Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 maja 2025 12:30
  • Data zakończenia: 15 maja 2025 12:45

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oznaczenie symbolem dla systemu monitorowania ciśnienia w oponach pojazdu jest

A. TPMS
B. BAS
C. ACC
D. SOHC
System TPMS (Tire Pressure Monitoring System) to nowoczesne rozwiązanie stosowane w pojazdach, które ma na celu monitorowanie ciśnienia w oponach w czasie rzeczywistym. Prawidłowe ciśnienie w oponach jest kluczowe dla bezpieczeństwa, wydajności paliwowej oraz komfortu jazdy. TPMS informuje kierowcę o niskim ciśnieniu w oponach, co pozwala na szybką reakcję i uniknięcie potencjalnych awarii, takich jak uszkodzenie opony czy zwiększone zużycie paliwa. W praktyce, TPMS może być podzielony na dwa główne typy: systemy bezpośrednie, które wykorzystują czujniki ciśnienia zamontowane w oponach, oraz systemy pośrednie, które monitorują prędkość obrotową kół, aby ocenić różnice ciśnienia. Obecnie w wielu krajach stosowanie TPMS jest obowiązkowe w nowych pojazdach, co podkreśla znaczenie tego systemu w poprawie bezpieczeństwa na drogach. W związku z tym kierowcy powinni regularnie sprawdzać działanie systemu TPMS oraz dbać o prawidłowe ciśnienie w oponach, co jest zgodne z zaleceniami producentów pojazdów oraz standardami bezpieczeństwa.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W pojazdach z tradycyjnym systemem napędowym właściwa zbieżność kół powinna być

A. dodatnia
B. zerowa
C. bez znaczenia
D. ujemna
Ogólnie rzecz biorąc, zbieżność kół w samochodach z klasycznym napędem powinna być dodatnia. Chodzi o to, że przednie koła są trochę skierowane do siebie na górze. Taki sposób ustawienia kół pomaga utrzymać stabilność pojazdu, zarówno kiedy jedziemy prostą drogą, jak i przy skrętach. Dodatnia zbieżność zmniejsza ryzyko zużycia opon i poprawia ich kontakt z nawierzchnią. W warsztatach często zajmują się regulacją zbieżności i używają do tego różnych urządzeń, żeby wszystko było zgodne z tym, co mówi producent. Moim zdaniem, dobrze jest dostosować zbieżność do wartości dodatniej, bo to również wpływa na komfort jazdy i bezpieczeństwo, a pojazd zachowuje się przewidywalnie. Z tego, co wiem, różne pojazdy mogą mieć różne zalecenia odnośnie zbieżności, więc warto sprawdzić dokumentację techniczną swojego auta.

Pytanie 4

Skrót ESP oznacza, że pojazd osobowy wyposażony jest w system

A. zapobiegania blokowaniu kół w trakcie hamowania
B. zapobiegania poślizgom kół podczas startu
C. elektronicznego zarządzania siłą hamowania
D. stabilizacji kierunku jazdy
Skrót ESP oznacza 'Electronic Stability Program', co w języku polskim można przetłumaczyć jako system stabilizacji toru jazdy. ESP jest zaawansowanym systemem bezpieczeństwa, który wspomaga kierowcę w kontrolowaniu pojazdu w krytycznych sytuacjach. Jego głównym zadaniem jest zapobieganie poślizgom, które mogą wystąpić na śliskiej nawierzchni, podczas gwałtownego manewrowania lub w trakcie nagłego hamowania. System ten monitoruje ruch pojazdu, porównując go z zamierzonym torem jazdy, który wskazuje kierowca. W sytuacji wykrycia utraty przyczepności, ESP automatycznie dostosowuje siłę hamowania do poszczególnych kół, co pozwala utrzymać pojazd na właściwej drodze. Przykład zastosowania ESP można zauważyć podczas jazdy w deszczu, gdzie może dojść do poślizgu. Wówczas system błyskawicznie reaguje, zmniejszając moc silnika i hamując konkretne koła, co stabilizuje pojazd. Zgodnie z zaleceniami Międzynarodowej Organizacji Normalizacyjnej (ISO), systemy takie jak ESP powinny być standardowym wyposażeniem nowoczesnych pojazdów, co przyczynia się do zwiększenia ogólnego bezpieczeństwa na drogach.

Pytanie 5

Gdzie stosowany jest odśrodkowy regulator prędkości obrotowej?

A. w rzędowej pompie wtryskowej
B. w pompie tłoczkowej o niskim ciśnieniu
C. w przeponowej pompie paliwowej silnika z zapłonem iskrowym
D. w paliwowej pompie wysokiego ciśnienia w systemie Common Rail
Każda z pozostałych opcji odnosi się do zastosowania pomp paliwowych w różnych kontekstach, ale nie uwzględnia kluczowej roli odśrodkowego regulatora prędkości obrotowej. Przeponowa pompa paliwa silnika z zapłonem iskrowym operuje na zupełnie innych zasadach; zazwyczaj jest stosowana w silnikach benzynowych i nie wymaga precyzyjnego dawkowania paliwa, co czyni zastosowanie odśrodkowego regulatora zbędnym. Pompy tłoczkowe niskiego ciśnienia, z kolei, służą do transportu paliwa z zbiornika do silnika, ale ich konstrukcja nie wymaga regulacji w oparciu o prędkość obrotową, co ogranicza ich zastosowanie w kontekście odśrodkowego regulatora. W przypadku pomp paliwowych wysokiego ciśnienia w układzie Common Rail, chociaż ich funkcja jest związana z precyzyjnym wtryskiem paliwa, to mechanizm działania opiera się na innych zasadach regulacji, takich jak elektroniczne sterowanie, co sprawia, że odśrodkowy regulator nie znajduje zastosowania w tym kontekście. Błędne założenie, że regulator może być użyty w tych typach pomp, wynika z mylnego zrozumienia zasad działania poszczególnych układów oraz funkcji, jakie pełnią w silnikach. Ważne jest zrozumienie, że różne systemy paliwowe mają swoje specyficzne wymagania dotyczące regulacji, które muszą być dostosowane do ich charakterystyki operacyjnej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie jest zadanie intercoolera?

