Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 20 maja 2025 19:56
  • Data zakończenia: 20 maja 2025 20:05

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,5 mm
B. 0,01 mm
C. 0,1 mm
D. 0,05 mm
Mikrometr z bębnem pomiarowym wyposażonym w 50 nacięć oraz śrubą mikro metryczną o skoku 0,5 mm charakteryzuje się dokładnością pomiarową wynoszącą 0,01 mm. Oblicza się to, dzieląc skok śruby przez liczbę nacięć na bębnie pomiarowym. W tym przypadku: 0,5 mm / 50 = 0,01 mm. Tego rodzaju narzędzie pomiarowe jest powszechnie używane w precyzyjnych pomiarach, gdzie wymagana jest wysoka dokładność, na przykład w obróbce metali czy inżynierii mechanicznej. Mikrometry służą do pomiaru grubości, średnicy oraz wymiarów detali, co jest kluczowe dla zapewnienia zgodności z normami jakości. W praktyce, precyzyjny pomiar o takiej dokładności pozwala na wyeliminowanie błędów w procesach produkcyjnych, co przekłada się na lepszą jakość wyrobów i mniejsze straty materiałowe. Warto również wspomnieć, że mikrometry są często kalibrowane zgodnie z normami, aby zapewnić ich niezawodność i precyzję w długim okresie użytkowania.

Pytanie 2

Który z poniższych elementów jest częścią układu dolotowego samochodu?

A. Uszczelka miski olejowej
B. Sworzeń wahacza
C. Filtr powietrza
D. Bęben hamulcowy
Bęben hamulcowy jest częścią układu hamulcowego, a nie dolotowego. Jego główną funkcją jest współpraca z szczękami hamulcowymi w celu spowolnienia lub zatrzymania pojazdu. W przeciwieństwie do tarcz hamulcowych stosowanych w nowoczesnych autach, bębny są stosowane głównie w starszych modelach lub na tylnej osi. Ich budowa i zasada działania są zupełnie odmienne od elementów układu dolotowego. Z kolei sworzeń wahacza to komponent zawieszenia, który umożliwia ruch wahacza w górę i w dół, absorbując nierówności drogi. Nie ma on żadnego związku z dostarczaniem powietrza do silnika. Jest to element mechaniczny odpowiedzialny za utrzymanie właściwej geometrii zawieszenia i komfortu jazdy. Uszczelka miski olejowej również nie jest związana z układem dolotowym. Jej podstawową funkcją jest zapewnienie szczelności pomiędzy miską olejową a blokiem silnika, co jest istotne dla prawidłowego smarowania silnika. Każdy z tych elementów pełni istotną rolę w swoich odpowiednich systemach pojazdu, ale nie mają one żadnego związku z filtrowaniem i dostarczaniem powietrza do silnika, co jest domeną układu dolotowego.

Pytanie 3

W przykładowym oznaczeniu opony 195/65R15 91H litera R wskazuje na

A. oponę radialną
B. indeks prędkości
C. średnicę opony
D. promień opony R
Litera R w oznaczeniu opony 195/65R15 oznacza, że jest to opona radialna. Opony radialne są obecnie standardem w przemyśle motoryzacyjnym, co wynika z ich konstrukcji, która zapewnia lepszą stabilność, mniejsze opory toczenia oraz lepsze właściwości jezdne w porównaniu do opon diagonalnych. W konstrukcji radialnej włókna osnowy bieżnika są ułożone promieniowo w stosunku do osi opony, co pozwala na bardziej elastyczne boczne ściany, a tym samym poprawia komfort jazdy i osiągi. Opony radialne charakteryzują się także wyższą odpornością na zużycie oraz lepszymi właściwościami trakcyjnymi, co czyni je idealnym wyborem zarówno dla pojazdów osobowych, jak i dostawczych. Warto również zwrócić uwagę, że w przypadku opon o wysokich osiągach, ich konstrukcja wpływa na zachowanie na zakrętach oraz w trudnych warunkach pogodowych, co ma kluczowe znaczenie dla bezpieczeństwa na drodze.

Pytanie 4

Podczas wymiany wahacza poprzecznego wykonanego z lekkich stopów z nadmiernym luzem w przegubie kulistym, możliwe jest zastosowanie

A. wyłącznie elementu z logo producenta
B. części powypadkowej
C. zamiennika spełniającego normy producenta
D. tańszego stalowego zamiennika
Wymieniając wahacz poprzeczny, naprawdę ważne jest, żeby użyć zamiennika, który spełnia normy producenta. Wahacz to kluczowa część zawieszenia, ma wpływ na to, jak się jeździ i jak stabilny jest samochód. Gdy musisz wymienić część, najlepiej postawić na zamienniki, które są zgodne z tym, co mówi producent. Jeśli zamiennik jest z dobrych materiałów, które są wytrzymałe na różne warunki, to można liczyć na to, że wszystko będzie działać jak należy. Z tego co zauważyłem, dobrze jest też, jak takie zamienniki mają jakieś certyfikaty jakości, bo wtedy można mieć pewność, że są solidne. Generalnie, stosując odpowiednie części, nie tylko poprawiasz bezpieczeństwo jazdy, ale i zmniejszasz ryzyko kolejnych awarii, co w końcu przynosi oszczędności i większy komfort w korzystaniu z auta.

Pytanie 5

W pojeździe z silnikiem spalinowym wysokoprężnym przeprowadzono pomiar emisji spalin uzyskując następujące wyniki: CO – 0,5g/km; NOx – 0,17g/km; PM – 0,004g/km; HC-0,05g/km; HC+NOx – 0,5g/km.
Na podstawie uzyskanych wyników pojazd spełnia normę dopuszczalnych wartości emisji spalin

Dopuszczalne wartości emisji spalin w poszczególnych normach EURO
dla pojazdów z silnikiem wysokoprężnym
emisja
[g/km]
EURO 1EURO 2EURO 3EURO 4EURO 5EURO 6
CO3,1610,640,50,50,5
HC-0,150,060,050,050,05
NOx-0,550,50,250,180,08
HC+NOx1,130,70,560,30,230,17
PM0,140,080,050,0090,0050,005

A. EURO 6
B. EURO 3
C. EURO 5
D. EURO 4
Wybór norm EURO 4, 5 czy 6 jest nietrafiony z kilku powodów. Te normy wprowadziły jeszcze bardziej restrykcyjne limity niż EURO 3, by ograniczyć emisję zanieczyszczeń. Na przykład w EURO 4 dla NOx dozwolone jest 0,25 g/km, co zgadza się z tym, co widzimy w analizowanym pojeździe, ale inne wartości, np. CO, są większe niż 0,5 g/km. Normy EURO 5 i 6 idą jeszcze dalej, mają jeszcze bardziej rygorystyczne limity, szczególnie jeśli chodzi o cząstki stałe. Warto też pamiętać, że zrozumienie tych norm to klucz do oceny, czy pojazd jest ekologiczny. Często błędne odpowiedzi biorą się z tego, że nie mamy pełnego obrazu tech specyfikacji i za mało analizujemy dane. Dobrze jest wiedzieć, jak te normy działają, żeby móc określić, czy dany pojazd jest przyjazny dla środowiska i spełnia przepisy.

