Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 15:48
  • Data zakończenia: 25 maja 2025 15:56

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Sprawdzenie jakości farby na urządzeniach
B. Malowanie rurociągów
C. Sprawdzenie szczelności połączeń
D. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 2

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
B. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
C. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
D. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
Poprawna odpowiedź wskazuje na prawidłowy układ elementów w hydraulice, gdzie najpierw umieszczamy zawory reagujące na sygnały obiektowe, a następnie zawory sterujące, robocze i na końcu elementy wykonawcze. Taki układ jest zgodny z zasadami projektowania systemów hydraulicznych, które zalecają, aby sygnały były przekazywane w kierunku od źródła zasilania do elementów wykonawczych. Przykładem praktycznym może być układ hydrauliczny w maszynach budowlanych, gdzie precyzyjne sterowanie ruchem siłowników jest kluczowe dla efektywności pracy. Dobrze zaprojektowany układ hydrauliczny nie tylko zwiększa wydajność, ale także poprawia bezpieczeństwo operacji, ponieważ odpowiednie sterowanie pozwala na szybsze i bardziej precyzyjne reakcje na zmiany w otoczeniu. W branży hydraulicznej, zgodność z normami ISO oraz PN EN jest istotna, ponieważ przyczynia się do zwiększenia niezawodności i trwałości systemów. Zastosowanie takiej kolejności elementów pozwala również na łatwiejsze diagnozowanie usterek oraz optymalizację procesu serwisowego.

Pytanie 3

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Termistora
B. Warystora
C. Hallotronu
D. Tensometru
Termistor jest elementem, który charakteryzuje się znaczną zmianą oporu elektrycznego w zależności od temperatury. Dzięki temu, jest idealnym czujnikiem do monitorowania temperatury uzwojeń silników elektrycznych, gdzie precyzyjne pomiary są kluczowe dla ich prawidłowego działania. W zastosowaniach przemysłowych, gdzie silniki elektryczne pracują w trudnych warunkach, termistory są wykorzystywane do zabezpieczania przed przegrzaniem, co może prowadzić do uszkodzenia silnika. Dobrą praktyką w branży jest stosowanie termistorów w obwodach ochronnych, co pozwala na automatyczne wyłączanie silnika w przypadku osiągnięcia krytycznej temperatury. Dzięki swojej prostocie i niezawodności, termistory są szeroko stosowane w różnych aplikacjach, takich jak klimatyzacja, wentylacja oraz w systemach automatyki przemysłowej. Warto również zauważyć, że termistory mogą być stosowane w różnych konfiguracjach, co czyni je wszechstronnym rozwiązaniem w monitorowaniu temperatury. Ich zastosowanie przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności urządzeń elektrycznych.

Pytanie 4

Który z elektrycznych silników ma następujące parametry znamionowe: ∆/Y 230/400 V; 2/1,15 A; 0,37 kW; cosφ 0,71; 1350 min-1?

A. Silnik szeregowy prądu stałego
B. Silnik skokowy z wirnikiem czynnym
C. Silnik synchroniczny prądu przemiennego
D. Silnik klatkowy prądu przemiennego
Silnik klatkowy prądu przemiennego to naprawdę popularny wybór w przemyśle. Jest prosty w obsłudze, niezawodny i nie kosztuje wiele w eksploatacji. Z tego, co widzę, podane dane, czyli napięcie 230/400 V, prąd 2/1,15 A, moc 0,37 kW oraz prędkość obrotowa 1350 min⁻¹, świetnie pasują do standardowych parametrów tego typu silników. Zazwyczaj zasilane są z sieci trójfazowej, co pozwala im działać wydajnie, mimo że nie są duże. Widziałem je w akcji w różnych sprzętach, jak pompy, wentylatory czy kompresory, które potrzebują stałej prędkości. Dlatego ważne jest, aby znać te parametry i umieć je interpretować, bo to pomaga dobrać odpowiedni silnik do konkretnego zadania. To z kolei wpływa na efektywność i oszczędność energii. Pamiętaj też o cos φ, współczynniku mocy, który powinien wynosić przynajmniej 0,7, żeby wykorzystanie energii elektrycznej było efektywne.