A. redukcja temperatury spalin.
B. podgrzewanie powietrza zasilającego.
C. obniżenie temperatury powietrza zasilającego.
D. oczyszczanie powietrza zasilającego.
Intercooler jest kluczowym elementem systemu doładowania silnika, którego głównym zadaniem jest obniżenie temperatury powietrza dolotowego. Po sprężeniu, powietrze staje się gorące, co negatywnie wpływa na wydajność i moc silnika. Schłodzenie powietrza dolotowego przed jego wprowadzeniem do cylindrów przyczynia się do zwiększenia gęstości powietrza, co pozwala na lepsze spalanie mieszanki paliwowo-powietrznej. Dzięki temu silnik może pracować efektywniej, generując więcej mocy przy mniejszym zużyciu paliwa. W praktyce, zastosowanie intercoolera może przyczynić się do obniżenia temperatury powietrza o 30-50°C, co znacznie poprawia osiągi pojazdu. Intercoolery są stosowane w różnych typach silników, w tym w silnikach spalinowych z turbodoładowaniem oraz w aplikacjach wyścigowych, gdzie maksymalna wydajność jest kluczowa. Dobre praktyki w instalacji intercoolera obejmują jego umiejscowienie blisko turbosprężarki oraz optymalny dobór materiałów, aby zminimalizować straty ciepła oraz opory przepływu. Takie podejście jest zgodne z normami branżowymi w zakresie projektowania układów dolotowych.

Pytanie 8

Podczas diagnostyki układu elektrycznego pojazdu, mechanik powinien w pierwszej kolejności sprawdzić:

A. Pasy bezpieczeństwa
B. Bezpieczniki
C. Przewody paliwowe
D. Zawory dolotowe
Sprawdzenie bezpieczników jest kluczowym krokiem podczas diagnostyki układu elektrycznego pojazdu. Bezpieczniki pełnią funkcję ochronną, zabezpieczając układ przed przeciążeniem i uszkodzeniami spowodowanymi zwarciami. W przypadku awarii jakiegokolwiek elementu elektrycznego, sprawdzenie bezpieczników to jedna z pierwszych czynności, którą należy wykonać. Jest to szybki i prosty sposób na zidentyfikowanie problemu, zanim przystąpi się do bardziej zaawansowanej diagnostyki. Bezpieczniki mogą ulec przepaleniu z różnych powodów, takich jak przeciążenie obwodu lub zwarcie, co powoduje przerwanie obwodu i ochronę reszty systemu przed uszkodzeniem. Profesjonalni mechanicy zawsze najpierw sprawdzają bezpieczniki, ponieważ ich wymiana jest szybka i stosunkowo tania, co może natychmiast rozwiązać problem bez konieczności dalszej, czasochłonnej diagnostyki. To podejście jest zgodne z dobrą praktyką warsztatową i standardami w branży motoryzacyjnej, które promują efektywność i skuteczność w diagnozowaniu problemów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

10W-30 to kod oleju

A. silnikowego wielosezonowego
B. silnikowego zimowego
C. silnikowego letniego
D. przekładniowego
Oznaczenie 10W-30 wskazuje na klasyfikację oleju silnikowego jako wielosezonowego, co oznacza, że jest on odpowiedni do stosowania w różnorodnych warunkach temperaturowych. Liczba '10' odnosi się do lepkości oleju w niskich temperaturach, a '30' do jego lepkości w wysokich temperaturach. Oleje wielosezonowe, takie jak 10W-30, są projektowane tak, aby utrzymywały odpowiedni poziom ochrony silnika zarówno podczas zimnych rozruchów, jak i w wysokotemperaturowych warunkach pracy. Dzięki takiej elastyczności, olej ten znajduje zastosowanie w większości nowoczesnych silników, co czyni go idealnym wyborem dla użytkowników, którzy nie chcą regularnie zmieniać oleju w zależności od pory roku. W praktyce oznaczenie to sugeruje, że olej ten zapewnia dobrą ochronę przed zużyciem, a także odpowiednie właściwości smarne, co jest kluczowe dla efektywności pracy silnika oraz jego długowieczności. Ponadto, zgodność z normami API i ILSAC zwiększa zaufanie do jakości tego produktu, co jest istotne dla każdego właściciela pojazdu.

Pytanie 11

Maksymalna dopuszczalna różnica wskaźnika efektywności hamowania na jednej osi kół nie powinna być większa niż

A. 10 %
B. 25 %
C. 30 %
D. 20 %
Poprawne zrozumienie dopuszczalnej różnicy wskaźnika skuteczności hamowania jest kluczowe dla zachowania bezpieczeństwa na drodze. Odpowiedzi sugerujące niższe wartości, takie jak 25%, 20% czy 10%, mogą prowadzić do fałszywego poczucia bezpieczeństwa. Przyjmowanie zbyt restrykcyjnych norm może być problematyczne, ponieważ w rzeczywistości różne modele pojazdów mają różne specyfikacje i wymagania dotyczące hamowania. Na przykład, w przypadku niektórych pojazdów sportowych różnica ta może być bardziej wyraźna z uwagi na ich konstrukcję, jednak nie powinno to prowadzić do obniżenia bezpieczeństwa. Sugerowanie, że różnice 10% czy 20% są jedynym bezpiecznym rozwiązaniem, ignoruje różnorodność konstrukcji pojazdów oraz ich przeznaczenia. W rzeczywistości, zbyt niska granica może prowadzić do nadmiernych wymagań dotyczących regulacji systemów hamulcowych, co może być niepraktyczne, a nawet kosztowne. Ponadto, stosowanie takich norm może prowadzić do niepotrzebnej frustracji kierowców oraz mechaników, którzy próbują dostosować pojazdy do nieosiągalnych standardów. Dostosowanie norm do realiów rynkowych i technicznych jest kluczowe dla zapewnienia efektywnego działania układów hamulcowych.

Pytanie 12

Termin "mokra tuleja cylindrowa" odnosi się do

A. tulei cylindrowej silnika chłodzonego cieczą, oddzielonej cienką ścianką kadłuba od płynu chłodzącego
B. tulei cylindrowej silnika chłodzonego cieczą kontaktującej się zewnętrzną powierzchnią z płynem chłodzącym
C. tulei cylindrowej silnika chłodzonego powietrzem
D. otworu stworzonego w jednoczęściowych odlewach kadłuba silnika lub bloku cylindrowego
Mokra tuleja cylindrowa to naprawdę ważny element w silnikach spalinowych. Działa to tak, że jest otoczona cieczą chłodzącą, co pomaga w lepszym odprowadzaniu ciepła. W przeciwieństwie do silników chłodzonych powietrzem, w których tuleje nie mają kontaktu z cieczą, tutaj mamy dużo lepszą efektywność w utrzymywaniu właściwej temperatury silnika. Przykładowo, w autach osobowych czy ciężarowych często spotyka się tę konstrukcję. Moim zdaniem, dzięki mokrej tulei silniki są bardziej trwałe i efektywne energetycznie. Warto zwrócić uwagę, że takie rozwiązania są zgodne z tym, co inżynierowie uznają za najlepsze praktyki w branży. Krótko mówiąc, mokra tuleja cylindrowa to coś, co naprawdę robi różnicę w działaniu silnika.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakimi metodami ocenia się szczelność cylindrów?