Pytanie 6

Po wymianie klocków hamulcowych w pojeździe osobowym konieczne jest zbadanie

A. wyważenia felg
B. siły hamowania
C. geometrii kół
D. stanu opon
Po wymianie szczęk hamulcowych kluczowe jest sprawdzenie siły hamowania, ponieważ nowo zamontowane elementy muszą być odpowiednio osadzone i dopasowane do reszty układu hamulcowego. Siła hamowania jest bezpośrednio związana z efektywnością układu hamulcowego, a jej niewłaściwe ustawienie może prowadzić do wydłużenia drogi hamowania, co zagraża bezpieczeństwu kierowcy i pasażerów. Przykładem praktycznym może być sytuacja, w której nowe szczęki wymagają kilkukrotnej operacji hamowania, aby osiągnąć optymalne tarcie. Właściwe sprawdzenie siły hamowania można przeprowadzić na specjalistycznym stanowisku diagnostycznym, gdzie mierzy się wartości siły hamowania na poszczególnych kołach. Zgodnie z obowiązującymi standardami, takim jak normy ISO dotyczące badań układów hamulcowych, należy również zwrócić uwagę na równomierność siły hamowania pomiędzy kołami, co ma kluczowe znaczenie dla stabilności pojazdu podczas manewrów hamowania. Regularne przeglądy i testy hamulców są nie tylko zalecane, ale również wymagane przez przepisy prawne w wielu krajach, aby zapewnić maksymalne bezpieczeństwo na drogach.

Pytanie 7

Do kontroli kadłuba oraz głowicy silnika wykorzystywane są liniał krawędziowy i szczelinomierz, aby zmierzyć

A. prostopadłość
B. równoległość
C. płaskość
D. szczelność
Weryfikacja kadłuba i głowicy silnika wymaga precyzyjnych pomiarów, a odpowiedzi związane z innymi parametrami, takimi jak szczelność, równoległość czy prostopadłość, mogą wprowadzać w błąd. Szczelność odnosi się do zdolności komponentów do utrzymywania płynów i gazów, co jest ważne, ale nie związane bezpośrednio z pomiarami płaskości. W przypadku silnika, szczelność jest kontrolowana głównie poprzez uszczelki oraz odpowiednie dopasowanie części, nie przez pomiar z użyciem liniału krawędziowego. Równoległość dotyczy relacji między dwiema równoległymi powierzchniami, natomiast prostopadłość odnosi się do kątów prostych między powierzchniami. Choć te parametry są również istotne dla działania silnika, ich pomiar nie jest bezpośrednio związany z weryfikacją płaskości. Wykonywanie pomiarów równoległości lub prostopadłości może być mylone z pomiarem płaskości, co może prowadzić do błędnych wniosków o stanie komponentów silnika. Dlatego kluczowe jest, aby podczas oceny kadłuba i głowicy silnika skupić się na płaskości, jako podstawowym kryterium, a nie na innych parametrach, które mogą wydawać się atrakcyjne, ale nie są właściwe w tym kontekście. Zrozumienie różnicy między tymi pojęciami jest istotne dla skutecznego przeprowadzania analiz i zapewnienia właściwego funkcjonowania silników.

Pytanie 8

Jakie napięcie uważa się za bezpieczne dla ludzi?

A. 110 V
B. 220 V
C. 360 V
D. 24 V
Napięcie 24 V jest uważane za bezpieczne dla człowieka, ponieważ w przypadku kontaktu z prądem o tej wartości ryzyko poważnych obrażeń jest znacznie mniejsze w porównaniu do wyższych napięć. Zgodnie z normami IEC 61140 oraz EN 60950, napięcia poniżej 50 V są klasyfikowane jako bezpieczne w warunkach normalnych. W praktyce napięcie 24 V jest powszechnie wykorzystywane w systemach zasilania urządzeń elektronicznych, automatyki budynkowej oraz zasilania czujników. Na przykład, w systemach sterowania oświetleniem lub w instalacjach alarmowych, napięcie 24 V pozwala na bezpieczne użytkowanie oraz minimalizuje ryzyko porażenia prądem. Dodatkowo, zasilanie w tym napięciu znacząco redukuje straty energii w systemach, co jest korzystne z perspektywy efektywności energetycznej. Warto podkreślić, że urządzenia działające na 24 V są często wykorzystywane w pojazdach czy instalacjach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 9

Podczas uzupełniania oleju w automatycznej skrzyni biegów, należy użyć oleju oznaczonego symbolem

A. SAE
B. ATF
C. API
D. ŁT4
Odpowiedź ATF (Automatic Transmission Fluid) jest poprawna, ponieważ jest to specyficzny typ oleju stosowanego w automatycznych skrzyniach biegów. Oleje ATF są zaprojektowane, aby spełniać rygorystyczne wymagania dotyczące pracy układów hydraulicznych, smarowania oraz chłodzenia, co jest kluczowe dla prawidłowego funkcjonowania automatycznej przekładni. Właściwości fizykochemiczne oleju ATF, takie jak lepkość, stabilność termiczna oraz odporność na utlenianie, są dostosowane do warunków pracy, jakie panują w skrzyniach automatycznych. Przykładem zastosowania oleju ATF może być jego użycie w samochodach osobowych, gdzie producenci zalecają stosowanie określonych specyfikacji, takich jak Dexron lub Mercon, w zależności od modelu pojazdu. Właściwy dobór oleju ATF wpływa na wydajność skrzyni biegów, a także na jej żywotność, co czyni go kluczowym elementem w serwisowaniu i konserwacji pojazdów.

Pytanie 10

Jaką funkcję pełni termostat w silniku spalinowym?

A. wtrysku paliwa
B. regulowania obiegu cieczy chłodzącej
C. dopalania paliwa
D. chłodzenia powietrza
Termostat w silniku spalinowym odgrywa kluczową rolę w regulacji obiegu cieczy chłodzącej, co jest niezbędne dla utrzymania optymalnej temperatury pracy silnika. W momencie, gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzewanie się płynu chłodzącego. Gdy temperatura osiągnie ustawioną wartość, termostat otwiera się, umożliwiając przepływ cieczy chłodzącej przez chłodnicę, co zapobiega przegrzewaniu silnika. Przykładowo, w nowoczesnych silnikach stosuje się termostaty z elektroniczną kontrolą, które mogą dostosować otwarcie w zależności od warunków pracy silnika, co prowadzi do większej efektywności paliwowej i zmniejszenia emisji spalin. Ponadto, właściwe działanie termostatu wpływa na żywotność silnika oraz jego osiągi, co jest zgodne z najlepszymi praktykami inżynieryjnymi w branży motoryzacyjnej.

Pytanie 11

Jakie zużycie określa wskaźnik TWI?

