcz czy śnieg, które mogłyby wpłynąć na integralność butli. Dodatkowo, umiejscowienie w otwartej przestrzeni minimalizuje ryzyko gromadzenia się gazu w zamkniętym pomieszczeniu, co mogłoby prowadzić do niebezpiecznych sytuacji. Ważne jest również, aby strefa składowania była odpowiednio oznakowana i oddzielona od innych obiektów, co jest zgodne z normami takimi jak PN-EN 14175. Przykładem może być budowanie zadaszonego pomieszczenia, które posiada odpowiednie wentylacje oraz dostęp do systemu detekcji gazów, co dodatkowo zwiększa bezpieczeństwo operacji związanych z tym niebezpiecznym gazem.

Pytanie 5

Jakie są zasady bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła?

A. Na regulacji temperatury czynnika grzewczego/chłodzącego
B. Na weryfikacji szczelności połączeń rur w dnie sitowym
C. Na regulacji ilości par odprowadzanych do skraplacza
D. Na analizowaniu twardości wody w wymienniku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bieżąca kontrola pracy płaszczowo-rurowego wymiennika ciepła polega głównie na regulacji temperatury czynnika grzewczego lub chłodzącego, co jest kluczowe dla efektywności wymiany ciepła. Utrzymanie właściwej temperatury czynnika pozwala na zoptymalizowanie transferu ciepła pomiędzy obiegiem a wymiennikiem, co przekłada się na oszczędności energetyczne oraz minimalizację zużycia mediów. Dobrą praktyką jest monitorowanie parametrów operacyjnych, takich jak temperatura i ciśnienie, co pozwala na szybką reakcję w przypadku jakichkolwiek odchyleń od norm. Przykładem zastosowania tej wiedzy może być przemysł chemiczny, w którym stała kontrola temperatury czynnika chłodzącego jest krytyczna dla stabilności procesu produkcyjnego. Warto również wspomnieć, że zgodnie z normą ASME, regularne przeglądy i kalibracje czujników temperatury są niezbędne dla zapewnienia bezpiecznego i efektywnego działania wymienników ciepła. Takie podejście przyczynia się do dłuższej żywotności urządzeń oraz zwiększenia efektywności energetycznej instalacji.

Pytanie 6

Przyczyną przerywanej (nieciągłej) pracy pompy może być

A. niewłaściwa współosiowość wału pompy względem wału silnika
B. zbyt duża prędkość obrotowa pompy
C. niewystarczająca prędkość obrotowa pompy
D. nieszczelny rurociąg ssawny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelny rurociąg ssawny jest istotnym czynnikiem mogącym prowadzić do przerywanej pracy pompy. Gdy występują nieszczelności w rurociągu ssawnym, powstaje ubytek ciśnienia, co skutkuje utrudnionym zasysaniem cieczy przez pompę. Przykładem zastosowania tej wiedzy jest regularne przeprowadzanie inspekcji rurociągów oraz stosowanie odpowiednich uszczelek i materiałów odpornych na korozję. Zgodnie z normami ISO 9001, efektywne zarządzanie jakością w systemach pompowych wymaga monitorowania szczelności rurociągów, aby uniknąć awarii i przestojów. W praktyce, zastosowanie manometrów oraz czujników ciśnienia umożliwia bieżące monitorowanie i identyfikację problemów związanych z nieszczelnością. To podejście nie tylko zwiększa efektywność systemu, ale także pozwala na szybsze reagowanie na ewentualne problemy, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 7

Jednym z kroków w produkcji sody metodą Solvaya jest filtracja uzyskanego NaHCO3. Przesącz, który zawiera sole amonowe, powinien być skierowany do

A. kolumny regeneracyjnej
B. osadnika ścieków
C. pieca obrotowego
D. kolumny karbonizacyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolumna regeneracyjna jest kluczowym elementem w procesie produkcji sody metodą Solvaya. Jej główną funkcją jest efektywne przetwarzanie i odzyskiwanie amoniaku ze ścieków zawierających sole amonowe. W tym etapie procesu, przesącz z NaHCO3 jest kierowany do kolumny regeneracyjnej, gdzie amoniak jest oddzielany i ponownie wykorzystywany w cyklu produkcyjnym. Dzięki tym procedurom zwiększa się efektywność wykorzystania surowców oraz minimalizuje negatywny wpływ na środowisko. Regeneracja amoniaku nie tylko odgrywa rolę w zamknięciu cyklu produkcyjnego, ale także jest zgodna z najlepszymi praktykami w zakresie zrównoważonego rozwoju i oszczędności surowców. W praktyce, kolumny regeneracyjne są projektowane w oparciu o zasady inżynierii chemicznej, uwzględniające optymalizację wymiany masy, co przekłada się na wysoką wydajność procesów chemicznych, a ich stosowanie jest powszechne w zakładach przemysłu chemicznego.

Pytanie 8

Jakie urządzenie dozujące powinno być użyte w procesie technologicznym, który wymaga bardzo precyzyjnego podawania surowca w formie materiału sypkiego?

A. Podajnik wahliwy
B. Podajnik taśmowy
C. Dozownik naczyniowy
D. Dozownik wagowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dozownik wagowy jest najbardziej odpowiednim rozwiązaniem w sytuacji, gdy zachowanie wysokiej dokładności jest kluczowe przy podawaniu surowca w postaci materiału sypkiego. Tego rodzaju urządzenie działa na zasadzie pomiaru masy materiału, co pozwala na precyzyjne kontrolowanie jego ilości. Dozowniki wagowe są często wykorzystywane w branżach, takich jak chemiczna, spożywcza czy farmaceutyczna, gdzie istnieją rygorystyczne normy dotyczące dokładności i powtarzalności dozowania. Przykładowo, w procesach produkcji leków, gdzie każdy składnik musi być dokładnie odważony, dozownik wagowy zapewnia nie tylko precyzję, ale również możliwość monitorowania i dokumentowania procesu. Dzięki zastosowaniu nowoczesnych technologii, takich jak czujniki tensometryczne, dozowniki wagowe osiągają wysoką dokładność, co jest zgodne z normami ISO oraz innymi standardami branżowymi. Z tego powodu, wybór dozownika wagowego w kontekście dużej dokładności jest w pełni uzasadniony i zalecany.

Pytanie 9

Jakie jest zamierzenie procesu mielenia fosforytu w przygotowaniu surowca stałego do produkcji superfosfatu?