Pytanie 5

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. SUB
B. DIV
C. MOVE
D. ADD
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 6

Na podstawie danych znamionowych prądnicy tachometrycznej określ, jaką wartość napięcia będzie wskazywał woltomierz na wyjściu prądnicy, jeżeli wirnik obraca się z prędkością 4800 obr/min.

Dane znamionowe prądnicy tachometrycznej
PZTK 51-18
ku = 12,5 V/1000 obr/min
Robc min = 5 kΩ
nmax = 8000 obr/min

A. 5 V
B. 60 V
C. 12,5 V
D. 18 V
Poprawna odpowiedź to 60 V. Wartość napięcia generowanego przez prądnicę tachometryczną jest bezpośrednio związana z prędkością obrotową wirnika, a stała napięcia wyznacza tę relację. W praktyce, prądnice tachometryczne są szeroko stosowane w systemach automatyki i regulacji, gdzie precyzyjne pomiary prędkości obrotowej są kluczowe. Na przykład, w silnikach elektrycznych, sygnał napięciowy z prądnicy tachometrycznej może służyć do regulacji prędkości silnika poprzez sprzężenie zwrotne, co pozwala na utrzymanie stabilnych parametrów pracy. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność, co jest niezbędne w systemach wymagających wysokiej precyzji. Przy prędkości 4800 obr/min, generowane napięcie 60 V wskazuje na poprawne działanie prądnicy oraz zgodność z jej charakterystyką znamionową, co jest kluczowe dla dalszych zastosowań w systemach sterowania oraz monitorowania.

Pytanie 7

Aby ocenić jakość obecnych połączeń elektrycznych w urządzeniu mechatronicznym, należy przede wszystkim przeprowadzić pomiar

A. mocy pobieranej przez urządzenie
B. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
C. spadku napięcia na komponentach
D. ciągłości połączenia
Pomiar ciągłości połączenia jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniach mechatronicznych. Przeprowadzenie tego pomiaru pozwala na weryfikację, czy obwód elektryczny jest kompletny i czy prąd elektryczny ma możliwość swobodnego przepływu przez wszystkie komponenty systemu. Brak ciągłości w połączeniach może prowadzić do poważnych awarii, co w kontekście urządzeń mechatronicznych, które często działają w wymagających warunkach, może być katastrofalne. W praktyce, pomiar ten wykonuje się za pomocą multimetru w trybie omomierza, co dostarcza informacji o rezystancji połączeń. W standardach branżowych, takich jak IEC 60364 dotyczących instalacji elektrycznych, podkreśla się znaczenie regularnych pomiarów ciągłości dla zapewnienia bezpieczeństwa i niezawodności. Regularne testy ciągłości połączeń powinny być integralną częścią rutynowego utrzymania sprzętu, co pozwala na wczesne wykrywanie problemów i ich eliminację przed wystąpieniem poważnych usterek.

Pytanie 8

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 0,58 MPa
B. 650 kPa
C. 600 kPa
D. 630 000 Pa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 9

W jakiej postaci należy przedstawiać w schematach układów sterowania styki przekaźników i styczników?

A. Nieprzewodzenia
B. Wzbudzonym
C. Niewzbudzonym
D. Przewodzenia
Styki styczników i przekaźników należy przedstawiać w stanie niewzbudzonym, co jest zgodne z praktykami stosowanymi w projektowaniu schematów układów sterowania. Stan niewzbudzony odzwierciedla rzeczywistą sytuację, w której urządzenia te nie są aktywowane przez sygnał sterujący. Taki sposób reprezentacji ułatwia zrozumienie i analizę działania systemu, ponieważ jasno wskazuje na domyślne warunki pracy. W projektach zgodnych z normą IEC 61082, która dotyczy dokumentacji systemów automatyki, podkreśla się znaczenie reprezentacji stanów urządzeń w sposób, który odzwierciedla ich stan bez aktywacji. Niewzbudzone styki są także kluczowe w kontekście bezpieczeństwa, ponieważ nieprawidłowe przedstawienie ich w stanie przewodzenia mogłoby sugerować, że układ działa poprawnie, gdy w rzeczywistości może dochodzić do awarii. Przykładem zastosowania tej zasady może być układ sterujący silnikiem, gdzie styki muszą być przedstawione jako niewzbudzone, aby uniknąć ryzyka niekontrolowanego uruchomienia maszyny w wyniku błędnej interpretacji schematu.