A. płynu hamulcowego
B. opony
C. paliwa
D. oleju silnikowego
Wskaźnik TWI (Tread Wear Indicator) jest kluczowym elementem bezpieczeństwa w oponach, który informuje kierowcę o stopniu zużycia bieżnika. Właściwe funkcjonowanie wskaźnika TWI jest niezbędne dla zachowania optymalnej przyczepności i stabilności pojazdu. W miarę eksploatacji opon, głębokość bieżnika zmniejsza się, co wpływa na zdolność do skutecznego odprowadzania wody i minimalizowania ryzyka aquaplaningu. Wskaźniki TWI są zazwyczaj umieszczone w rowkach bieżnika opon i stają się widoczne, gdy głębokość bieżnika spadnie do minimalnego poziomu, zazwyczaj 1,6 mm, co jest zgodne z przepisami prawa w wielu krajach. Regularne monitorowanie wskaźników TWI pozwala na wczesne wykrywanie konieczności wymiany opon, co nie tylko poprawia bezpieczeństwo, ale także wpływa na efektywność paliwową pojazdu. Dobre praktyki wskazują na konieczność wymiany opon w momencie, gdy TWI wskazuje na ich zużycie, co zapobiega dalszym uszkodzeniom i zapewnia lepsze osiągi pojazdu.

Pytanie 12

EGR to skrót oznaczający system

A. wspomagania układu kierowniczego
B. recyrkulacji spalin
C. zmiennych faz rozrządu
D. wspomagania układu hamulcowego
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 13

Jaka wartość zawartości wody w płynie hamulcowym wskazuje na konieczność jego wymiany?

A. 1,0%
B. 0,5%
C. 3,0%
D. 0,1%
Odpowiedzi wskazujące na niższą zawartość wody, takie jak 1,0%, 0,1% czy 0,5%, sugerują, że problem z wilgocią w płynie hamulcowym jest znikomy. W rzeczywistości jednak te wartości mogą prowadzić do błędnych wniosków dotyczących bezpieczeństwa hamowania. Płyn hamulcowy, w którym zawartość wody jest zbyt niska, może być źródłem nieefektywności, gdyż z dłuższym czasem eksploatacji, absorbuje wodę z otoczenia, co prowadzi do stopniowego obniżania się jego właściwości. Warto pamiętać, że nawet niewielkie ilości wody mogą prowadzić do poważnych problemów, takich jak korozja elementów układu hamulcowego. Dodatkowo, zbyt niska zawartość wody może sprawić, że kierowcy zlekceważą regularne przeglądy, co skutkuje zaniedbaniem tego istotnego aspektu konserwacji pojazdu. W przemyśle motoryzacyjnym, zaleca się, aby regularnie kontrolować jakość płynu hamulcowego, a nie polegać jedynie na subiektywnych odczuciach. Te podejścia mogą prowadzić do braku odpowiedniej konserwacji, co w dłuższej perspektywie skutkuje zwiększonym ryzykiem awarii układu hamulcowego.

Pytanie 14

Jaką częstotliwość powinny mieć błyski świateł kierunkowskazów?

A. 100 ± 30 błysków w ciągu minuty
B. 90 ± 30 błysków w ciągu minuty
C. 120 ± 30 błysków w ciągu minuty
D. 60 ± 30 błysków w ciągu minuty
Odpowiedź '90 ± 30 błysków na minutę' jest prawidłowa, ponieważ zapewnia optymalną widoczność sygnałów świetlnych dla innych uczestników ruchu drogowego. Zgodnie z normami i przepisami dotyczącymi oświetlenia pojazdów, częstotliwość błysków kierunkowskazów powinna wynosić od 60 do 120 błysków na minutę. Częstotliwość 90 błysków na minutę jest często uznawana za standardową, gdyż zapewnia odpowiednią równowagę pomiędzy czytelnością sygnału a zużyciem energii. Przykładowo, zbyt wolne błyski mogą prowadzić do nieporozumień wśród innych kierowców, a zbyt szybkie mogą być trudne do zauważenia, co może zwiększać ryzyko wypadków. Właściwe ustawienie częstotliwości błysków jest także istotne w kontekście bezpieczeństwa na drodze, ponieważ pozwala na lepsze przewidywanie zamiarów kierowcy, co jest kluczowe w sytuacjach wymagających szybkiej reakcji. Ponadto, z punktu widzenia estetyki i ergonomii, standardowe częstotliwości błysków są bardziej przyjazne dla użytkowników dróg.

Pytanie 15

Zawodnienie płynu hamulcowego na poziomie 4%

A. jest typowe po około 6 miesiącach użytkowania.
B. istotnie obniża jego temperaturę wrzenia.
C. praktycznie nie wpływa na jego właściwości.
D. istotnie zwiększa jego temperaturę wrzenia.
Zawodnienie płynu hamulcowego o wartości 4% ma istotny wpływ na jego właściwości, w tym na temperaturę wrzenia. Normalny płyn hamulcowy, zgodny z normami DOT, ma określoną temperaturę wrzenia, która jest krytyczna dla bezpiecznego funkcjonowania systemu hamulcowego. W przypadku obecności wody, która w tym przypadku stanowi 4% objętości, dochodzi do obniżenia temperatury wrzenia płynu. Woda ma znacznie niższą temperaturę wrzenia (100°C) niż typowe płyny hamulcowe, co oznacza, że w sytuacjach intensywnego hamowania, gdzie temperatura płynu może wzrosnąć, może to prowadzić do zjawiska wrzenia płynu hamulcowego. Praktycznym skutkiem tego jest ryzyko wystąpienia „spadku ciśnienia” w układzie hamulcowym, co może skutkować utratą skuteczności hamowania. Dlatego ważne jest regularne sprawdzanie stanu płynu hamulcowego oraz jego wymiana zgodnie z zaleceniami producenta pojazdu, aby zapewnić optymalne parametry pracy układu hamulcowego.

Pytanie 16

Jakie ciśnienie oleju w systemie smarowania silnika jest prawidłowe, gdy obroty mieszczą się w zakresie od 2000 do 3000 obr/min?

A. 4,0 MPa
B. 0,1 MPa
C. 2,0 MPa
D. 0,4 MPa
Chociaż wybór 2,0 MPa, 4,0 MPa lub 0,1 MPa może wydawać się logiczny, każda z tych wartości jest niewłaściwa w kontekście ciśnienia oleju w silniku w przedziale prędkości obrotowych 2000-3000 obr/min. Wybór 2,0 MPa przekracza górną granicę optymalnego ciśnienia, co może prowadzić do niekorzystnych warunków pracy pompy olejowej. Zbyt wysokie ciśnienie oleju może wynikać z zatorów w układzie smarowania lub niewłaściwego doboru oleju, co może skutkować uszkodzeniami uszczelek czy przewodów olejowych, a także prowadzić do nadmiernego zużycia pompy. Podobnie, 4,0 MPa jest wartością ekstremalnie wysoką, która w praktyce może powodować uszkodzenia mechaniczne w układzie smarowania. Zbyt niskie ciśnienie, jak w przypadku 0,1 MPa, jest równie niebezpieczne, ponieważ nie zapewnia odpowiedniego smarowania elementów silnika, co może prowadzić do ich przegrzania lub zatarcia. Przedziały ciśnienia oleju są ściśle określane w specyfikacjach technicznych silników, a ich ignorowanie może prowadzić do poważnych awarii. Wartości te można znaleźć w dokumentacji producentów, co podkreśla znaczenie znajomości tych norm dla każdego mechanika i właściciela pojazdu.