A. uproszczenia transportu fosforytu przenośnikami do komory wytwórczej
B. zwiększenia powierzchni styku surowca z kwasem siarkowym
C. uprzedzenia załadunku fosforytu do komory wytwórczej
D. uzyskania superfosfatu w formie pyłowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na zwiększenie powierzchni kontaktu surowca z kwasem siarkowym jest prawidłowa, ponieważ proces mielenia fosforytu ma kluczowe znaczenie w produkcji superfosfatu. Zmielenie surowca prowadzi do znacznego powiększenia jego powierzchni, co z kolei umożliwia bardziej efektywną reakcję chemiczną z kwasem siarkowym. W praktyce, im większa powierzchnia cząstek, tym intensywniejsza reakcja, co przekłada się na wyższą wydajność procesu produkcji nawozów. Ostatecznie, zwiększona powierzchnia kontaktu minimalizuje czas reakcji oraz zwiększa stopień przekształcenia fosforytu w superfosfat. Dobre praktyki w branży nawozowej wskazują, że efektywność procesu produkcji nawozów fosforowych, takich jak superfosfat, jest ściśle związana z wielkością cząstek surowca, co potwierdzają wyniki badań eksperymentalnych. Właściwe przygotowanie surowca jest więc niezbędne dla spełnienia norm jakościowych i uzyskania produktu o wysokiej rozpuszczalności, co jest istotne z punktu widzenia upraw rolnych i zastosowania nawozów w praktyce.

Pytanie 10

Zbiornik przeznaczony do magazynowania oleju opałowego ma pojemność 400 m3. Jaki czas zajmie napełnienie go do 80% pojemności, jeśli objętościowe natężenie przepływu oleju wynosi 8 m3/h?

A. 40 godzin
B. 50 godzin
C. 4 godziny
D. 5 godzin
Aby obliczyć czas napełniania zbiornika oleju opałowego o objętości 400 m³ do 80% jego pojemności, najpierw musimy określić, jaka to objętość. 80% z 400 m³ wynosi 320 m³. Następnie, mając natężenie przepływu oleju wynoszące 8 m³/h, możemy obliczyć czas potrzebny do napełnienia tej objętości, dzieląc 320 m³ przez 8 m³/h. Otrzymujemy 40 godzin. Takie obliczenia są kluczowe w praktycznych zastosowaniach inżynieryjnych, np. w zarządzaniu zbiornikami paliw, co wymaga znajomości przepływów oraz czasu napełnienia dla zapewnienia efektywności operacyjnej. W kontekście standardów, przepływomierze i systemy monitorowania są często wykorzystywane do dokładnych pomiarów, co pozwala na optymalizację procesów związanych z przechowywaniem i transportem płynów. Wiedza na temat obliczeń objętości i czasu jest niezbędna w branżach zajmujących się energetyką i transportem paliw, gdzie precyzja ma kluczowe znaczenie dla bezpieczeństwa i efektywności operacji.

Pytanie 11

Zidentyfikuj przyczynę dymienia z dławicy pompy wirowej, która występuje podczas usuwania wycieku z niej poprzez równomierne dociskanie nakrętek. Dymienie powstało na skutek

A. wzrostu temperatury pompowanego medium
B. wzrostu ciśnienia pompowanego medium
C. braku współosiowości wałów na sprzęgle
D. przypalania uszczelki i uszkadzania tulei wału

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dymienie z dławicy pompy wirowej, które występuje podczas eliminowania wycieku, ma swoje źródło w przypalaniu szczeliwa oraz niszczeniu tulei wału. Dławice w pompach są zaprojektowane w celu minimalizacji wycieków cieczy, a nadmierny docisk nakrętek dławicy prowadzi do zwiększenia tarcia i generowania ciepła. Wysoka temperatura może spowodować degradację materiałów uszczelniających, co skutkuje ich przypalaniem. Przykładami dobrych praktyk są regularne kontrole stanu dławic oraz stosowanie odpowiednich materiałów uszczelniających zgodnych z wymaganiami temperaturowymi i chemicznymi pompowanego medium. W odpowiednim doborze uszczelnień uwzględnia się również parametry pracy pompy oraz pracujące ciśnienie, co powinno być zgodne z normami takimi jak ISO 9001, które regulują jakość wytwarzania i użytkowania urządzeń przemysłowych. Zrozumienie tej dynamiki jest kluczowe dla zapewnienia efektywnej i długotrwałej eksploatacji systemów pompowych.

Pytanie 12

W celu przygotowania wsadu do komór koksowniczych należy

Mieszanka wsadowa do komór koksowniczych
składa się z różnych gatunków węgla
zawiera 90-95% kawałków o średnicy mniejszej niż 3 mm
zawiera wodę w ilości poniżej 9%
zawiera popiół w ilości poniżej 8%

A. rozdrobnić i wymieszać w potrzebnych proporcjach węgiel określonych gatunków, przesiać i wysuszyć otrzymaną mieszankę.
B. rozdrobnić i przesiać węgiel różnych gatunków, zarobić olejem na pastę, przeprowadzić granulację i wysuszyć.
C. rozdrobnić i przesiać węgiel różnych gatunków, posortować, podzielić na partie i wysuszyć.
D. wymieszać w potrzebnych proporcjach węgiel określonych gatunków, przeprowadzić klasyfikację i pełną analizę mieszanki.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ przygotowanie wsadu do komór koksowniczych wymaga mieszania węgla różnych gatunków w odpowiednich proporcjach, co jest kluczowe dla uzyskania właściwych parametrów technologicznych. Mieszanka powinna mieć zawartość węgla o odpowiedniej frakcji, co zapewnia proces przesiania. Odpowiednie rozdrobnienie węgla do frakcji mniejszej niż 3 mm jest istotne, gdyż umożliwia optymalne spalanie w piecach koksowniczych. Warto zauważyć, że zawartość wody w mieszance nie powinna przekraczać 9%, co jest istotne dla wydajności procesu koksowania. Dodatkowo, niska zawartość popiołu (poniżej 8%) jest również kluczowa, aby uniknąć niepożądanych efektów ubocznych w procesie produkcyjnym. W praktyce, odpowiednie przygotowanie wsadu pozwala na uzyskanie wyższej jakości koksu, co ma bezpośredni wpływ na efektywność produkcyjną oraz jakość finalnych produktów. Dlatego też, kluczowym zagadnieniem w technologii koksowania jest nie tylko dobór odpowiednich gatunków węgla, ale również zapewnienie właściwego procesu technologicznego, co zostało uwzględnione w poprawnej odpowiedzi.

Pytanie 13

Absorpcja gazu realizowana jest w sposób przeciwprądowy, przekazując gaz do cieczy (absorbenta) w kolumnie wypełnionej. Która zasada technologiczna wpływa na tę metodę przeprowadzania procesu?