Pytanie 10

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Kontaktową rezystancyjną
B. Kontaktową termoelektryczną
C. Bezkontaktową pirometryczną
D. Bezkontaktową termowizyjną
Wybór nieprawidłowej metody pomiaru może prowadzić do wielu błędów w interpretacji danych dotyczących temperatury. Odpowiedzi związane z metodami termoelektrycznymi, takie jak kontaktowa termoelektryczna i bezkontaktowa termoelektryczna, opierają się na zasadzie wykorzystania zjawiska Seebecka, które polega na generowaniu napięcia w wyniku różnicy temperatur między dwoma różnymi metalami. W przypadku urządzeń mechatronicznych, które wymagają stałego monitorowania temperatury, ta metoda może być mniej precyzyjna, zwłaszcza gdy źródło ciepła jest niestabilne. Metody bezkontaktowe, jak termowizyjna czy pirometryczna, są przydatne w sytuacjach, gdzie nie można zastosować czujników kontaktowych, jednak w kontekście pomiaru temperatury urządzeń mechatronicznych mogą prowadzić do błędnych wyników z powodu odbicia ciepła, promieniowania oraz otoczenia, w którym wykonywany jest pomiar. W kontekście standardów przemysłowych, pomiar kontaktowy zapewnia wyższą dokładność i mniejsze ryzyko błędów, co czyni go bardziej odpowiednim w zastosowaniach wymagających precyzyjnego monitorowania temperatury. Dlatego ważne jest, aby zrozumieć różnice między tymi metodami i odpowiednio dobierać je do specyfikacji danego zadania pomiarowego.

Pytanie 11

Jakiego czujnika powinno się użyć w systemie pomiarowym do określenia naprężeń mechanicznych?

A. Rotametr
B. Tensometr
C. Pirometr
D. Wiskozymetr
Tensometr jest kluczowym elementem w układzie pomiarowym służącym do monitorowania naprężeń mechanicznych. Jego działanie opiera się na efekcie piezorezystywnym, który polega na zmianie rezystancji elektrycznej w odpowiedzi na odkształcenie materiału. Dzięki temu, tensometry są szeroko stosowane w inżynierii mechanicznej, budownictwie oraz w badaniach materiałowych. Na przykład, w konstrukcjach mostów czy budynków, tensometry mogą być umieszczane w strategicznych miejscach, aby na bieżąco monitorować naprężenia i zapobiegać ewentualnym uszkodzeniom. Zastosowanie tensometrów w praktyce wymaga przemyślanej kalibracji oraz umiejętności interpretacji danych pomiarowych. Warto również zauważyć, że zgodnie z normami PN-EN ISO 7500-1 i PN-EN 10002-1, właściwe pomiary naprężeń są niezbędne do oceny jakości materiałów oraz bezpieczeństwa konstrukcji.

Pytanie 12

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Cienką z długą kreską oraz kropką.
B. Grubą kreską.
C. Cienką ciągłą linią zygzakową.
D. Grubą linią punktową.
Wybór innej linii niż cienka ciągła zygzakowa może prowadzić do poważnych nieporozumień w interpretacji rysunków technicznych. Gruba kreskowa linia jest często używana do oznaczania krawędzi widocznych obiektów i nie nadaje się do przedstawiania urwań lub przerwań, ponieważ sugeruje pełną widoczność, co jest sprzeczne z zamysłem. Gruba punktowa linia służy do wskazywania detali lub charakterystycznych punktów, ale również nie odzwierciedla idei przerwania przedmiotu. Cienka z długą kreską i kropką linia, z kolei, jest stosowana do oznaczania linii wymiarowych lub innych detali pomocniczych, które nie mają nic wspólnego z urwaniem. Wybór niewłaściwej linii może prowadzić do błędnych interpretacji, co w praktyce inżynieryjnej może skutkować poważnymi błędami konstrukcyjnymi. Kluczowe jest zrozumienie, że różne typy linii mają swoje specyficzne zastosowania, a ich niewłaściwe użycie odbiega od dobrych praktyk branżowych. Dlatego ważne jest przestrzeganie ustalonych norm i standardów, aby zapewnić dokładność i czytelność dokumentacji technicznej.