Pytanie 17

Przekładnia napędowa z wykorzystaniem kół zębatych, wykorzystywana w mechanizmie rozrządu silnika, należy do grupy przekładni

A. walcowych
B. ślimakowych
C. śrubowych
D. hiperboidalnych
Wybór odpowiedzi inne niż walcowe wskazuje na pewne nieporozumienia dotyczące mechaniki i rodzaju przekładni. Przekładnie śrubowe, ślimakowe oraz hiperboidalne różnią się od przekładni walcowych zarówno w budowie, jak i w zastosowaniach. Przekładnie śrubowe są stosowane do przekształcania ruchu obrotowego w ruch liniowy i często znajdują zastosowanie w mechanizmach podnoszących, gdzie wymagana jest zmiana siły. Przekładnie ślimakowe z kolei zapewniają dużą redukcję prędkości i są używane w sytuacjach, gdzie konieczna jest duża różnica prędkości między wałami, ale mają ograniczenia w przenoszeniu dużych momentów obrotowych. Hiperboidalne przekładnie są stosunkowo rzadkie i stosowane głównie w specjalistycznych aplikacjach. Stąd wybór odpowiedzi śrubowej, ślimakowej czy hiperboidalnej może wynikać z nieporozumienia dotyczącego funkcji i budowy poszczególnych typów przekładni. Dobrą praktyką w inżynierii mechanicznej jest dokładne zrozumienie specyfiki zastosowań poszczególnych przekładni, co pozwala na dobór odpowiednich rozwiązań w projektach technicznych. Dlatego wiedza na temat klasyfikacji przekładni jest niezwykle istotna w kontekście projektowania i eksploatacji różnych układów mechanicznych.

Pytanie 18

W pojeździe z silnikiem wysokoprężnym przeprowadzono pomiar emisji spalin uzyskując następujące wyniki: CO – 0,4g/km; NOx – 0,19g/km; PM – 0,008g/km; HC-0,03g/km; HC+NOx – 0,28g/km. Na podstawie dopuszczalnych wartości przedstawionych w tabeli, można pojazd zakwalifikować do grupy spełniającej co najwyżej normę

Dopuszczalne wartości emisji spalin w poszczególnych normach EURO
dla pojazdów z silnikiem wysokoprężnym
emisja
[g/km]
EURO 1EURO 2EURO 3EURO 4EURO 5EURO 6
CO3,1610,640,50,50,5
HC-0,150,060,050,050,05
NOx-0,550,50,250,180,08
HC+NOx1,130,70,560,30,230,17
PM0,140,080,050,0090,0050,005

A. EURO 5
B. EURO 4
C. EURO 6
D. EURO 3
Wybór normy EURO 3, EURO 5 lub EURO 6 jako odpowiedzi na to pytanie jest nieprawidłowy z kilku powodów. Norma EURO 3 dopuszcza wyższe limity emisji tlenku węgla (CO) wynoszące 2,3 g/km oraz tlenków azotu (NOx) na poziomie 0,5 g/km, co oznacza, że pojazd zakwalifikowany do tej normy mógłby emitować znacznie więcej zanieczyszczeń niż zmierzone wartości. Takie rozumienie norm skutkuje błędnym wnioskiem o spełnieniu standardów dla pojazdów EURO 3, ponieważ w rzeczywistości emisje muszą być niższe i dostosowane do aktualnych wymagań ochrony środowiska. Z kolei norma EURO 5 charakteryzuje się bardziej rygorystycznymi limitami, które znacznie obniżają dopuszczalne wartości emisji NOx do 0,18 g/km, co sprawia, że pojazd z pomiarem 0,19 g/km już nie spełnia tej normy. Natomiast norma EURO 6 wprowadza jeszcze surowsze wymagania, w tym limit 0,08 g/km dla NOx, co czyni niemożliwym zakwalifikowanie pojazdu do tej grupy, biorąc pod uwagę uzyskane wyniki. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, dotyczą braku zrozumienia różnic między normami oraz ich progresywnego zaostrzania w kontekście ochrony środowiska i zdrowia ludzi.

Pytanie 19

Elementy nazywane "tulejami mokrymi" są instalowane w

A. skrzyni biegów
B. układzie smarowania silnika
C. sprzęgle dwustopniowym
D. bloku silnika
Tuleje mokre, znane również jako tuleje cylindrowe, to elementy montowane w bloku silnika, które mają kluczowe znaczenie dla efektywnego działania jednostki napędowej. Ich główną funkcją jest zapewnienie miejsca dla tłoka oraz optymalizacja procesu smarowania. Tuleje mokre są osadzone w bloku silnika w taki sposób, że współpracują z płynem chłodzącym, co pozwala na utrzymanie odpowiedniej temperatury pracy silnika. Przykładem zastosowania tulei mokrej może być silnik spalinowy, w którym olej silnikowy krąży wokół tulei, minimalizując tarcie oraz zużycie. Niektóre nowoczesne silniki stosują standardy, takie jak SAE J300, które określają właściwości olejów silnikowych i ich kompatybilność z różnymi materiałami, w tym z tulejami mokrymi. W ramach dobrych praktyk branżowych, regularna kontrola stanu tulei oraz ich smarowania jest niezbędna dla zapewnienia długowieczności silnika oraz jego optymalnej wydajności.

Pytanie 20

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. ślimakową.
B. walcową.
C. hipoidalną.
D. cierną.
Przekładnie hipoidalne są najczęściej stosowane w przekładniach głównych mostów napędowych ze względu na ich unikalne właściwości. Ich konstrukcja pozwala na efektywne przenoszenie momentu obrotowego przy jednoczesnym zapewnieniu kompaktowych rozmiarów. Przekładnie te charakteryzują się zębatkami, które są ustawione pod kątem, co umożliwia większy kąt zębatki w porównaniu do przekładni walcowych. Dzięki temu, hipoidalne przekładnie oferują lepsze właściwości w zakresie redukcji hałasu oraz zmniejszenia wibracji. W praktyce, wykorzystywane są w pojazdach osobowych, ciężarowych oraz w maszynach przemysłowych, gdzie wymagana jest wysoka wydajność przeniesienia mocy. Te przekładnie są zgodne z normami branżowymi, co zapewnia ich niezawodność i trwałość. Dodatkowo, ich projektowanie opiera się na doskonałych praktykach inżynieryjnych, które pozwalają na optymalizację osiągów i ekonomii eksploatacji.

Pytanie 21

W jakich jednostkach mierzy się pojemność akumulatora?

A. amperach [A]
B. omach [Ohm]
C. amperogodzinach [Ah]
D. woltach [V]
Pojemność akumulatora mierzona jest w amperogodzinach [Ah], co odzwierciedla jego zdolność do przechowywania energii elektrycznej. Jedno amperogodzina oznacza, że akumulator może dostarczać prąd o natężeniu 1 ampera przez 1 godzinę. W praktyce oznacza to, że im większa pojemność akumulatora, tym dłużej może on zasilać urządzenia elektryczne. W kontekście zastosowań, akumulatory o dużej pojemności są wykorzystywane w systemach zasilania awaryjnego, pojazdach elektrycznych oraz w magazynach energii odnawialnej, takich jak systemy fotowoltaiczne. W branży akumulatorowej stosowane są standardy, takie jak IEC 61960, które definiują metody testowania pojemności akumulatorów oraz ich cykli ładowania i rozładowania. Zrozumienie pojemności akumulatora jest kluczowe dla projektowania systemów zasilania, gdyż pozwala na odpowiednie skalowanie urządzeń do wymagań energetycznych.