A. Zasadą wykonywania jedynie niezbędnej pracy
B. Zasadą odzysku ciepła
C. Zasadą maksymalnej powierzchni kontaktu gazu z cieczą
D. Zasadą maksymalnego wykorzystania produktów ubocznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi dotyczącej zasady jak najlepszego rozwinięcia powierzchni zetknięcia gazu i cieczy jest właściwy, ponieważ proces absorpcji gazu do cieczy w systemie przeciwprądowym polega na maksymalizacji kontaktu pomiędzy obiema fazami. W przypadku takiej konfiguracji, gaz przepływa w kierunku przeciwnym do ruchu cieczy, co znacząco zwiększa efektywność wymiany masy. Dzięki temu, każdy krok procesu absorpcji ma możliwość optymalnego wykorzystania różnicy stężeń między gazem a cieczą. Przykładem zastosowania tej zasady są kolumny absorpcyjne w przemyśle chemicznym, gdzie wykorzystywane są do usuwania zanieczyszczeń gazowych, takich jak CO2, z gazów odlotowych. Właściwe dobranie parametrów projektowych, takich jak rodzaj wypełnienia kolumny oraz prędkości przepływu obu faz, jest kluczowe dla osiągnięcia wysokiej efektywności procesu. Dobre praktyki branżowe podkreślają znaczenie maksymalizacji powierzchni kontaktu, co można osiągnąć poprzez zastosowanie odpowiednich materiałów wypełniających, serii tarcz czy innych struktur zwiększających turbulencje, co dodatkowo wspomaga intensyfikację procesu absorpcji.

Pytanie 14

Jaki jest podstawowy cel stosowania inhibitorów korozji w przemysłowych instalacjach chemicznych?

A. Zwiększenie przewodności cieczy
B. Zwiększenie lepkości cieczy
C. Ochrona urządzeń przed uszkodzeniami chemicznymi
D. Zmniejszenie ciśnienia roboczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Inhibitory korozji są kluczowymi substancjami chemicznymi stosowanymi w przemyśle chemicznym, ponieważ ich podstawowym zadaniem jest ochrona urządzeń przed uszkodzeniami chemicznymi. Korozja to proces, który prowadzi do degradacji materiałów, zwłaszcza metali, w wyniku reakcji chemicznych z otaczającym środowiskiem. W instalacjach przemysłowych, gdzie często występują agresywne chemikalia i wysokie temperatury, ryzyko korozji jest szczególnie wysokie. Inhibitory korozji działają na różne sposoby: mogą tworzyć ochronną warstwę na powierzchni metalu, zmieniać środowisko reakcyjne, aby było mniej agresywne lub wpływać na kinetykę reakcji korozji. Dzięki temu zmniejsza się tempo degradacji materiałów, co przedłuża żywotność urządzeń i zmniejsza koszty związane z przestojami i wymianą uszkodzonych części. W praktyce stosowanie inhibitorów korozji jest standardem w wielu gałęziach przemysłu, takich jak przemysł naftowy, gazowy, chemiczny i energetyczny. Przykładem może być dodawanie inhibitorów do wody chłodzącej w systemach kotłowych, aby zapobiec korozji rur i wymienników ciepła. Takie działania są zgodne z najlepszymi praktykami inżynieryjnymi i normami branżowymi, które kładą nacisk na minimalizowanie ryzyka korozji dla zapewnienia bezpieczeństwa i efektywności procesów przemysłowych.

Pytanie 15

Jakie działania należy podjąć, aby zapewnić prawidłowe funkcjonowanie przenośnika taśmowego?

A. Na ustawieniu maszyny pod kątem
B. Na regularnym nawadnianiu taśmy transportowej
C. Na wprowadzeniu strumienia suchego powietrza
D. Na utrzymywaniu właściwego napięcia taśmy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobre napięcie taśmy w przenośniku to naprawdę kluczowa sprawa, żeby wszystko działało jak należy. Jak taśma jest za luźna, to może się ślizgać, a to oznacza, że materiały nie będą transportowane odpowiednio. W skrajnych przypadkach może nawet dojść do uszkodzenia taśmy czy innych części. Z drugiej strony, zbyt mocne napięcie to też nie jest najlepszy pomysł, bo może zajechać napęd i obciążyć silnik, co skróci jego żywotność. Moim zdaniem, warto regularnie zaglądać pod pokrywę i sprawdzać stan taśmy oraz mechanizmy naciągu, takie jak rolki. Z tego co się orientuję, są normy, na przykład ANSI/ASME, które mówią, że dobrze mieć systemy do monitorowania napięcia taśmy. Dzięki temu można lepiej dostosować, jak taśmy pracują. Generalnie, dbanie o napięcie taśmy powinno być częścią rutyny, bo to nie tylko poprawia wydajność, ale też zwiększa bezpieczeństwo.

Pytanie 16

Jakie czynności trzeba wykonać przed oddaniem brygadzie remontowej ciągu technologicznego do produkcji tlenku etylenu?

A. Oziębić instalację do temperatury −70°C w celu wykroplenia pozostałości produktu, przedmuchać instalację etylenem, uzupełnić zapasy katalizatora, opróżnić reaktor z dowthermu
B. Opróżnić instalację z pozostałości substratów i produktu, wyrównać temperaturę instalacji do temperatury otoczenia, usunąć i zabezpieczyć katalizator, przedmuchać instalację azotem
C. Usunąć resztki produktu z instalacji, wygrzać resztki do temperatury 500°C, a następnie zamknąć i zaplombować króćce umożliwiające usunięcie katalizatora
D. Opróżnić reaktor z dowthermu i katalizatora, przedmuchać reaktor oraz absorbery acetylenem, wyrównać temperaturę instalacji do temperatury otoczenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opróżnienie instalacji z pozostałości substratów i produktów oraz wyrównanie temperatury do temperatury otoczenia to kluczowe kroki przed uruchomieniem procesu produkcji tlenku etylenu. Tlenek etylenu jest substancją łatwopalną i toksyczną, a wszelkie pozostałości mogą prowadzić do niebezpiecznych sytuacji, takich jak eksplozje czy niekontrolowane reakcje chemiczne. Usunięcie i zabezpieczenie katalizatora jest również istotne, ponieważ niewłaściwe jego przechowywanie może prowadzić do degradacji lub niepożądanych reakcji. Przedmuchiwanie instalacji azotem ma na celu zapewnienie, że nie ma w niej tlenu, co absolutnie eliminuję ryzyko zapłonu. Przykładowo, w przemyśle chemicznym przed uruchomieniem instalacji często stosuje się procedury, które obejmują sprawdzenie szczelności, analizę gazów pozostałych w instalacji oraz wizualną inspekcję komponentów. Wszystko to jest zgodne z normami bezpieczeństwa, takimi jak NFPA 70E i ISO 45001, które nakładają obowiązek dbałości o bezpieczeństwo pracy w strefach zagrożonych wybuchem.

Pytanie 17

Urządzenia, które funkcjonują na zasadzie przesuwania materiału przy pomocy obracającego się wału o śrubowej powierzchni w otwartym lub zamkniętym korycie, to przenośniki

A. kubełkowe
B. członowe
C. ślimakowe
D. zgarniakowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenośniki ślimakowe są urządzeniami, które wykorzystują zasadę działania obrotowego wału o powierzchni śrubowej do przesuwania materiałów w korytach otwartych lub zamkniętych. Ich konstrukcja pozwala na efektywne transportowanie materiałów sypkich, takich jak zboża, piasek czy węgiel. Wał ślimakowy, który jest umieszczony w obudowie, obraca się, co powoduje przesuwanie materiału w kierunku wyjścia. Przenośniki te są szeroko stosowane w różnych branżach, w tym w rolnictwie, budownictwie i przemyśle chemicznym. Standardy branżowe, takie jak normy ISO dotyczące transportu materiałów, podkreślają znaczenie przenośników ślimakowych w procesach logistycznych, ze względu na ich wysoką wydajność oraz możliwość dostosowania do różnych zastosowań. Przykładowe zastosowania obejmują systemy transportowe w młynach, gdzie przenośniki te transportują mąkę, lub w zakładach produkcyjnych, gdzie przesuwają różne surowce w procesach produkcyjnych. Dodatkowo, przenośniki ślimakowe mogą być projektowane w różnych rozmiarach i konfiguracjach, co pozwala na ich dopasowanie do specyficznych wymagań operacyjnych.