A. próbnikiem ciśnienia sprężania
B. urządzeniem OBD
C. analitykiem spalin
D. lampą stroboskopową
Odpowiedź 'próbnikiem ciśnienia sprężania' jest prawidłowa, ponieważ ocena szczelności cylindrów silnika polega na określeniu, czy komora spalania jest w stanie utrzymać ciśnienie. Próbniki ciśnienia sprężania są specjalistycznymi narzędziami służącymi do pomiaru ciśnienia generowanego w cylindrze podczas cyklu sprężania. Użycie tego typu narzędzia pozwala na dokładną diagnozę stanu uszczelnień, pierścieni tłokowych oraz innych komponentów odpowiedzialnych za szczelność. W praktyce, aby przeprowadzić test, należy odkręcić świecę zapłonową z cylindra, wkręcić próbnik, a następnie uruchomić silnik lub obrócić wałem korbowym. Wynik pomiaru wskazuje na ewentualne problemy – na przykład, niskie ciśnienie może sugerować zużycie pierścieni tłokowych. To podejście jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które zalecają regularne przeprowadzanie takich testów w celu utrzymania silnika w dobrym stanie technicznym. Wiedza na temat szczelności cylindrów jest kluczowa dla mechaników, ponieważ pozwala im zrozumieć ogólną kondycję silnika oraz planować ewentualne naprawy.

Pytanie 15

Ustawienie świateł mijania w pojazdach samochodowych przeprowadza się przy pomocy urządzenia, które funkcjonuje na zasadzie porównania granicy światła oraz cienia reflektora z

A. liniami odcięcia według wzoru urządzenia
B. wartościami ustalonymi przez producenta auta
C. wartościami zdefiniowanymi dla pojazdów z maksymalną prędkością do 130 km/h
D. wartościami określonymi w tabelach naświetleń
Wybór odpowiedzi na temat wartości podanych przez producentów pokazuje pewne nieporozumienia, bo ustawienie świateł mijania to nie tylko proste przyjęcie wartości. Producenci dają ogólne wytyczne, ale w praktyce potrzebujemy dokładnych narzędzi, jak szablony. Gdy tylko opieramy się na wartościach producenta, może to być mylące. Często te parametry nie mówią, jak je właściwie stosować w rzeczywistości. Co więcej, tabela naświetleń sugeruje, że wszystkie samochody są do siebie podobne, a to wcale nie jest prawda. Każdy model ma swoje unikalne cechy, więc potrzebne jest indywidualne podejście. Użycie takich tabel zazwyczaj opiera się na teoretycznych danych, a nie na fizycznym ustawieniu świateł. To może prowadzić do złych regulacji i oślepienia innych kierowców. Odpowiedź związana z prędkością do 130 km/h może dawać wrażenie, że ustawienia są tylko zależne od maksymalnej prędkości, co jest błędne. Ustawienia świateł mijania powinny być zgodne z normami dla wszystkich pojazdów, niezależnie od ich prędkości. Te błędy w myśleniu mogą skutkować złymi praktykami w diagnostyce i konserwacji pojazdów.

Pytanie 16

Który z rodzajów odpadów generowanych w warsztacie samochodowym stanowi istotne zagrożenie dla środowiska?

A. Klocki hamulcowe
B. Tarcze sprzęgła
C. Filtry powietrza
D. Oleje silnikowe
Oleje silnikowe są jednym z najbardziej szkodliwych odpadów powstających w warsztatach samochodowych. Zawierają szereg zanieczyszczeń, w tym metale ciężkie, związki organiczne i dodatki chemiczne, które mogą negatywnie wpływać na środowisko, szczególnie w przypadku niewłaściwego składowania lub utylizacji. Według standardów ochrony środowiska, takich jak normy ISO 14001, właściwe zarządzanie odpadami, w tym olejami, jest kluczowe dla zmniejszenia ich wpływu na ekosystemy. Praktycznym rozwiązaniem w warsztatach jest stosowanie systemów zbierania i recyklingu olejów, co pozwala na ich ponowne wykorzystanie oraz ograniczenie zanieczyszczenia gleby i wód gruntowych. Dobre praktyki obejmują także szkolenie personelu w zakresie odpowiedniej obsługi olejów oraz przestrzegania przepisów dotyczących ich przechowywania i utylizacji. Odpowiedzialne podejście do zarządzania olejami silnikowymi nie tylko wspiera zrównoważony rozwój, ale także przyczynia się do uzyskania certyfikatów środowiskowych, co zwiększa konkurencyjność warsztatu.

Pytanie 17

Maksymalna dozwolona prędkość holowania pojazdu na obszarze zabudowanym wynosi

A. 20 km/h
B. 40 km/h
C. 30 km/h
D. 50 km/h
Wybór prędkości 40 km/h, 20 km/h lub 50 km/h jako maksymalnej prędkości holowania pojazdu w terenie zabudowanym jest wynikiem niepełnego zrozumienia przepisów dotyczących bezpieczeństwa w ruchu drogowym. Prędkość 40 km/h, mimo iż może wydawać się rozsądna w kontekście normalnej jazdy, nie uwzględnia specyficznych warunków związanych z holowaniem, takich jak zmniejszona stabilność i manewrowość holowanego pojazdu. Holowanie w takich warunkach wymaga znacznego spowolnienia, aby zachować kontrolę i bezpieczeństwo. Z kolei prędkość 20 km/h, mimo że jest niższa, może być niewystarczająca do sprawnego poruszania się w terenie zabudowanym, co może prowadzić do blokowania ruchu i frustracji innych kierowców. Natomiast wybór 50 km/h jest absolutnie nieadekwatny, ponieważ znacznie przekracza bezpieczny limit, co zwiększa ryzyko poważnych wypadków. Kluczowe jest zrozumienie, że holowanie wymaga nie tylko dostosowania prędkości do warunków drogowych, ale także do charakterystyki holowanego pojazdu. Ostatecznie, prawidłowe podejście do holowania oznacza uwzględnienie przepisów, warunków drogowych oraz potencjalnych zagrożeń, co pozwala na minimalizowanie ryzyka i zapewnienie bezpieczeństwa na drodze.