Pytanie 22

Podczas przeprowadzania głównego remontu, po całkowitym zdemontowaniu silnika, jako pierwsze

A. elementy należy poddać regeneracji.
B. można przystąpić do montażu nowych elementów.
C. elementy należy poddać ocenie.
D. części należy umyć.
W trakcie naprawy głównej silnika, umycie wszystkich części jest kluczowym krokiem, który należy podjąć po demontażu. Celem mycia jest usunięcie wszelkich zanieczyszczeń, takich jak olej, smar, pył oraz inne osady, które mogłyby zagrażać dalszej pracy silnika. W procesie mycia wykorzystuje się różne metody, takie jak mycie ultradźwiękowe, chemiczne czy za pomocą wysokociśnieniowych myjek, które są zgodne z branżowymi standardami. Na przykład, czyszczenie za pomocą myjki ciśnieniowej może skutecznie usunąć zanieczyszczenia z trudno dostępnych miejsc. Warto również zwrócić uwagę na dobór odpowiednich środków czyszczących, które nie będą miały negatywnego wpływu na materiały, z których wykonane są części. Po dokładnym umyciu, części powinny być dokładnie osuszone, aby uniknąć korozji. Taki proces mycia przed weryfikacją i regeneracją zapewnia, że inspekcja i ewentualne naprawy są przeprowadzane na czystych elementach, co zwiększa ich żywotność i efektywność całego silnika.

Pytanie 23

Jakiego oleju o symbolu wymaga przekładnia główna?

A. G12PLUS
B. API5W30
C. DOT3
D. GL-5 85W90
Odpowiedź GL-5 85W90 jest jak najbardziej trafna. Ten olej jest zaprojektowany specjalnie do stosowania w przekładniach głównych w pojazdach, które często muszą zmagać się z trudnymi warunkami. Spełnia normy klasyfikacji GL-5, co oznacza, że ma świetne właściwości przeciw zużyciowe, a także dobrze smaruje pod dużym obciążeniem. Lepkość 85W90 wskazuje, że olej działa dobrze w niskich temperaturach, a jednocześnie trzyma się dobrze w wysokich. Z doświadczenia wiem, że stosowanie GL-5 85W90 w przekładniach głównych różnych pojazdów, od terenowych po osobowe, pozwala uniknąć wielu problemów i sprawia, że działają one dłużej i skuteczniej. Warto również zwrócić uwagę, że ten olej jest zgodny z normami API, więc stoi na wysokim poziomie jakości. Zawsze dobrze jest używać oleju zgodnego z zaleceniami producenta, co w tym przypadku oznacza olej klasy GL-5.

Pytanie 24

Najczęściej używanym materiałem do wytwarzania odlewów wałów korbowych jest

A. silumin
B. żeliwo sferoidalne
C. żeliwo białe
D. stal stopowa
Żeliwo sferoidalne, nazywane też żeliwem nodularnym, to naprawdę świetny wybór do produkcji wałów korbowych. Ma świetne właściwości mechaniczne i jest odporne na zmęczenie, co jest mega ważne. Jego struktura, w której węgiel jest w formie sferoidalnych grafitowych cząstek, sprawia, że łączy w sobie cechy zarówno żeliwa, jak i stali. W porównaniu do tradycyjnego żeliwa szarego, to żeliwo sferoidalne ma lepszą plasticzność i wytrzymałość, a także jest mniej podatne na pękanie. To wszystko pozwala na znaczące zmniejszenie wagi elementów silnika, co na pewno wpływa na efektywność pojazdów. Co więcej, wały korbowe wykonane z tego materiału są zgodne z różnymi normami, jak na przykład ISO 1083, co gwarantuje ich jakość i niezawodność. Można je spotkać w silnikach spalinowych, zarówno w autach, jak i w zastosowaniach przemysłowych, więc to naprawdę dobry wybór dla nowoczesnych konstrukcji silnikowych.

Pytanie 25

Pomiar jałowego skoku pedału hamulca przeprowadza się przy użyciu

A. płytek referencyjnych
B. kątomierza
C. przymiaru kreskowego
D. mikrometru
Pomiar jałowego skoku pedału hamulca dokonuje się za pomocą przymiaru kreskowego, ponieważ jest to narzędzie zapewniające dokładność i precyzję w pomiarach. Przymiar kreskowy, znany również jako suwmiarka, pozwala na mierzenie wymiarów z dużą dokładnością, co jest kluczowe w kontekście regulacji układów hamulcowych. Dzięki zastosowaniu przymiaru kreskowego, technik może łatwo określić, czy skok pedału hamulca mieści się w normach przewidzianych przez producenta pojazdu. W praktyce stosuje się go do pomiarów w warsztatach samochodowych, gdzie precyzyjne dostosowanie układów hamulcowych ma kluczowe znaczenie dla bezpieczeństwa. Zgodnie z normami branżowymi, regularne pomiary i kontrola skoku pedału hamulca są zalecane w celu utrzymania właściwego stanu technicznego pojazdów. Dodatkowo, umiejętność posługiwania się przymiarem kreskowym jest niezbędna w pracy każdego mechanika, co podkreśla znaczenie tego narzędzia w codziennych czynnościach serwisowych.

Pytanie 26

Zauważalny wzrost ciśnienia sprężania silnika podczas testu olejowego wskazuje na uszkodzenie

A. uszczelki podgłowicowej
B. pierścieni tłokowych
C. przylgni zaworowych
D. prowadnic zaworowych
Wzrost ciśnienia sprężania podczas próby olejowej w silniku spalinowym jest kluczowym wskaźnikiem stanu pierścieni tłokowych. Pierścienie tłokowe mają za zadanie skutecznie uszczelniać przestrzeń między tłokiem a cylindrem, co pozwala na osiągnięcie odpowiedniego ciśnienia sprężania. Kiedy pierścienie są zużyte, pęknięte lub nieprawidłowo zamontowane, olej silnikowy może dostawać się do komory spalania, co prowadzi do wzrostu ciśnienia sprężania. Przeprowadzenie próby olejowej, polegającej na dodaniu oleju do cylindrów, pozwala na zdiagnozowanie problemu. Jeżeli po dodaniu oleju ciśnienie wzrasta, to wskazuje na uszkodzenie pierścieni tłokowych, co jest zgodne z najlepszymi praktykami diagnostycznymi w branży motoryzacyjnej. Wysoka wartość ciśnienia sprężania po dodaniu oleju musi być traktowana jako sygnał do przeprowadzenia dalszych badań i ewentualnej wymiany pierścieni, co z kolei przekłada się na poprawę efektywności pracy silnika oraz jego żywotności.