Pytanie 18

Jaką czynność należy wykonać w trakcie pracy ze spektrofotometrem?

A. Odkreślić maksymalny kąt skręcenia płaszczyzny polaryzacji
B. Sprawdzić intensywność widma w podczerwieni roztworu wzorcowego
C. Określić natężenie przepływu gazu obojętnego
D. Ustawić pożądany zakres długości fali

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie pożądanego zakresu długości fali jest kluczowym krokiem w obsłudze spektrofotometru, ponieważ to właśnie długość fali determinuje, które fotony będą absorbowane przez próbkę. Różne substancje chemiczne mają charakterystyczne długości fal, przy których absorpcja jest największa, co umożliwia ich identyfikację oraz ilościowe oznaczanie. Przykładowo, w analizach chemicznych często wykorzystuje się spektrofotometrię UV-Vis do określenia stężenia substancji w roztworach. Ustalając odpowiednią długość fali, można skupić się na specyficznych absorpcjach, co zwiększa dokładność pomiarów. Dobre praktyki branżowe zalecają również kalibrację spektrofotometru na wzorcach o znanych absorbancjach, co umożliwia uzyskanie precyzyjnych wyników. W związku z tym, umiejętność właściwego ustawienia zakresu długości fali jest fundamentalna w pracy z tym urządzeniem oraz w analizach laboratoryjnych w ogóle.

Pytanie 19

Jakie urządzenie służy do pomiaru gęstości produktów naftowych?

A. polarymetrem lub areometrem
B. spektrofotometrem lub refraktometrem
C. areometrem lub piknometrem
D. refraktometrem lub piknometrem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gęstość produktów naftowych określa się najczęściej przy użyciu areometru i piknometru, co jest zgodne z przyjętymi standardami w branży petrochemicznej. Areometr to instrument, który mierzy gęstość cieczy na podstawie zasady Archimedes'a, wykorzystując wyporność. Jest to powszechnie stosowane narzędzie w laboratoriach do analizy paliw, olejów i innych produktów naftowych. Piknometr natomiast, to naczynie o znanej objętości, które pozwala na precyzyjne określenie masy próbki, co jest kluczowe w obliczeniach gęstości. W praktyce, znajomość gęstości produktów naftowych jest istotna nie tylko dla oceny ich jakości, ale również dla obliczeń związanych z transportem, magazynowaniem oraz procesami rafinacji. Stosując te metody, laboratoria mogą zapewnić zgodność z normami, takimi jak ASTM D1298, co jest niezbędne dla zachowania standardów przemysłowych i regulacji dotyczących jakości paliw.

Pytanie 20

Ilość nasyconego roztworu NaNO3 przepływającego przez urządzenie krystalizacyjne wynosi 250 kg/h. Z 1000 kg roztworu można uzyskać 250 kg NaNO3. Jaką ilość stałego NaNO3 otrzymamy po 8 godzinach pracy krystalizatora?

A. 1000 kg
B. 500 kg
C. 250 kg
D. 2000 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczmy razem, żeby dowiedzieć się, ile NaNO3 możemy zdobyć w ciągu 8 godzin pracy krystalizatora. Wiemy, że z 1000 kg roztworu wychodzi 250 kg NaNO3, więc z jednego kilograma roztworu uzyskujemy 0,25 kg NaNO3. Teraz obliczamy, ile roztworu przepłynie przez krystalizator w 8 godzin, mając natężenie przepływu 250 kg na godzinę. Wychodzi na to, że przez te 8 godzin przepłynie 2000 kg roztworu (250 kg/h * 8 h). Następnie, mnożymy tę ilość przez naszą wydajność – czyli 0,25 kg NaNO3 na kg roztworu. Daje nam to 500 kg NaNO3 (2000 kg * 0,25 kg/kg). Te obliczenia są ważne nie tylko w kontekście krystalizacji, ale też w całym przemyśle, bo precyzyjne wyliczenia wpływają na koszty i efektywność produkcji.

Pytanie 21

Roztwór nasycony określonej soli uzyskano poprzez dodanie 250 g tej soli do 1 000 g wody. Jakie jest stężenie procentowe tak przygotowanego roztworu?

A. 20%
B. 17%
C. 33%
D. 25%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć stężenie procentowe roztworu, musimy zastosować wzór: stężenie procentowe = (masa solutu / masa roztworu) × 100%. W tym przypadku masa solutu wynosi 250 g (masa soli), a masa roztworu to suma masy soli i masy rozpuszczalnika (wody), która wynosi 1000 g. Tak więc masa roztworu wynosi 250 g + 1000 g = 1250 g. Podstawiając wartości do wzoru, otrzymujemy: (250 g / 1250 g) × 100% = 20%. Dlatego stężenie procentowe roztworu wynosi 20%. Obliczanie stężenia procentowego jest kluczowe w chemii, szczególnie w kontekście przygotowywania roztworów do eksperymentów laboratoryjnych czy przemysłowych. Umożliwia to precyzyjne kontrolowanie ilości substancji w roztworze, co jest niezbędne w wielu procesach chemicznych oraz w farmaceutyce, gdzie dokładne stężenie substancji czynnej jest kluczowe dla skuteczności leku.

Pytanie 22

Jaką metodę elektrolizy solanki należy wykorzystać, aby usunąć zanieczyszczenia środowiskowe związane z azbestem i rtęcią?

A. Przeponową
B. Diafragmową
C. Membranową
D. Bezprzeponową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda elektrolizy membranowej jest kluczowym rozwiązaniem w procesach oczyszczania środowiska, szczególnie w kontekście usuwania zanieczyszczeń takich jak azbest i rtęć. Elektroliza membranowa wyróżnia się wysoką selektywnością oraz efektywnością, co umożliwia precyzyjne oddzielanie niepożądanych substancji. W procesie tym zastosowanie odpowiedniej membrany pozwala na zachowanie wysokiej jakości produktów elektrolizy, ponieważ membrana działa jako bariera, przez którą przepuszczane są jedynie jony o odpowiednim ładunku. Dzięki temu można minimalizować ryzyko wydostania się toksycznych substancji do środowiska. Przykładowo, w przemysłowych instalacjach do produkcji chloru oraz sody kalcynowanej, metoda ta jest preferowana, ponieważ nie tylko pozwala na uzyskanie wysokiej czystości produktów, ale także ogranicza emisję substancji szkodliwych. Stosowanie technologii membranowej jest zgodne z najlepszymi praktykami branżowymi i regulacjami ochrony środowiska, co czyni ją idealnym wyborem w kontekście walki z kontaminacją środowiska.