Pytanie 13

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym

A. nie będzie chronione przed pyłem.
B. posiadać będzie najwyższy stopień ochrony przed pyłem.
C. posiadać będzie najwyższy stopień ochrony przed wodą.
D. nie będzie chronione przed wodą.
Odpowiedź, że projektowane urządzenie mechatroniczne posiada najwyższy stopień ochrony przed pyłem, jest poprawna. Oznaczenie IP 65 wskazuje, że urządzenie jest w pełni chronione przed pyłem (stopień 6) oraz odporniejsze na strumień wody z dowolnego kierunku (stopień 5). Taki poziom ochrony jest szczególnie istotny w aplikacjach, gdzie urządzenia muszą funkcjonować w trudnych warunkach, na przykład w zakładach przemysłowych, gdzie kurz i zanieczyszczenia są powszechne. W przypadku urządzeń montowanych na zewnątrz, standard IP 65 zapewnia również ich dłuższą żywotność oraz niezawodność. Warto zaznaczyć, że zgodnie z normą PN-EN 60529, oznaczenia IP są kluczowe dla wyboru odpowiedniego sprzętu do zastosowań wymaganego poziomu ochrony. Na przykład, w automatyce przemysłowej, zastosowanie urządzeń z wysokim stopniem ochrony jest niezbędne w celu zapewnienia osób i sprzętu przed potencjalnymi zagrożeniami. Użytkownicy powinni zawsze zwracać uwagę na parametry IP przed zakupem, aby dostosować je do specyficznych warunków operacyjnych.

Pytanie 14

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. W pobliżu przewodów silnoprądowych
B. W pomieszczeniach o niskich temperaturach
C. Na zewnątrz obiektów
D. W pomieszczeniach z dużym zakurzeniem
Odpowiedzi, które wskazują inne miejsca, w których przewody sieci komunikacyjnych mogą być zainstalowane, nie są zgodne z najlepszymi praktykami inżynieryjnymi i normami branżowymi. Umieszczanie przewodów w pomieszczeniach o dużym zapyleniu, mimo że może wydawać się na pierwszy rzut oka akceptowalne, stwarza ryzyko ich zanieczyszczenia oraz uszkodzenia, co negatywnie wpłynie na jakość transmisji. Z kolei instalacja na zewnątrz budynków bez odpowiednich zabezpieczeń i osłon jest niewskazana, ze względu na wpływ warunków atmosferycznych, które mogą prowadzić do degradacji materiałów i, w konsekwencji, do awarii systemu. Miejsca o niskich temperaturach również nie są odpowiednie do instalacji przewodów komunikacyjnych, ponieważ niskie temperatury mogą powodować sztywność materiałów, co zwiększa ryzyko ich pęknięcia lub złamania. Często występujące błędy myślowe, takie jak przekonanie, że brak bezpośrednich zagrożeń w danym otoczeniu czyni je odpowiednim do instalacji, prowadzą do błędnych decyzji projektowych. Dlatego ważne jest, aby przy planowaniu instalacji przewodów komunikacyjnych kierować się normami i wytycznymi, które zapewniają długoterminową efektywność i bezpieczeństwo systemów.

Pytanie 15

Jakiego rodzaju zabieg konserwacyjny należy przeprowadzić, aby chronić płytkę drukowaną przed korozją?