Pytanie 18

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy odnoszą się do układu

A. hamulcowego
B. kierowniczego
C. napędowego
D. jezdnego
Kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy to kluczowe parametry w układzie kierowniczym pojazdów. Kąt wyprzedzenia ma wpływ na stabilność pojazdu podczas jazdy na prostych odcinkach drogi oraz w zakrętach, co jest istotne dla bezpieczeństwa i komfortu prowadzenia. Kąt pochylenia osi sworznia zwrotnicy jest natomiast wskaźnikiem, który wpływa na zużycie opon oraz na zachowanie się pojazdu w różnych warunkach drogowych. W praktyce, poprawne ustawienie tych kątów według standardów producentów samochodów, takich jak SAE (Society of Automotive Engineers), jest niezbędne dla zapewnienia optymalnych właściwości jezdnych. Przykładowo, niewłaściwe wyprzedzenie osi sworznia może prowadzić do trudności w prowadzeniu pojazdu oraz szybszego zużycia elementów układu kierowniczego. Dlatego regularne kontrole geometrii zawieszenia oraz układu kierowniczego są zalecane dla utrzymania pojazdu w dobrym stanie.

Pytanie 19

W trakcie regularnej inspekcji systemu hamulcowego przeprowadza się pomiar

A. przenikalności cieplnej
B. lepkości płynu hamulcowego
C. temperatury wrzenia płynu hamulcowego
D. temperatury krzepnięcia płynu hamulcowego
Temperatura wrzenia płynu hamulcowego to naprawdę ważna sprawa, która powinna być regularnie sprawdzana. Płyny hamulcowe mają to do siebie, że wchłaniają wilgoć. Z czasem woda dostaje się do płynu i to wpływa na jego właściwości. Gdy temperatura wrzenia jest zbyt niska, zwłaszcza podczas mocnego hamowania, może być naprawdę niebezpiecznie, bo płyn zaczyna wrzeć. To zjawisko nazywa się 'wodą w układzie'. Dlatego naprawdę warto regularnie kontrolować, co się dzieje z płynem hamulcowym. Na przykład płyn DOT 4 ma temperaturę wrzenia na poziomie przynajmniej 155 °C, ale po nawodnieniu może to spaść nawet poniżej 100 °C. To duża różnica, która może pogorszyć działanie hamulców. Kontrolując temperaturę wrzenia, możemy zapobiec poważnym problemom i zapewnić sobie bezpieczeństwo na drodze.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Srednicówka czujnikowa jest wykorzystywana do pomiaru średnicy

A. tarczy hamulcowej
B. wewnętrznej cylindra
C. czopa wału korbowego
D. trzonka zaworu
Srednicówka czujnikowa to narzędzie pomiarowe, które umożliwia precyzyjne określenie średnicy wewnętrznej cylindra. Jej zastosowanie jest kluczowe w przemyśle motoryzacyjnym oraz w produkcji maszyn, gdzie dokładność pomiarów ma istotne znaczenie dla funkcjonowania mechanizmów. Pomiar średnicy wewnętrznej jest istotny, ponieważ niewłaściwe wymiary mogą prowadzić do błędów montażowych, a także wpływać na efektywność działania silników oraz innych komponentów. W praktyce, średnicówki czujnikowe są wykorzystywane do inspekcji komponentów takich jak tuleje, cylindry hydrauliczne czy elementy silników spalinowych. Dzięki zastosowaniu technologii czujnikowej, narzędzie to zapewnia wysoką powtarzalność i dokładność pomiarów. W przemysłowych standardach jakości, takich jak ISO 9001, podkreśla się znaczenie precyzyjnych pomiarów w procesach produkcyjnych, co czyni średnicówki czujnikowe niezbędnym elementem każdej zorganizowanej linii produkcyjnej.

Pytanie 22

Podczas obsługi okresowej pojazdu wymieniono materiały eksploatacyjne w ilościach podanych w tabeli. Koszt jednej roboczogodziny to 100 zł, a czas pracy mechanika wyniósł 1,5 godziny. Całkowity koszt usługi to

Części i materiałyCena jednostkowa brutto w złIlość
1. Filtr paliwa401 szt.
2. Filtr powietrza301 szt.
3. Filtr oleju201 szt.
4. Olej silnikowy254 l

A. 215 zł
B. 290 zł
C. 265 zł
D. 340 zł
W przypadku błędnych odpowiedzi, kluczowym problemem jest zrozumienie, w jaki sposób należy dokładnie obliczać całkowity koszt usługi. Często zdarza się, że osoby mylnie sumują jedynie koszty części lub niewłaściwie obliczają koszt robocizny. Przykładem może być pomylenie stawki za roboczogodzinę lub czas pracy mechanika. Niektórzy mogą uznać, że koszt robocizny wynosi 200 zł, co prowadzi ich do obliczeń opartych na niepoprawnej stawce lub czasie pracy. Innym typowym błędem jest zbyt szybkie sumowanie kosztów bez ich szczegółowego przeanalizowania, co skutkuje nieprawidłowym wynikiem. Ważne jest, aby w takich sytuacjach zawsze uwzględniać wszystkie elementy kosztów oraz stosować się do metodologii rachunkowości, która wymaga rzetelnego podejścia do analizy kosztów. W praktyce ocena kosztów serwisowych powinna być przeprowadzana z uwzględnieniem wszystkich aspektów, aby uniknąć sytuacji, w której zaniżamy lub zawyżamy wydatki na usługi serwisowe.