Pytanie 23

Skraplanie par generowanych w wyparce zazwyczaj zachodzi przy zastosowaniu zasady

A. regeneracji materiałów
B. przeciwprądu cieplnego
C. przeciwprądu materiałowego
D. odzyskiwania ciepła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'przeciwprądu cieplnego' jest poprawna, ponieważ jest to technika, która umożliwia efektywne skraplanie oparów poprzez wykorzystanie różnicy temperatur między medium chłodzącym a oparami. W procesie skraplania, opary oddają ciepło do medium chłodzącego, które przepływa w przeciwnym kierunku. Taka konfiguracja pozwala na maksymalne wykorzystanie energii zawartej w oparach, co przyczynia się do zwiększenia efektywności procesów przemysłowych, takich jak destylacja czy kondensacja. Przykładem zastosowania tej zasady jest system chłodzenia w chłodniach przemysłowych, gdzie skraplanie gazów chłodniczych odbywa się w wymiennikach ciepła, w których chłodziwo przepływa w przeciwnym kierunku do gazów. Zastosowanie przeciwprądu cieplnego zwiększa wydajność energetyczną, co jest zgodne z najlepszymi praktykami w sektorze inżynierii chemicznej i energetycznej, zmniejszając jednocześnie koszty operacyjne. Warto także zauważyć, że technologia ta jest często stosowana w nowoczesnych instalacjach, które dążą do zminimalizowania strat energii oraz emisji gazów cieplarnianych, co jest kluczowe w kontekście zrównoważonego rozwoju przemysłu.

Pytanie 24

W reaktorze zachodzi reakcja syntezy amoniaku opisana równaniem:
N2 + 3H2 → 2 NH3 Jaką ilość wodoru powinno się wprowadzić do reaktora (mieszaninę wodoru z azotem podaje się do reaktora w proporcji stechiometrycznej), zakładając, że 300 m3 azotu ulegnie całkowitemu przereagowaniu?

A. 300 m3
B. 100 m3
C. 500 m3
D. 900 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reakcja syntezy amoniaku opisana równaniem N2 + 3H2 → 2 NH3 wskazuje na stosunek molowy reagentów. Z równania wynika, że do jednego mola azotu N2 potrzeba trzech moli wodoru H2. W sytuacji, gdy w reaktorze ma przereagować 300 m3 azotu, należy przeliczyć tę objętość na odpowiadającą jej ilość wodoru. Zgodnie z zasadą zachowania materii, dla 300 m3 azotu potrzebujemy: 300 m3 N2 * 3 m3 H2 / 1 m3 N2 = 900 m3 H2. Takie podejście jest zgodne z zasadami stechiometrii, które są kluczowe w chemii procesowej i inżynierii chemicznej. Praktycznym zastosowaniem tej wiedzy jest optymalizacja procesów produkcji amoniaku, co ma zastosowanie w przemyśle nawozowym, gdzie amoniak jest podstawowym surowcem. Wydajne zarządzanie proporcjami reagentów może prowadzić do zmniejszenia kosztów produkcji oraz minimalizacji odpadów.

Pytanie 25

Transport lekkich, sypkich materiałów, które nie tworzą brył, odbywa się poprzez ich unoszenie i przesuwanie za pomocą strumienia powietrza do miejsca, w którym następuje wyładunek, wykorzystując przenośniki

A. cięgnowych
B. bezcięgnowych
C. hydraulicznych
D. pneumatycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'pneumatycznych' jest prawidłowa, ponieważ transport materiałów sypkich za pomocą przenośników pneumatycznych wykorzystuje strumień powietrza do transportu materiałów w stanie zawieszenia. W praktyce oznacza to, że niewielkie cząstki materiałów, które są lekkie i nie mają tendencji do zbrylania się, mogą być efektywnie przenoszone na znaczną odległość. Systemy te są szeroko stosowane w branży spożywczej, chemicznej oraz w przemyśle budowlanym, gdzie transportuje się takie materiały jak mąka, cement czy granulaty plastikowe. Przenośniki pneumatyczne oferują szereg zalet, takich jak minimalizacja mechanicznych uszkodzeń transportowanych materiałów, a także możliwość transportu w ciasnych przestrzeniach, co jest niemożliwe w przypadku przenośników cięgnowych. Ponadto, zgodnie z normami branżowymi, systemy pneumatyczne są projektowane z uwzględnieniem efektywności energetycznej i bezpieczeństwa, co czyni je optymalnym wyborem w nowoczesnych instalacjach transportowych.

Pytanie 26

Jak należy zmniejszyć ogólną próbkę świeżej partii fosforytów, aby uzyskać próbkę przeznaczoną do badań?

A. Odrzucając największe ziarna fosforytów
B. Wybierając najmniejsze ziarna fosforytów
C. Z wykorzystaniem metody ćwiartkowania
D. Zagęszczając zbierany materiał podczas flotacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Stosując metodę ćwiartkowania" jest prawidłowa, ponieważ metoda ta jest klasyczną techniką redukcji próbki, szeroko stosowaną w laboratoriach geologicznych i mineralogicznych. Ćwiartkowanie polega na podziale próbki na cztery równe części, z których następnie wybiera się dwie do dalszej analizy. Ta metoda zapewnia, że próbka analizowana jest reprezentatywna dla całej partii, co jest kluczowe w kontekście analizy fosforytów, które mogą wykazywać znaczne zróżnicowanie. Przykładem zastosowania tej metody może być analiza jakości fosforytów w przemyśle nawozowym, gdzie ważne jest, aby próbka oddawała rzeczywisty skład chemiczny całej partii. Zgodnie z normami ISO dotyczącymi prób pobierania, stosowanie metody ćwiartkowania jest rekomendowane, ponieważ minimalizuje ryzyko błędów analitycznych związanych z niejednorodnością próbki. Dodatkowo, metoda ta jest łatwa do wykonania i nie wymaga specjalistycznego sprzętu, co czyni ją dostępną w wielu laboratoriach.

Pytanie 27

Który rodzaj urządzenia spośród przedstawionych w tabeli należy zastosować do chłodzenia gazu poreakcyjnego w procesie syntezy amoniaku prowadzonym w temperaturze 400÷500°C?