Pytanie 27

Po wykonaniu próby olejowej i ponownym zmierzeniu ciśnienia sprężania zauważono, że ciśnienie w jednym z cylindrów pozostało bez zmian. Co najprawdopodobniej jest uszkodzone w tym cylindrze?

A. Pierścień tłokowy.
B. Gniazdo zaworowe.
C. Uszczelka głowicy.
D. Gładź cylindra.
W przypadku braku zmiany ciśnienia w cylindrze, wielu mechaników może pomyśleć, że problem leży w uszczelce głowicy, pierścieniach tłokowych lub gładzi cylindra. Jednakże, uszczelka głowicy jest odpowiedzialna za uszczelnienie pomiędzy głowicą a blokiem silnika, a jej uszkodzenie prowadzi do wycieku płynów chłodzących lub oleju, co w praktyce zazwyczaj wiąże się z zauważalnym spadkiem ciśnienia, a nie jego brakiem. Podobnie, pierścienie tłokowe pełnią kluczową rolę w utrzymywaniu ciśnienia w cylindrze, a ich uszkodzenie prowadzi do spadku ciśnienia sprężania i widocznego dymu z układu wydechowego, co również nie znajduje odzwierciedlenia w zjawisku braku zmian ciśnienia. Gładź cylindra, z kolei, odpowiada za właściwe prowadzenie tłoka, a jej zużycie również objawia się spadkiem ciśnienia sprężania. W związku z tym, koncentrowanie się na tych elementach może prowadzić do błędnych diagnoz i niepotrzebnych napraw, a kluczowe jest zrozumienie, że w przypadku braku zmiany ciśnienia w cylindrze, najprawdopodobniejszym problemem są właśnie nieszczelności w gniazdach zaworowych. Wiedza na temat prawidłowego funkcjonowania tych komponentów oraz ich wzajemnych relacji jest niezbędna dla skutecznej diagnostyki i naprawy silnika.

Pytanie 28

W trakcie serwisowania pojazdów obowiązkowe jest noszenie okularów ochronnych podczas

A. ładowania akumulatorów.
B. naprawy opon.
C. prac związanych ze szlifowaniem.
D. wymiany płynu chłodzącego.
Odpowiedź dotycząca obowiązkowego stosowania okularów ochronnych podczas prac szlifierskich jest prawidłowa, ponieważ tego typu działalność generuje znaczną ilość pyłu oraz drobnych cząstek, które mogą stanowić zagrożenie dla oczu. Podczas szlifowania materiałów, takich jak metal czy drewno, detale mogą być odrzucane z dużą prędkością, co zwiększa ryzyko urazu wzroku. Standardy BHP oraz zalecenia dotyczące ochrony osobistej wskazują na konieczność stosowania okularów ochronnych w takich sytuacjach, aby zminimalizować ryzyko uszkodzeń. Przykładem mogą być prace w warsztatach mechanicznych, gdzie szlifowanie komponentów silnika lub nadwozia pojazdów jest na porządku dziennym. Używanie okularów ochronnych nie tylko chroni oczy przed zranieniami, ale także przed działaniem pyłów chemicznych, które mogą występować w niektórych materiałach. Pracownicy powinni być również szkoleni w zakresie właściwego doboru okularów, które powinny spełniać normy ochrony osobistej PN-EN 166.

Pytanie 29

Przy użyciu areometru dokonuje się pomiaru

A. temperatury elektrolitu.
B. gęstości elektrolitu.
C. napięcia akumulatora.
D. wysokości elektrolitu.
Odpowiedź gęstości elektrolitu jest poprawna, ponieważ areometr jest narzędziem służącym do pomiaru gęstości cieczy. W przypadku elektrolitu akumulatorowego, gęstość jest kluczowym wskaźnikiem stanu naładowania akumulatora. Wartość gęstości elektrolitu zależy od jego stanu naładowania: im wyższa gęstość, tym lepsza kondycja akumulatora. Przykładem zastosowania areometru w praktyce jest okresowe sprawdzanie gęstości elektrolitu w akumulatorach kwasowo-ołowiowych, co pozwala na ocenę ich wydajności oraz żywotności. Standardy branżowe, takie jak SAE J537, zalecają monitorowanie gęstości elektrolitu jako kluczowego parametru podczas konserwacji akumulatorów. Wiedza na temat tego, jak interpretować wyniki pomiarów gęstości, jest niezbędna do prawidłowego zarządzania akumulatorami i zapewnienia ich długotrwałej pracy.

Pytanie 30

Podczas naprawy pojazdu został wymieniony filtr paliwa, filtr kabinowy oraz komplet klocków hamulcowych osi przedniej. Koszt jednej roboczogodziny to 90,00 zł netto. Oblicz całkowity koszt naprawy netto.

Lp.wykaz częścicena netto
[zł]
1.olej silnikowy 4l125,00
2.filtr oleju45,00
3.filtr kabinowy85,00
4.filtr paliwa115,00
5.klocki hamulcowe osi przedniej- kpl.95,00
6.klocki hamulcowe osi tylnej- kpl.112,00
7.tarcze hamulcowe osi przedniej-kpl.160,00
Lp.czynnościczas naprawy
[rg.]
1.wymiana filtra paliwa0,5
2.wymiana filtra kabinowego0,3
3.wymiana klocków hamulcowych osi przedniej1,2
4.wymiana klocków hamulcowych osi tylnej1,3

A. 680,00 zł
B. 475,00 zł
C. 635,00 zł
D. 380,00 zł
Wybierając 635,00 zł, 380,00 zł czy 680,00 zł, można było popełnić parę błędów w liczeniu kosztów naprawy. Na przykład 635,00 zł może sugerować, że gdzieś w robociznie lub kosztach części jest pomyłka. Może przyjęto za dużą stawkę robocizny albo źle oszacowano czas roboczy. Takie błędy się zdarzają, a ważne, żeby być precyzyjnym. Z kolei 380,00 zł wygląda na zaniżoną kwotę, co często się zdarza, gdy całkowicie pomija się koszt robocizny albo źle liczy ceny części. Ostatnia odp. 680,00 zł też pokazuje, że coś było nie tak z oszacowaniem, zwłaszcza w robociznie. Wiesz, takie błędy mogą wyniknąć z braku zrozumienia, jak się liczy koszty w warsztacie. Dlatego warto cały czas analizować poszczególne koszty, żeby uniknąć nieporozumień i pomyłek w obliczeniach. W praktyce każdy warsztat powinien mieć jakieś standardy, które pomogą w dobrej kalkulacji kosztów.

Pytanie 31

W sytuacji, gdy na powierzchni tarcz hamulcowych osi kierowanej zauważono pęknięcia, jakie działania naprawcze należy podjąć?