Pytanie 23

Refraktometr jest wykorzystywany do oceny możliwości dalszej eksploatacji

A. płynu hamulcowego
B. oleju silnikowego
C. klocków hamulcowych
D. łożysk tocznych
Refraktometr jest kluczowym narzędziem w ocenie jakości płynów eksploatacyjnych, zwłaszcza płynów hamulcowych. Jego główną funkcją jest pomiar współczynnika załamania światła, co umożliwia określenie stanu chemicznego i fizycznego badanego płynu. W przypadku płynów hamulcowych, ich właściwości są krytyczne dla bezpieczeństwa pojazdów. W miarę starzenia się płynu, jego właściwości mogą ulec zmianie, co prowadzi do obniżenia efektywności hamowania. Wartości te można porównywać z danymi od producentów, co pozwala na zaplanowanie wymiany płynu w odpowiednim czasie. Przykładem zastosowania refraktometru jest pomiar, który powinien być przeprowadzany regularnie, szczególnie w pojazdach użytkowanych w trudnych warunkach. Standardy branżowe, takie jak DOT 3, DOT 4 i DOT 5.1, określają wymagania dotyczące właściwości płynów hamulcowych, a refraktometr dostarcza praktycznych informacji pomocnych w ich monitorowaniu.

Pytanie 24

Jaka wartość zawartości wody w płynie hamulcowym wskazuje na konieczność jego wymiany?

A. 1,0%
B. 0,1%
C. 0,5%
D. 3,0%
Odpowiedź 3,0% jest prawidłowa, ponieważ zgodnie z normami branżowymi, w tym standardami SAE J1703, maksymalna dopuszczalna zawartość wody w płynie hamulcowym nie powinna przekraczać 3,0%. Zawartość wody w płynie hamulcowym ma kluczowe znaczenie dla jego właściwości. Woda w płynie hamulcowym obniża jego temperaturę wrzenia, co może prowadzić do zjawiska 'wrzenia' płynu, a w rezultacie do osłabienia skuteczności hamowania. Regularna kontrola i wymiana płynu hamulcowego, szczególnie gdy jego zawartość wody przekracza ten poziom, jest kluczowa dla zapewnienia bezpieczeństwa na drodze. Przykładowo, w sytuacji, gdy kierowca jedzie w trudnych warunkach, takich jak deszcz czy śnieg, efektywność hamulców jest jeszcze bardziej istotna. Dlatego zaleca się, aby co dwa lata przeprowadzać wymianę płynu hamulcowego, nawet jeśli nie wykryto nadmiernej zawartości wody. Taka praktyka jest zgodna z zaleceniami producentów oraz ekspertów w dziedzinie motoryzacji.

Pytanie 25

Cykliczne zapalanie się oraz wygaszanie kontrolki systemu hamulcowego w trakcie jazdy może być spowodowane

A. włączonym hamulcem ręcznym
B. przegrzewaniem się tarcz hamulcowych
C. zbyt dużym zużyciem klocków hamulcowych
D. niedostateczną ilością płynu hamulcowego
Kiedy kontrolka od hamulców świeci się okresowo, to zazwyczaj znaczy, że coś nie gra z płynem hamulcowym. To jest mega ważny element w systemie hamulcowym. Jak poziom płynu jest za niski, to może być problem z ciśnieniem, a to sprawia, że hamulce nie działają jak powinny. Wtedy kontrolka się zapala, żeby dać kierowcy znać, że coś jest nie tak. Z moich doświadczeń wynika, że jak poziom płynu spadnie poniżej normy, to powietrze może się zassanie do układu, a to jeszcze bardziej komplikuje sprawę. Dlatego ważne jest, żeby regularnie sprawdzać poziom płynu hamulcowego, to powinno być częścią przeglądów. Jak zauważysz niski poziom, to najlepiej od razu dolać odpowiedni płyn hamulcowy, a przy okazji zdiagnozować, czemu go ubywa, bo mogą być wycieki z przewodów albo zużyte uszczelki. Regularne kontrole hamulców to klucz do bezpieczeństwa na drodze.

Pytanie 26

Na podstawie informacji zawartych w tabeli określ koszt brutto wymiany ogumienia letniego na zimowewykonywane przez jednego pracownika. Stawka VAT wynosi 23%.

Lp.nazwa części/usługicena netto
1opona zimowa 1 szt.250,00 zł
2wymiana opony z wyważeniem 1 szt.25,00 zł
3wyważenie koła 1szt10,00 zł

A. 1 140,00 zł
B. 1 100,00 zł
C. 1 420,20 zł
D. 1 353,00 zł
Wybór jednej z niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia kroków wymaganych do obliczenia kosztu wymiany ogumienia. Często popełnianym błędem jest pominięcie prawidłowego zsumowania wszystkich związanych z tym kosztów. Na przykład, niektórzy mogą skoncentrować się jedynie na kosztach zakupu opon zimowych, ignorując konieczność dodania kosztów robocizny oraz wyważenia kół. Koszt wymiany opony z wyważeniem powinien być wzięty pod uwagę jako istotny element całkowitego kosztu. Kolejnym częstym błędem jest niewłaściwe obliczenie stawki VAT. Użytkownicy mogą próbować dodać VAT do każdego elementu osobno, co prowadzi do zawyżania końcowego kosztu. Taki sposób myślenia jest niezgodny z zasadami rachunkowości, które nakładają obowiązek naliczania VAT jedynie na łączny koszt netto, a nie na poszczególne elementy. Ponadto, brak zrozumienia mechanizmu działania kosztów netto i brutto może prowadzić do nieprawidłowego oszacowania kosztów usług, co jest kluczowe dla konkurencyjności warsztatów samochodowych. W praktyce, znajomość szczegółowych zasad obliczania kosztów jest kluczowa dla efektywnego zarządzania finansami oraz planowania usług w branży motoryzacyjnej.

Pytanie 27

Podczas kontroli czopów głównych wału korbowego zauważono, że wymiary czopów I, II i IV są zbliżone do wymiarów nominalnych, natomiast czop III został zakwalifikowany do szlifowania na wymiar naprawczy. Jak powinien przebiegać dalszy proces naprawy?