Rodzaj urządzeniaRodzaj układu
(czynnik chłodzący – czynnik chłodzony)
Zakres pracy
[°C]
Wymiennik płaszczowo-rurowyciecz – gaz10÷150
ciecz – ciecz10÷100
para grzejna – ciecz100÷200
Wymiennik typu „rura w rurze"gaz – ciecz70÷500
ciecz – ciecz0÷500
Chłodnica ociekowawoda – gaz100÷700
ciecz – ciecz10÷100
para grzejna – ciecz100÷200
Wymiennik płytowygaz – woda10÷90
ciecz – ciecz0÷500

A. Wymiennik płytowy.
B. Wymiennik płaszczowo-rurowy.
C. Wymiennik typu "rura w rurze".
D. Chłodnicę ociekową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chłodnica ociekowa to idealne urządzenie do chłodzenia gazu poreakcyjnego w procesie syntezy amoniaku, zwłaszcza w temperaturach 400÷500°C. Jej zdolność do pracy w zakresie temperatury od 100 do 700°C, w układzie woda-gaz, czyni ją wyjątkowo elastyczną i wydajną. W praktyce, chłodnice ociekowe są powszechnie stosowane w przemyśle chemicznym, gdzie kontrola temperatury jest kluczowa dla efektywności procesów reakcyjnych. Przy zastosowaniu tej chłodnicy, możliwe jest osiągnięcie wysokiej efektywności wymiany ciepła, co przyczynia się do poprawy wydajności procesu syntezy amoniaku. Ponadto, standardy branżowe, takie jak ASME oraz API, zalecają stosowanie chłodnic ociekowych w procesach wymagających intensywnego chłodzenia, co potwierdza ich wysoką jakość i niezawodność. Warto dodać, że odpowiednia technologia chłodzenia ma kluczowe znaczenie dla zachowania bezpieczeństwa operacyjnego oraz minimalizacji ryzyka awarii.

Pytanie 28

Aby precyzyjnie określić temperatury topnienia i krzepnięcia roztworów, powinno się użyć

A. kriometru
B. pirometru optycznego
C. bomby kalorymetrycznej
D. ebuliometru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kriometr jest narzędziem specjalistycznym, które służy do precyzyjnego pomiaru temperatury topnienia i krzepnięcia roztworów. Działa na zasadzie analizy zmiany temperatury, gdy substancja przechodzi ze stanu ciekłego w stały (topnienie) lub odwrotnie (krzepnięcie). W praktyce kriometr wykorzystuje się w chemii analitycznej, w procesach badań materiałowych oraz w przemyśle spożywczym, gdzie kontrola temperatury ma kluczowe znaczenie dla zapewnienia jakości produktów. Dzięki zastosowaniu kriometru, można uzyskać dokładne wyniki, co jest niezbędne do oceny czystości chemikaliów oraz do określenia właściwości fizykochemicznych substancji. W branży chemicznej standardy, takie jak ISO, podkreślają znaczenie precyzyjnych pomiarów w badaniach laboratoryjnych, co czyni kriometr narzędziem o wysokiej wartości. Przykładem zastosowania kriometru jest analiza roztworów soli, gdzie znajomość temperatury krzepnięcia jest kluczowa dla uzyskania informacji o stężeniu roztworu i jego właściwościach. Współczesne kriometry są zautomatyzowane, co zwiększa dokładność i powtarzalność pomiarów.

Pytanie 29

Jakie parametry procesowe powinny być, między innymi, rejestrowane przez operatora kolumny kationitowej w dokumentacji dotyczącej przebiegu procesu w stacji zmiękczania wody wykorzystującej metodę jonitową?

A. Ilość wody dostarczanej do kolumny, czas działania do wyczerpania możliwości wymiany kationów na H+, ilość kwasu siarkowego(VI) niezbędnego do regeneracji jonitu
B. Czas dostarczania wody do kolumny, objętość kationitu, temperatura wodorotlenku sodu potrzebnego do regeneracji jonitu
C. Czas wprowadzania wody do kolumny, czas działania do wyczerpania możliwości wymiany kationów na H+, ilość wodorotlenku sodu wymaganego do regeneracji jonitu
D. Temperatura wody wprowadzanej do kolumny, objętość kationitu, czas regeneracji jonitu przy użyciu kwasu siarkowego(VI)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazuje na kluczowe parametry, które powinny być odnotowywane w dokumentacji procesowej stacji zmiękczania wody metodą jonitową. Ilość wody podawanej do kolumny jest istotna, ponieważ pozwala na kontrolowanie efektywności wymiany jonów. Czas pracy do wyczerpania zdolności wymiany kationów na H+ wskazuje na moment, w którym proces zmiękczania staje się mniej efektywny i wymaga regeneracji. To ważne dla optymalizacji pracy stacji oraz minimalizacji kosztów eksploatacyjnych. Ilość kwasu siarkowego(VI) potrzebna do regeneracji jonitu jest również kluczowa, ponieważ niewłaściwe jego dozowanie może prowadzić do niedostatecznej regeneracji lub uszkodzenia materiałów filtracyjnych. Zgodnie z najlepszymi praktykami, powinno się prowadzić szczegółowy monitoring tych parametrów, co pozwala na efektywną kontrolę jakości wody oraz długoterminowe utrzymanie sprawności urządzeń. Właściwe zarządzanie tymi danymi ma na celu nie tylko spełnienie norm jakościowych, ale także optymalizację procesów chemicznych oraz minimalizację negatywnego wpływu na środowisko.

Pytanie 30

Który z wymienionych materiałów budowlanych posiada cechy umożliwiające jego wykorzystanie do produkcji chłodnic w przemysłowej instalacji syntezy metanolu?

A. Stopy cyny
B. Polistyren
C. Winidur
D. Stopy glinu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stopy glinu są szeroko stosowane w przemyśle ze względu na swoje korzystne właściwości mechaniczne i termiczne. Charakteryzują się one dobrą odpornością na korozję, co czyni je idealnym materiałem do zastosowań w instalacjach, gdzie występuje kontakt z substancjami chemicznymi, takimi jak metanol. Dodatkowo, stopy glinu mają niską gęstość, co pozwala na zmniejszenie masy konstrukcji chłodnic, a także doskonałe przewodnictwo cieplne, co jest kluczowe w aplikacjach związanych z wymianą ciepła. Przykładem zastosowania stopów glinu w przemyśle może być produkcja wymienników ciepła, które są kluczowymi komponentami w procesach chemicznych, w tym w syntezie metanolu. W kontekście dobrych praktyk, standardy takie jak ASTM B221 regulują wymagania dla tych materiałów, co zapewnia ich jakość i odpowiednią wydajność w trudnych warunkach przemysłowych.

Pytanie 31

Jakim kolorem należy oznaczyć rurociąg, w którym transportowane jest powietrze?

A. Zielony
B. Czerwony
C. Żółty
D. Niebieski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznakowanie rurociągów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności w przemyśle. Zgodnie z normą PN-EN 81346-2, rurociągi transportujące powietrze są oznaczane kolorem niebieskim. To standardowe praktyki mające na celu identyfikację rodzaju medium, jakie płynie w danym rurociągu. Takie oznakowanie pozwala pracownikom na szybką identyfikację i unikanie potencjalnych pomyłek, co jest niezbędne w sytuacjach awaryjnych. Dla przykładu, w zakładzie przemysłowym, gdzie różne gazy i płyny są transportowane w rurociągach, prawidłowe oznakowanie ułatwia szybką reakcję w przypadku wycieku. Warto również zauważyć, że oznakowanie wpływa na organizację pracy i komunikację w zespole, umożliwiając lepsze zrozumienie infrastruktury zakładu przez nowych pracowników oraz serwisantów.