A. szlifowanie powierzchni tarcz
B. wymiana tarcz na nowe
C. spawanie tarcz
D. splanowanie tarcz
Wymiana tarcz hamulcowych na nowe jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności pojazdu. Pęknięcia na powierzchni tarcz hamulcowych mogą prowadzić do poważnych problemów z hamowaniem, w tym do zmniejszenia skuteczności hamulców oraz ryzyka uszkodzenia innych elementów układu hamulcowego. Wymiana tarcz na nowe jest zgodna z zaleceniami producentów oraz normami bezpieczeństwa, które podkreślają, że uszkodzone tarcze powinny być natychmiast wymieniane. Nowe tarcze hamulcowe zapewniają optymalną powierzchnię cierną, co jest niezbędne do uzyskania odpowiedniej siły hamowania. Przykładowo, w przypadku pojazdów sportowych, gdzie wymagane są intensywne hamowania, zaniedbanie wymiany uszkodzonych tarcz może prowadzić do poważnych konsekwencji, w tym wypadków. Dlatego, w praktyce, nie tylko sama wymiana, ale również dobra jakość nowych tarcz ma kluczowe znaczenie, aby spełniały one standardy producenta i zapewniały bezpieczeństwo w ruchu drogowym.

Pytanie 32

Podczas wizyty w ASO wykonano obsługę okresową w pojeździe. Łączny czas pracy został określony jako 3,5 roboczogodziny. Uwzględniając zawarte w tabeli ceny wykorzystanych części i materiałów eksploatacyjnych oraz koszt wykonanych czynności, wskaż ile klient zapłaci za wykonanie obsługi.

Nazwa części/materiałuWymagana ilośćCena jednostkowa [zł]
Filtr oleju1 szt.19,00
Olej silnikowy4,0 l*30,00
Płyn hamulcowy0,5 l*18,00
Płyn chłodniczy5,5 l*20,00
Koszt jednej roboczogodziny 1,0 rbg = 125,00 zł
*płyny eksploatacyjne są pobierane z opakowań zbiorczych z dokładnością do 0,5 l

A. 695,50 zł
B. 705,50 zł
C. 704,50 zł
D. 685,50 zł
Poprawna odpowiedź to 695,50 zł, co oznacza, że obliczenia zostały przeprowadzone zgodnie z obowiązującymi standardami branżowymi przy wykonywaniu usług serwisowych w pojazdach. W przypadku obsługi okresowej istotne jest uwzględnienie nie tylko kosztów robocizny, ale również cen części zamiennych oraz materiałów eksploatacyjnych. W tym przypadku czas roboczy wynoszący 3,5 godzin przekłada się na określoną stawkę robocizny, która jest ustalana przez warsztat. Po dodaniu tych kosztów do kosztów części i materiałów, otrzymujemy całkowity koszt usługi. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne dla właścicieli pojazdów, którzy powinni być świadomi, jak poszczególne elementy wpływają na całkowity koszt serwisu. Dobrou praktyką jest również porównywanie ofert różnych warsztatów, aby uzyskać najlepszy stosunek ceny do jakości usług. Dzięki umiejętnościom obliczeniowym w zakresie kosztów, klienci mogą lepiej zrozumieć, za co płacą, i podejmować świadome decyzje.

Pytanie 33

Podczas serwisowania głowicy silnika stwierdzono, że jedno z gniazd świecy zapłonowej ma zniszczony gwint. W tej sytuacji mechanik powinien

A. tulejować otwór i ponownie nagwintować
B. rozwiercić otwór na nowy wymiar naprawczy i ponownie nagwintować
C. wsadzić nową świecę zapłonową, która naprawi uszkodzony gwint
D. naprawić dotychczasowy gwint przy użyciu narzynki
Tulejowanie otworu i nagwintowanie na nowo to chyba najlepsza metoda na naprawę uszkodzonego gwintu w gnieździe świecy zapłonowej. Chodzi o to, żeby wsunąć tuleję do otworu, co przywraca prawidłowe mocowanie świecy. Z tego, co wiem, tuleje są zazwyczaj robione z materiałów, które dobrze znoszą wysokie temperatury i ciśnienie, więc są świetnym rozwiązaniem w silnikach. Pomyśl tylko – jeśli gwint w głowicy silnika coś nadgryzła korozja albo źle wkręcona świeca, to tulejowanie będzie znacznie lepsze niż jakieś doraźne naprawy. W branży uznaje się, że ta metoda jest zdecydowanie trwalsza i bardziej niezawodna, więc czujesz, że robisz dobrze. Właściwie to stosowanie tulei w takich naprawach to sama czołówka najlepszych praktyk, bo znacznie zmniejsza ryzyko kolejnych uszkodzeń, które mogłyby być spowodowane źle wkręconą świecą.

Pytanie 34

Aby zweryfikować prawidłowość wykonanego serwisu układu przeniesienia napędu, mechanik powinien zrealizować

A. test na stanowisku rolkowym
B. pomiar zbieżności kół
C. kontrolę luzu elementów układu zawieszenia
D. jazdę próbną
Jazda próbna jest kluczowym elementem weryfikacji poprawności wykonanej naprawy układu przeniesienia napędu. Dzięki niej mechanik ma okazję ocenić, czy pojazd działa prawidłowo w różnych warunkach drogowych, co jest niezwykle ważne dla bezpieczeństwa użytkowników. Przykładowo, podczas jazdy próbnej można zauważyć wszelkie nieprawidłowości w działaniu skrzyni biegów, sprzęgła czy różnicowego, które mogą nie ujawniać się w warunkach stacjonarnych. W kontekście dobrych praktyk, jazda próbna powinna być przeprowadzana zgodnie z zaleceniami producenta, co obejmuje zarówno sprawdzenie przyspieszenia, jak i maksymalnej prędkości oraz zachowania pojazdu w zakrętach. Ponadto, istotne jest również monitorowanie wszelkich dźwięków wydobywających się z układu, które mogą wskazywać na ukryte problemy. Taki systematyczny proces weryfikacji jest zgodny z normami jakości i bezpieczeństwa, które obowiązują w branży motoryzacyjnej.

Pytanie 35

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 224 zł
B. 204 zł
C. 124 zł
D. 154 zł
Aby obliczyć całkowity koszt naprawy głowicy silnika, musimy uwzględnić zarówno koszty części zamiennych, jak i czas pracy mechanika. W tej sytuacji wymieniono 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę. Obliczamy koszty części: (2 x 27 zł) + (2 x 25 zł) = 54 zł + 50 zł = 104 zł. Następnie obliczamy czas potrzebny na dostarczenie zaworów. Każdy zawór wymaga 20 minut, więc dla 4 zaworów potrzebujemy 80 minut. Przeliczając to na godziny, otrzymujemy 1,33 godziny (80 minut / 60 minut). Koszt robocizny wynosi 90 zł za godzinę, więc całkowity koszt robocizny to 90 zł x 1,33 godziny = 119,7 zł. Łącząc te wartości, otrzymujemy 104 zł + 119,7 zł = 223,7 zł, co zaokrągla się do 224 zł. Zastosowanie tego typu obliczeń jest istotne w branży motoryzacyjnej, aby właściwie wyceniać usługi oraz planować budżet na ewentualne naprawy.