A. Szlifowanie czopa III na wymiar naprawczy i montaż z nadwymiarowymi panewkami
B. Szlifowanie czopów II i III (współbieżnych) na wymiar naprawczy i montaż z nadwymiarowymi panewkami
C. Szlifowanie czopa III na wymiar naprawczy i montaż z nominalnymi panewkami
D. Szlifowanie czopów I, II, III i IV na wymiar naprawczy i montaż z nadwymiarowymi panewkami
Odpowiedź, w której sugeruje się szlifowanie czopów I, II, III i IV na wymiar naprawczy i montaż z nadwymiarowymi panewkami, jest poprawna, ponieważ uwzględnia stan wszystkich czopów wału korbowego. W przypadku, gdy jeden z czopów, w tym przypadku czop III, wymaga szlifowania, warto zadbać o to, aby pozostałe czopy również miały odpowiednie wymiary. Szlifowanie czopów na wymiar naprawczy pozwala na przywrócenie ich odpowiednich parametrów, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania silnika. Zastosowanie nadwymiarowych panewków jest standardową praktyką w naprawie wałów korbowych, gdyż umożliwia dostosowanie względem szlifowanych czopów, co przyczynia się do ich dłuższej żywotności. Dobry mechanik powinien również przeprowadzić kontrolę wymiarów po szlifowaniu, aby upewnić się, że osiągnięto wymagane tolerancje. Ponadto, wdrożenie takich praktyk jest zgodne z normami producentów i branżowymi standardami, co potwierdza ich skuteczność w długofalowych naprawach silników.

Pytanie 28

Jakie badanie wykonywane w stacji kontroli pojazdów umożliwia ocenę efektywności działania hamulców w samochodzie?

A. Test na drodze
B. Badanie metodą drgań wymuszonych
C. Badanie na stanowisku płytowym
D. Badanie na stanowisku rolkowym
Wybór innych opcji jako metody oceny skuteczności hamulców opiera się na niepełnym zrozumieniu specyfiki tych badań. Próba drogowa, chociaż daje pewne informacje na temat działania hamulców, jest subiektywna i zależy od warunków atmosferycznych oraz stanu nawierzchni. W jej trakcie kierowca ocenia efektywność hamowania na podstawie osobistych odczuć, co nie dostarcza obiektywnych danych technicznych wymaganych do profesjonalnej analizy. Badanie na stanowisku płytowym koncentruje się na ocenie stanu zawieszenia i geometria kół, a nie na skuteczności hamulców. Nie dostarcza więc informacji o realnej sile hamowania. Metoda drgań wymuszonych, z kolei, jest techniką stosowaną głównie do analizy drgań i poszukiwania uszkodzeń w zawieszeniu czy układzie kierowniczym, a nie do oceny hamulców. Wybór tych nieprawidłowych metod prowadzi często do błędnych wniosków dotyczących stanu technicznego pojazdu, co może być niebezpieczne. Właściwa ocena skuteczności hamulców powinna opierać się na rzetelnych, powtarzalnych badaniach, jak te przeprowadzane na stanowisku rolkowym, co zapewnia zarówno bezpieczeństwo użytkowników dróg, jak i zgodność z regulacjami prawnymi dotyczącymi technicznych przeglądów pojazdów.

Pytanie 29

Pedał hamulca, który nadmiernie się ugina przy kolejnych naciskach, wskazuje na

A. brak przyczepności opony do nawierzchni
B. zbyt wysoki poziom płynu hamulcowego
C. zapowietrzenie układu hamulcowego
D. nadmierne zużycie bieżnika opon
Odpowiedzi dotyczące braku przyczepności opony do podłoża, nadmiernego zużycia bieżnika opon oraz zbyt wysokiego poziomu płynu hamulcowego nie wyjaśniają istoty problemu z pedałem hamulca. Zbyt miękki pedał hamulca to symptom, który nie jest bezpośrednio związany z przyczepnością opon. Brak przyczepności objawia się innymi zachowaniami, takimi jak poślizg kół czy wydłużona droga hamowania, a nie subtelną zmianą w oporze pedału hamulca. Z kolei nadmierne zużycie bieżnika opon prowadzi do zmiany w zachowaniu pojazdu na drodze, ale nie powoduje zmiany charakterystyki działania układu hamulcowego, ponieważ nie wpływa na ciśnienie w systemie hydraulicznym. Zbyt wysoki poziom płynu hamulcowego może wywołać inne problemy, takie jak przecieki, ale również nie wyjaśnia on zjawiska miękkiego pedału. Kluczowym błędem jest mylenie symptomów i przyczyn. Właściwe diagnozowanie problemów z układami hamulcowymi wymaga zrozumienia mechaniki ich działania oraz umiejętności analizy symptomów w kontekście funkcjonowania całego systemu. Ważne jest, aby mechanicy i kierowcy potrafili poprawnie identyfikować i rozwiązywać problemy układu hamulcowego, zamiast skupiać się na objawach, które mogą prowadzić do błędnych wniosków.

Pytanie 30

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
B. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
C. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
D. wzmocnienie struktury cylindra, który jest chłodzony cieczą
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 31

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. suwmiarki modułowej
B. głębokomościomierza
C. mikrometru
D. średnicówki czujnikowej
Użycie średnicówki czujnikowej do pomiaru zużycia gładzi cylindrów jest najlepszym rozwiązaniem, ponieważ umożliwia uzyskanie wysokiej precyzji i dokładności pomiarów. Średnicówki czujnikowe, zwane także czujnikami średnicy lub czujnikami cylindrycznymi, są narzędziami pomiarowymi, które pozwalają na bezpośrednie mierzenie średnic otworów, wałów czy cylindrów. Dzięki zastosowaniu mechanizmu pomiarowego z odczytem cyfrowym lub analogowym, średnicówki te oferują dokładność do 0,001 mm. Praktycznym zastosowaniem średnicówki czujnikowej jest kontrola wymiarów w procesie produkcji silników, gdzie zachowanie odpowiednich tolerancji wymiarowych jest kluczowe dla prawidłowego funkcjonowania. W branży motoryzacyjnej standardy takie jak ISO 2768 określają wymagania dotyczące tolerancji wymiarowych, dlatego wykorzystanie średnicówki czujnikowej jest zgodne z tymi normami. Dodatkowo, pomiar za pomocą tego narzędzia może być wspomagany przez systemy komputerowe, co pozwala na łatwe archiwizowanie i analizowanie danych pomiarowych.