Pytanie 32

Zidentyfikuj, jakie ryzyko niosą za sobą wycieki z pomp w systemie oczyszczania metanolu?

A. Zagrożenie toksyczne i pożarowe
B. Zagrożenie wybuchem
C. Tylko zagrożenie toksyczne
D. Tylko zagrożenie pożarowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wycieki z pomp w instalacji oczyszczania metanolu stanowią poważne zagrożenie zarówno toksyczne, jak i pożarowe. Metanol jest substancją łatwopalną i toksyczną, co oznacza, że jego uwolnienie do środowiska może prowadzić do niebezpiecznych sytuacji. Zagrożenie toksyczne wynika z możliwości wdychania par metanolu, co ma negatywny wpływ na zdrowie ludzi, a także z możliwości kontaktu ze skórą. Przykładowo, w przypadku awarii pompy, uwolniony metanol może zanieczyścić powietrze w miejscu pracy, co może prowadzić do zatrucia pracowników. W aspekcie pożarowym, metanol ma niską temperaturę zapłonu, co czyni go podatnym na zapłon w obecności źródeł ciepła. W przypadku wycieku, opary metanolu mogą tworzyć mieszanki wybuchowe z powietrzem. Przykłady dobrych praktyk w branży obejmują regularne serwisowanie pomp, stosowanie odpowiednich materiałów uszczelniających, a także wprowadzenie systemów detekcji wycieków oraz szkoleń dla pracowników. Zgodnie z normami OSHA i NFPA, instalacje muszą być projektowane z uwzględnieniem takich zagrożeń, aby minimalizować ryzyko incydentów.

Pytanie 33

Jakie warunki podczas przeprowadzania procesu absorpcji mogą przyczynić się do zwiększenia jego efektywności?

A. Zwiększenie temperatury oraz zwiększenie ciśnienia procesu
B. Zwiększenie temperatury oraz obniżenie ciśnienia procesu
C. Zmniejszenie temperatury oraz zwiększenie ciśnienia procesu
D. Zmniejszenie temperatury oraz obniżenie ciśnienia procesu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obniżenie temperatury i podwyższenie ciśnienia procesu absorpcji sprzyja osiągnięciu wyższej wydajności, ponieważ takie warunki mogą zwiększyć rozpuszczalność gazu w cieczy. W przypadku procesów chemicznych, takich jak absorpcja dwutlenku węgla w wodzie, zmniejszenie temperatury zwiększa energię, potrzebną do rozpuszczenia gazu, podczas gdy zwiększenie ciśnienia powoduje, że więcej cząsteczek gazu jest zmuszonych do interakcji z cieczą, co prowadzi do wyższej efektywności absorpcyjnej. Przykładem zastosowania tej zasady może być przemysłowy proces usuwania CO2 z gazów odlotowych, gdzie kontrolowanie warunków procesowych jest kluczowe do optymalizacji wydajności. W praktyce, stosowanie odpowiednich reaktorów z systemami chłodzenia i podwyższonym ciśnieniem, w połączeniu z monitorowaniem parametrów procesowych, pozwala na efektywniejsze wykorzystanie chemikaliów i redukcję odpadów, co jest zgodne z najlepszymi praktykami w zakresie inżynierii procesowej.

Pytanie 34

Po włączeniu mieszadła śmigłowego przyciskiem ON, urządzenie nie rozpoczęło pracy. Jakie czynności należy wykonać w pierwszej kolejności?

A. ocena stanu urządzenia pod kątem korozji
B. termin ostatniego serwisu
C. połączenie urządzenia z gniazdkiem sieciowym
D. sprawdzenie poziomu urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy próbujesz uruchomić mieszadło śmigłowe i nic się nie dzieje po naciśnięciu przycisku ON, pierwsze co powinieneś sprawdzić, to czy maszyna jest podpięta do gniazdka. To dosyć podstawowa sprawa, ale naprawdę ważna. Zanim zaczniesz grzebać w bardziej skomplikowanych rzeczach, jak sprawdzanie stanu technicznego czy poziomowania, upewnij się, że urządzenie ma prąd. Jeśli nie jest podłączone, to nie ruszy, a wtedy zaczynasz myśleć o poważniejszych problemach, które wcale nie muszą istnieć. Z mojego doświadczenia, zawsze najlepiej zacząć od najprostszych rzeczy, bo to często one są przyczyną problemu. No i nie zapomnij o regularnych przeglądach instalacji elektrycznej – to naprawdę pomoże uniknąć kłopotów. Zgodnie z normami IEC 60204-1, bezpieczne podłączenie do prądu to absolutna podstawa przed używaniem jakiejkolwiek maszyny.

Pytanie 35

Jakie kroki należy podjąć, aby prawidłowo obsłużyć wielozakresowy i wielofunkcyjny analizator gazów?

A. Określić minimalną wartość pomiarową oraz metodę detekcji.
B. Wybrać zakres pomiarowy oraz ilość substancji do oznaczenia.
C. Ustalić maksymalną wartość pomiarową oraz czas działania.
D. Wybrać zakres pomiarowy oraz typ oznaczanej substancji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie zakresu pomiarowego oraz rodzaju oznaczanej substancji jest kluczowym krokiem w obsłudze wielozakresowego i wielofunkcyjnego analizatora gazów. Prawidłowe określenie tych parametrów pozwala na uzyskanie dokładnych i wiarygodnych wyników pomiarów. W praktyce, wybór zakresu pomiarowego powinien być dostosowany do spodziewanych stężeń gazów oraz ich właściwości, co zapewnia maksymalną precyzję. Na przykład, jeśli analizujemy emisję gazów ze źródła przemysłowego, konieczne jest zidentyfikowanie głównych substancji oraz ich przewidywanych stężeń, aby dobrać odpowiedni zakres pomiarowy. Równocześnie, znajomość rodzaju substancji, którą zamierzamy oznaczać, jest istotna dla wyboru odpowiednich technologii detekcji, takich jak czujniki elektrochemiczne dla gazów toksycznych czy spektrometria mas dla bardziej złożonych analiz. Stosowanie się do tych zasad nie tylko poprawia jakość pomiarów, ale także jest zgodne z najlepszymi praktykami branżowymi, takimi jak ISO 17025, które definiują wymagania dotyczące kompetencji laboratoriów badań.