Pytanie 36

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. wałek napędowy
B. element synchronizujący
C. satelita
D. pas napędowy
Zdecydowanie nie powinniśmy wybierać innych części, jak wałek atakujący czy synchronizator, bo to nie ma sensu w kontekście skrzyni CVT. Wałek atakujący jest ważny w tradycyjnych skrzyniach biegów, gdzie przenosi moc z silnika do mechanizmu różnicowego. W CVT tę rolę spełnia pas napędowy, więc to jakby nie ten temat. Synchronizatory też są stosowane do synchronizacji obrotów w tradycyjnych skrzyniach podczas zmiany biegów, a w CVT nie ma biegów do zmieniania, tylko płynnie wszystko działa. Satelity z kolei są w automatycznych skrzyniach, a w CVT to się nie odnosi. Jeśli mylimy te elementy, to możemy nie zrozumieć, jak działa nowoczesna motoryzacja i jak różne są te systemy przeniesienia napędu.

Pytanie 37

Aby zmierzyć średnice czopów wału korbowego, należy zastosować

A. mikrometr wewnętrzny
B. średnicówkę mikrometryczną
C. mikrometr zewnętrzny
D. głębokościomierz mikrometryczny
Użycie głębokościomierza mikrometrycznego do pomiarów średnic czopów wału korbowego jest nieodpowiednie, ponieważ narzędzie to zostało zaprojektowane do pomiaru głębokości otworów, rowków czy szczelin, a nie średnic zewnętrznych. Podobnie, mikrometr wewnętrzny jest narzędziem stosowanym do pomiarów średnic wewnętrznych, takich jak otwory, ale nie nadaje się do oceny średnic zewnętrznych czopów. Średnicówka mikrometryczna, choć z pozoru mogłaby wydawać się odpowiednia, służy głównie do pomiaru średnic części, które mają formę cylindryczną i są montowane w specjalnych uchwytach, a nie do pomiarów bezpośrednich na czopach wału. Stosowanie niewłaściwego narzędzia pomiarowego może prowadzić do błędnych wyników, co w przemyśle może skutkować nieprawidłowym montażem komponentów, a w konsekwencji awarią maszyn. W kontekście standardów i dobrych praktyk, kluczowe jest stosowanie odpowiednich narzędzi do konkretnych zastosowań, co podkreśla znaczenie precyzyjnych pomiarów w procesach produkcyjnych oraz diagnostycznych.

Pytanie 38

W pojeździe z silnikiem ZS obserwuje się nadmierną emisję czarnych spalin. Co jest przyczyną tej sytuacji?

A. nieszczelność pierścieni tłokowych oraz spalanie oleju silnikowego
B. nieszczelność uszczelki podgłowicowej
C. nieprawidłowe ustawienie zaworów
D. wadliwe rozpylenie paliwa spowodowane usterką wtryskiwaczy
Nieprawidłowe wyregulowanie zaworów, nieszczelność pierścieni tłokowych czy uszczelki podgłowicowej to problemy, które mogą wpływać na ogólną wydajność silnika, jednak nie są one głównym powodem nadmiernego zadymienia spalin barwy czarnej w przypadku silników ZS. Zawory w silniku odpowiadają za kontrolę przepływu mieszanki paliwowo-powietrznej oraz spalin, a ich niewłaściwe wyregulowanie może prowadzić do nieefektywnego spalania, jednak nie generuje to czarnych spalin, lecz raczej zwiększa emisję tlenku węgla i węglowodorów. Nieszczelność pierścieni tłokowych skutkuje przedostawaniem się oleju silnikowego do komory spalania, co prowadzi do błękitnego zadymienia, a nie czarnego. Z kolei uszczelka podgłowicowa, jeśli jest nieszczelna, także nie powoduje czarnego dymu, lecz może prowadzić do przedostawania się płynu chłodzącego do cylindrów, co objawia się białym dymem. Typowym błędem myślowym jest mylenie symptomów z przyczynami; użytkownicy często przypisują nadmierne zadymienie spalin różnym problemom mechanicznym, zamiast skupić się na kluczowych komponentach, takich jak wtryskiwacze, które mają bezpośredni wpływ na proces spalania. W praktyce, zrozumienie funkcji wtryskiwaczy i ich wpływu na efektywność spalania jest kluczowe dla prawidłowej diagnozy problemów z emisją spalin.

Pytanie 39

Które z poniższych działań nie jest wymagane po wymianie klocków oraz tarcz hamulcowych?

A. Przeprowadzenie testu działania hamulców.
B. Odpowietrzenie układu hamulcowego.
C. Odtłuszczenie tarcz hamulcowych
D. Dokręcenie śrub mocujących zaciski hamulcowe z odpowiednim momentem.
Dokręcenie śrub mocujących zaciski hamulcowe odpowiednim momentem jest kluczowym elementem zapewniającym stabilność i bezpieczeństwo układu hamulcowego. Niewłaściwe dokręcenie tych śrub może prowadzić do ich luzowania się w trakcie jazdy, co z kolei może prowadzić do utraty kontroli nad pojazdem. Z kolei wykonanie próby działania hamulców po wymianie klocków i tarcz jest bezwzględnie konieczne, aby upewnić się, że wszystkie komponenty współpracują ze sobą prawidłowo. Niedostateczne sprawdzenie ich działania może skutkować nieprzewidzianymi sytuacjami na drodze, a nawet wypadkiem. Odtłuszczenie tarcz hamulcowych przed ich zamontowaniem jest również istotnym krokiem, który pozwala na usunięcie wszelkich zanieczyszczeń, które mogą wpływać na skuteczność hamulców. Zanieczyszczone tarcze mogą prowadzić do szumów, wibracji oraz nierównomiernego zużycia klocków hamulcowych. Powszechnym błędem jest zatem pomijanie tych istotnych kroków w procesie wymiany, co może wpływać na całościową efektywność hamulców. Ważne jest, aby każda czynność była przeprowadzana zgodnie z ustalonymi normami oraz zaleceniami producenta, co zapewnia bezpieczeństwo i wysoką jakość pracy układu hamulcowego. Przeprowadzanie wszystkich tych działań zgodnie z normami branżowymi jest kluczowe dla utrzymania odpowiednich standardów bezpieczeństwa na drodze.

Pytanie 40

Jak przeprowadza się ocenę układu hamulcowego po jego naprawie?

A. metodą Boge
B. na hamowni podwoziowej
C. na rolkach pomiarowych
D. na szarpaku
Odpowiedź 'na rolkach pomiarowych' jest poprawna, ponieważ rolki pomiarowe umożliwiają dokładną ocenę działania układu hamulcowego w rzeczywistych warunkach eksploatacyjnych. Dzięki tej metodzie można ocenić skuteczność hamowania pojazdu, a także równomierność działania poszczególnych hamulców. Rolki pomiarowe działają na zasadzie symulacji ruchu pojazdu, co pozwala na precyzyjne zbadanie siły hamowania oraz siły oporu, które są kluczowe dla bezpieczeństwa jazdy. W przypadku wykrycia nieprawidłowości, można natychmiast przeprowadzić diagnostykę oraz naprawę, co jest zgodne z najlepszymi praktykami branżowymi. Zastosowanie tej metody pozwala także na uzyskanie szczegółowych danych, które mogą być użyte do dalszej analizy i optymalizacji działania układu hamulcowego. Przykładowo, w warsztatach samochodowych, gdzie regularnie przeprowadza się przeglądy techniczne pojazdów, rolki pomiarowe są standardowym narzędziem do oceny stanu hamulców, co zapewnia ich bezpieczeństwo i niezawodność.