Pytanie 32

Nadmierne ścieranie się środkowej części bieżnika na całym obwodzie opony jest rezultatem

A. niewłaściwym wyważeniem koła
B. zbyt niskim ciśnieniem powietrza w oponie
C. zbyt wysokim ciśnieniem w oponie
D. częstym uderzaniem w krawężnik
Zbyt duże ciśnienie w oponie prowadzi do nadmiernego zużycia środkowej części bieżnika, ponieważ w takiej sytuacji opona nie ma odpowiedniej elastyczności i nie przylega do nawierzchni równomiernie. W wyniku tego, środkowa część bieżnika staje się głównym punktem kontaktu z drogą, co powoduje większe zużycie tego obszaru. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie ciśnienia w oponach, które powinno być dostosowane do zaleceń producenta pojazdu. W praktyce, kierowcy powinni również pamiętać, że zbyt wysokie ciśnienie wpływa nie tylko na zużycie opon, ale także na bezpieczeństwo jazdy oraz komfort prowadzenia pojazdu. Zgodnie z zaleceniami branżowymi, należy regularnie kontrolować ciśnienie w oponach, szczególnie przed dłuższymi podróżami oraz po zmianach temperatury otoczenia, które mogą wpływać na ciśnienie powietrza w oponach. Znalezienie równowagi ciśnienia powietrza jest kluczowe dla osiągnięcia optymalnej wydajności i bezpieczeństwa samochodu.

Pytanie 33

W trakcie diagnozowania pojazdu na linii testowej przeprowadza się pomiar geometrii przedniego zawieszenia w formie

A. zbieżności całkowitej kół
B. kąta nachylenia osi zwrotnicy
C. kąta wyprzedzenia sworznia zwrotnicy
D. kąta nachylenia koła
Pomiar zbieżności całkowitej kół jest kluczowym elementem diagnostyki geometrii zawieszenia pojazdu. Oznacza on kąt, pod jakim przednie koła ustawione są względem siebie, gdy pojazd porusza się na prostym odcinku drogi. Właściwe ustawienie zbieżności ma fundamentalne znaczenie dla bezpieczeństwa jazdy oraz wydajności pojazdu. Ich niewłaściwe wartości mogą prowadzić do nierównomiernego zużycia opon, a także negatywnie wpływać na prowadzenie i stabilność auta. Na przykład, zbyt dużą zbieżność może powodować szybsze zużycie opon na wewnętrznych krawędziach, co w konsekwencji prowadzi do kosztownych wymian. Praktyka diagnostyczna wymaga regularnego sprawdzania geometrii zawieszenia, zwłaszcza po kolizjach czy wymianach części układu zawieszenia. W branży standardem stały się narzędzia optyczne i laserowe, które umożliwiają precyzyjne pomiary zbieżności, a przez to skuteczne dostosowywanie ustawień zawieszenia do specyfikacji producenta, co jest kluczowe dla zapewnienia optymalnych właściwości jezdnych i komfortu użytkownika.

Pytanie 34

W trakcie okresowych przeglądów technicznych pojazdów analizowany jest stan techniczny

A. komponentów wpływających wyłącznie na bezpieczeństwo
B. komponentów wpływających zarówno na bezpieczeństwo, jak i ekologię
C. wszystkich komponentów pojazdu
D. komponentów mających znaczenie jedynie dla ekologii
Podczas okresowych badań technicznych pojazdów, kluczowe jest ocenienie stanu technicznego zespołów mających wpływ na bezpieczeństwo i ekologię. Ta odpowiedź jest właściwa, ponieważ badania te mają na celu zapewnienie, że pojazdy są w dobrym stanie technicznym, co wpływa na bezpieczeństwo kierowcy, pasażerów i innych uczestników ruchu drogowego. W praktyce oznacza to, że ocenia się hamulce, oświetlenie, zawieszenie, a także układ wydechowy pod kątem emisji spalin. Zgodnie z normami Unii Europejskiej, standardy emisji takie jak Euro 6 obligują producentów do produkcji pojazdów spełniających określone normy ekologiczne. Regularne kontrole techniczne pomagają w identyfikacji usterek, które mogą zagrażać bezpieczeństwu, takich jak zużyte klocki hamulcowe czy niewłaściwie działające światła. W ten sposób, systematyczne badania nie tylko minimalizują ryzyko wypadków, ale również wspierają ochronę środowiska poprzez ograniczenie emisji szkodliwych substancji.

Pytanie 35

Specyfikacja techniczna elementu wchodzącego w skład instalacji elektrycznej informuje, że rezystancja uzwojenia pierwotnego wynosi 3 Ohm, natomiast uzwojenia wtórnego 70 Ohm. Co to za element?

A. Świeca zapłonowa
B. Cewka zapłonowa
C. Czujnik ciśnienia paliwa
D. Czujnik temperatury
Cewka zapłonowa to kluczowy element układu zapłonowego w silnikach spalinowych, odpowiedzialny za generowanie wysokiego napięcia potrzebnego do zapłonu mieszanki paliwowo-powietrznej w cylindrze. Wskazane wartości rezystancji uzwojeń pierwotnego (3 Ohm) i wtórnego (70 Ohm) są zgodne z typowymi parametrami cewek zapłonowych. W uzwojeniu pierwotnym przepływa prąd, który generuje pole magnetyczne, a w uzwojeniu wtórnym to pole powoduje indukcję elektryczną, wytwarzając wysokie napięcie. Cewki zapłonowe są projektowane zgodnie z normami branżowymi, aby zapewnić optymalną wydajność i niezawodność, co jest kluczowe w kontekście efektywności pracy silnika. Praktyczne zastosowanie cewki zapłonowej obejmuje nie tylko silniki spalinowe w pojazdach, ale również inne aplikacje, takie jak generatory prądu czy systemy grzewcze. Właściwe zrozumienie działania tego elementu jest niezbędne dla każdego technika zajmującego się diagnostyką i naprawą układów zapłonowych, a także dla inżynierów projektujących systemy elektryczne w motoryzacji.

Pytanie 36

Popychacz w systemie rozrządu wpływa bezpośrednio na

A. otwieranie zaworu
B. chłodzenie silnika
C. spalanie paliwa
D. lubrykację silnika
Popychacz w układzie rozrządu pełni kluczową rolę w otwieraniu i zamykaniu zaworów silnika. Jego działanie jest bezpośrednio związane z cyklem pracy silnika, gdzie popychacz przekształca ruch obrotowy wału korbowego na ruch liniowy, co z kolei prowadzi do otwierania zaworów dolotowych lub wylotowych. Przykładem zastosowania popychaczy są silniki typu OHV (Overhead Valve), w których popychacze przekazują ruch z wałka rozrządu na zawory, co zapewnia precyzyjne synchronizowanie otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Właściwe działanie popychaczy jest kluczowe dla osiągnięcia optymalnej efektywności silnika, co potwierdzają standardy branżowe przy projektowaniu układów rozrządu. Dobre praktyki w tej dziedzinie obejmują regularne serwisowanie układów rozrządu oraz stosowanie komponentów zgodnych z wytycznymi producentów, co zapewnia niezawodność i wydajność silnika.