Pytanie 36

Aby przeprowadzić częściową deflegmację oparów wydobywających się z kolumny rektyfikacyjnej, konieczne jest zastosowanie

A. wymiennika bezprzeponowego wodnego
B. kolumny z wypełnieniem stałym
C. wymiennika płaszczowo-rurowego
D. kolumny z wypełnieniem ruchomym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiennik płaszczowo-rurowy jest kluczowym urządzeniem stosowanym w procesach przemysłowych, w tym w częściowej deflegmacji oparów z kolumn rektyfikacyjnych. Jego konstrukcja, polegająca na umieszczeniu rur w płaszczu, pozwala na efektywne wymienianie ciepła pomiędzy dwoma płynami, co jest niezbędne w celu kondensacji par i odzysku cennych składników. Praktycznym przykładem zastosowania wymienników płaszczowo-rurowych jest ich wykorzystanie w przemyśle petrochemicznym, gdzie są stosowane do chłodzenia par w procesach destylacji. Dzięki ich wysokiej efektywności cieplnej i kompaktowej budowie, są one często preferowane w porównaniu do innych typów wymienników ciepła. Ponadto, zgodnie z normami ASME oraz dobrymi praktykami inżynieryjnymi, wymienniki te są projektowane z myślą o minimalizacji strat cieplnych, co czyni je idealnym rozwiązaniem do efektywnej deflegmacji oparów. Zrozumienie zasad działania i zastosowania wymienników płaszczowo-rurowych jest istotne dla inżynierów procesowych, aby skutecznie optymalizować procesy produkcji i zwiększać ich rentowność.

Pytanie 37

Osoba obsługująca suszarkę rozpryskową powinna regularnie pobierać próbki do analizy

A. powietrze dolotowe
B. powietrze odprowadzane
C. materiał poddawany suszeniu
D. uzyskiwany materiał suchy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uzyskiwany materiał suchy jest kluczowym elementem procesu suszenia w technologii obróbki materiałów. Regularne pobieranie próbek tego materiału do analizy pozwala na ocenę efektywności procesu suszenia oraz jakości końcowego produktu. Przeprowadzenie analizy uzyskiwanego materiału suchego umożliwia identyfikację ewentualnych problemów, takich jak niewłaściwe parametry procesu, które mogą prowadzić do nadmiernej wilgotności lub zanieczyszczeń. W praktyce, w branży farmaceutycznej lub spożywczej, monitorowanie jakości uzyskiwanego materiału jest niezbędne dla zapewnienia zgodności z normami jakościowymi oraz regulacyjnymi. Warto stosować metody analizy, takie jak pomiar wilgotności, które są zgodne z normami ISO, aby uzyskać rzetelne i powtarzalne wyniki. Dzięki tym praktykom, możliwe jest stałe doskonalenie procesu oraz zapewnienie wysokiej jakości produktu końcowego, co przekłada się na zadowolenie klientów oraz efektywność produkcji.

Pytanie 38

Która z pozycji zamieszczonych w tabeli wskazuje nazwę przyrządu pomiarowego wraz z właściwymi odczytami parametrów?

PozycjaNazwa przyrząduOdczytana temperatura [°C]Odczytane ciśnienie [bar]
A.Termomanometr263,4
B.Manometr glicerynowy283,2
C.Czujnik ciśnienia i temperatury283,2
D.Termopara263,4

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź A jest poprawna, ponieważ zawiera nazwę przyrządu pomiarowego, który w sposób jednoznaczny wskazuje zarówno temperaturę, jak i ciśnienie. Na zdjęciu widać termomanometr, który jest niezbędnym narzędziem w wielu dziedzinach, takich jak inżynieria, przemysł chemiczny oraz HVAC (ogrzewanie, wentylacja i klimatyzacja). Odczyty z tego urządzenia są kluczowe dla monitorowania warunków pracy systemów, co w konsekwencji przyczynia się do optymalizacji procesów oraz zapewnienia bezpieczeństwa. W praktyce, znajomość odczytów temperatury i ciśnienia pozwala na odpowiednie dostosowanie pracy urządzeń oraz ich konserwację zgodnie z normami branżowymi. Na przykład, w przemyśle chemicznym, błędne odczyty mogą prowadzić do niebezpiecznych sytuacji, dlatego tak ważne jest, aby używać odpowiednich przyrządów i rozumieć ich działanie. Termomanometry są szeroko stosowane w standardowych procedurach operacyjnych (SOP) oraz w dokumentacji technicznej w celu zapewnienia zgodności z normami bezpieczeństwa.

Pytanie 39

Podczas przeprowadzania destylacji prostej mieszaniny alkoholu etylowego z wodą, termometr pokazuje 87,8 °C. Jaką wartość pomiaru należy wpisać do karty monitorowania procesu, jeśli temperatura ma być przedstawiona w Kelwinach?

A. 350,8 K
B. 185,4 K
C. 361,0 K
D. 260,8 K

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Temperatura 87,8 °C to w sumie 361,0 K, co dostajemy przez dodanie 273,15 do temperatury w stopniach Celsjusza. Wzór do przeliczenia wygląda tak: K = °C + 273,15. Czyli w naszym przypadku: 87,8 + 273,15 to właśnie 361,0 K. W naukach przyrodniczych ta wartość w Kelwinach jest mega ważna, bo to skala bezwzględna, a przez to unikamy niejasności w pomiarach. Korzystanie z Kelvina w termodynamice i fizyce to standard, więc bez tego ciężko o rzetelne badania, na przykład podczas destylacji. Fajnym przykładem jest ocenianie efektywności różnych procesów chemicznych, gdzie dokładne pomiary temperatur mają kluczowe znaczenie, jak na przykład przy syntezach chemicznych czy monitorowaniu reakcji eksotermicznych. Przestrzeganie zasad, jeśli chodzi o pomiar i konwersję jednostek, pomaga w uzyskiwaniu wiarygodnych wyników, które można potem porównywać.

Pytanie 40

Gazy pochodzące z mieszalnika oraz komór produkcyjnych superfosfatu, po absorpcji w wodzie, powinny zostać poddane badaniu na obecność

A. tlenku azotu(IV)
B. tlenku siarki(IV)
C. tlenku fosforu(V)
D. fluorku krzemu(IV)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fluorek krzemu(IV) jest związkiem chemicznym, który może powstawać w procesach chemicznych związanych z produkcją superfosfatu. W procesie tym, krzemionka może reagować z kwasami, co prowadzi do uwolnienia fluorku krzemu. Dlatego analiza gazów z mieszalnika i komór produkcyjnych po ich absorpcji w wodzie powinna obejmować detekcję tego niezwykle reaktywnego związku. Fluorek krzemu jest ważny, ponieważ może mieć wpływ na jakość produktu końcowego i bezpieczeństwo procesu. W praktyce, identyfikacja i kontrola stężenia fluorku krzemu w gazach odpadowych jest kluczowa, aby uniknąć ich szkodliwego wpływu na środowisko oraz zdrowie ludzi. Standardy branżowe, takie jak ISO 14001, zalecają monitorowanie emisji zanieczyszczeń, w tym gazów, co jest niezbędne dla zgodności z przepisami ochrony środowiska oraz dla zapewnienia bezpieczeństwa w miejscu pracy. Dobrą praktyką jest także regularne szkolenie pracowników dotyczące rozpoznawania potencjalnych zagrożeń związanych z emisjami chemicznymi.