Pytanie 37

W silniku dwusuwowym o jednym cylindrze w trakcie suwu roboczego wał korbowy obraca się o kąt

A. 90°
B. 180°
C. 360°
D. 270°
Zrozumienie działania silnika dwusuwowego wymaga analizy cyklu pracy i mechaniki jego działania. Odpowiedzi, które wskazują na inne wartości kątowe obrotu wału korbowego, nie uwzględniają podstawowej zasady funkcjonowania tych silników. Na przykład, obrót o 90° sugerowałby, że wał korbowy mógłby wykonawać suw tylko jednego z procesów, co jest niezgodne z zasadą działania silnika dwusuwowego, w którym oba procesy, czyli ssanie i wydech, odbywają się w jednym cyklu. Z kolei obrót o 360° oznaczałby konieczność pełnego obrotu wału, co jest charakterystyczne dla silników czterosuwowych, gdzie jeden pełny cykl wymaga dwóch obrotów wału. Zastosowanie tej koncepcji w kontekście silników dwusuwowych prowadzi do błędów interpretacyjnych, ponieważ dwusuwowe jednostki napędowe są zaprojektowane tak, aby maksymalizować ich wydajność poprzez skrócenie cyklu pracy. Natomiast obrót o 270° również wskazuje na nieprawidłowe zrozumienie, ponieważ oznaczałby, że jeden cykl nie zostałby w pełni ukończony, co skutkowałoby niewłaściwym działaniem silnika. W praktyce, mechanicy powinni być świadomi tych różnic i błędów myślowych, aby móc prawidłowo diagnozować i serwisować silniki, a także unikać pułapek związanych z nieprawidłowym zrozumieniem pracy jednostek napędowych.

Pytanie 38

Typowy układ napędowy samochodu składa się

A. z silnika umiejscowionego z przodu pojazdu, napędzane są koła tylne
B. z silnika umiejscowionego z przodu pojazdu, napędzane są koła przednie
C. z silnika umiejscowionego z tyłu pojazdu, napędzane są koła tylne
D. z silnika umiejscowionego z tyłu pojazdu, napędzane są koła przednie
W analizowanej kwestii warto zwrócić uwagę na podstawowe błędy koncepcyjne dotyczące układów napędowych. W przypadku umiejscowienia silnika z tyłu pojazdu, tak jak w pierwszej i czwartej odpowiedzi, napęd na koła przednie (w pierwszym przypadku) oraz koła tylne (w czwartym przypadku) prowadzi do zawirowań w rozkładzie masy pojazdu. Napęd na przednie koła w pojazdach z silnikiem umieszczonym z tyłu jest rzadko stosowany, gdyż generuje trudności w sterowaniu, zwłaszcza w ekstremalnych warunkach. Tego typu konfiguracje mogą prowadzić do zjawiska podsterowności, co w praktyce oznacza, że pojazd może nie reagować na polecenia kierowcy w sposób przewidywalny, co jest szczególnie niebezpieczne na śliskich nawierzchniach. W przypadku umiejscowienia silnika z przodu z napędem na koła tylne, jak w drugiej odpowiedzi, występuje pewna kontrowersja, ponieważ klasyczny układ napędowy to właśnie układ z silnikiem z przodu i napędem na tylne koła. Niniejsze nieporozumienia mogą wynikać z braku zrozumienia zasady działania różnych układów napędowych oraz ich zastosowania w różnych typach pojazdów. Właściwe zrozumienie tych kwestii jest kluczowe dla oceny wydajności i charakterystyki dynamicznych właściwości pojazdu.

Pytanie 39

Jaką funkcję pełni termostat w silniku spalinowym?

A. wtrysku paliwa
B. regulowania obiegu cieczy chłodzącej
C. dopalania paliwa
D. chłodzenia powietrza
Termostat w silniku spalinowym odgrywa kluczową rolę w regulacji obiegu cieczy chłodzącej, co jest niezbędne dla utrzymania optymalnej temperatury pracy silnika. W momencie, gdy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybkie nagrzewanie się płynu chłodzącego. Gdy temperatura osiągnie ustawioną wartość, termostat otwiera się, umożliwiając przepływ cieczy chłodzącej przez chłodnicę, co zapobiega przegrzewaniu silnika. Przykładowo, w nowoczesnych silnikach stosuje się termostaty z elektroniczną kontrolą, które mogą dostosować otwarcie w zależności od warunków pracy silnika, co prowadzi do większej efektywności paliwowej i zmniejszenia emisji spalin. Ponadto, właściwe działanie termostatu wpływa na żywotność silnika oraz jego osiągi, co jest zgodne z najlepszymi praktykami inżynieryjnymi w branży motoryzacyjnej.

Pytanie 40

Podczas montażu nowego łańcucha rozrządu konieczna jest również wymiana

A. napinaczy rolkowych
B. kół łańcuchowych
C. oleju silnikowego
D. obudowy napędu łańcuchowego
Wielu mechaników i właścicieli pojazdów może być skłonnych sądzić, że wymiana oleju silnikowego, napinaczy rolkowych lub obudowy napędu łańcuchowego w trakcie montażu nowego łańcucha rozrządu jest wystarczająca dla zapewnienia prawidłowej pracy całego układu. Jednakże, nie należy pomijać wymiany kół łańcuchowych, gdyż to one są bezpośrednio odpowiedzialne za przekazywanie napędu. W przypadku wymiany oleju silnikowego, choć jest to istotny element konserwacji silnika, nie rozwiązuje to problemu z napędem rozrządu, który może prowadzić do poważnych awarii. Napinacze rolkowe również pełnią ważną rolę, jednak ich wymiana nie jest wystarczająca, jeśli koła łańcuchowe są zużyte. Dodatkowo, wymiana obudowy napędu łańcuchowego w ogóle nie jest konieczna, o ile nie ma widocznych uszkodzeń. Typowym błędem myślowym jest przekonanie, że wystarczy wymienić tylko jeden element układu, co może prowadzić do sytuacji, w której nowy łańcuch szybko ulegnie uszkodzeniu przez zużyte koła. Właściwe podejście do konserwacji silnika powinno uwzględniać kompleksową diagnostykę oraz wymianę wszystkich elementów, które mogą wpływać na jego sprawność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.