A. Obwód drukowany pokryć pastą lutowniczą
B. Pokryć płytkę warstwą pasty termoprzewodzącej
C. Krótkotrwale zanurzyć płytkę w chlorku żelaza
D. Pokryć płytkę warstwą lakieru izolacyjnego
Pokrycie płytki drukowanej warstwą lakieru izolacyjnego jest kluczowym zabiegiem konserwacyjnym mającym na celu ochronę przed korozją. Lakier izolacyjny tworzy trwałą, wodoodporną powłokę, która zabezpiecza metalowe ścieżki oraz elementy elektroniczne przed działaniem wilgoci oraz substancji chemicznych. W praktyce, zastosowanie lakieru izolacyjnego jest standardową procedurą w produkcji elektroniki, szczególnie w urządzeniach narażonych na wysoką wilgotność, jak na przykład w sprzęcie przemysłowym czy motoryzacyjnym. Stosowanie takiego zabezpieczenia nie tylko wydłuża żywotność komponentów, ale również zmniejsza ryzyko awarii związanych z korozją. Przykłady zastosowania lakierów izolacyjnych obejmują ich wykorzystanie w płytkach PCB stosowanych w elektronice użytkowej oraz w systemach telekomunikacyjnych, gdzie długotrwała niezawodność jest kluczowa. Zgodnie z normami IPC-610, pokrycie warstwą izolacyjną jest zalecane dla wszystkich aplikacji narażonych na korozję.

Pytanie 16

Który z wymienionych zaworów działa zgodnie z zamieszczoną tabelą prawdy?

XYA
000
100
010
111

A. Przełączenia obiegu.
B. Podwójnego sygnału.
C. Dławiąco-zwrotny.
D. Szybkiego spustu.
Zawór podwójnego sygnału, zgodnie z przedstawioną tabelą prawdy, funkcjonuje na zasadzie logicznej AND, co oznacza, że jego aktywacja wymaga jednoczesnego wystąpienia dwóch sygnałów wejściowych. Taki mechanizm jest istotny w wielu zastosowaniach przemysłowych, gdzie bezpieczeństwo i precyzyjna kontrola są kluczowe. Przykładem może być system automatyki, w którym zawór podwójnego sygnału zapewnia, że tylko w momencie, gdy oba warunki bezpieczeństwa są spełnione, dochodzi do uruchomienia urządzenia. W praktyce, zawory te są często stosowane w układach hydraulicznych i pneumatycznych, gdzie wymagane są dwa sygnały do aktywacji, co minimalizuje ryzyko przypadkowego działania. Dodatkowo, w kontekście standardów branżowych, stosowanie zaworów podwójnego sygnału jest zalecane przez normy dotyczące bezpieczeństwa maszyn, co podkreśla ich znaczenie w zapewnieniu niezawodności i efektywności systemów automatyzacji.

Pytanie 17

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
B. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
C. Jest określany przez producenta maszyny w trakcie jej projektowania
D. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu
Punkt zerowy przedmiotu toczenia w obrabiarce CNC jest kluczowym elementem, który pozwala na dokładne ustawienie narzędzi i precyzyjne wykonanie operacji. Wiele osób może błędnie sądzić, że jego położenie zależy jedynie od rodzaju narzędzia lub jest ustalane przez producenta maszyny, co jest niepoprawne. Ustalanie punktu zerowego na podstawie rodzaju narzędzia może prowadzić do sytuacji, w której obróbka jest niedokładna, ponieważ różne narzędzia mogą mieć różne wymiary i punkty odniesienia. Również założenie, że producent maszyny ustala ten punkt, jest mylne, ponieważ to operator odpowiedzialny jest za jego definicję w kontekście konkretnego zadania. Nieprzemyślane ustalanie punktu zerowego prowadzi do błędów technologicznych, a także do nieefektywności w produkcji. Dlatego kluczowe jest, aby operatorzy zrozumieli, że najlepszym rozwiązaniem jest ustalenie punktu zerowego na osi przedmiotu, co pozwala na optymalizację procesu obróbczy i minimalizację ryzyka wystąpienia błędów. W praktyce oznacza to, że każdy operator CNC powinien mieć świadomość, iż właściwe ustawienie punktu zerowego jest nie tylko kwestią wygody, ale również kluczowym wymogiem dla jakości produkcji oraz efektywności pracy maszyny.

Pytanie 18

Jakie kluczowe cechy funkcjonalne powinien mieć system sterowania układem nawrotnym dla silnika elektrycznego?

A. Ograniczenie czasowe dla pracy silnika z napędem
B. Blokadę uniemożliwiającą jednoczesne włączenie w obu kierunkach
C. Podtrzymanie kierunku obrotów silnika z napędem
D. Sygnalizację kierunków obrotu silnika
Wybór odpowiedzi "Blokadę przed jednoczesnym załączeniem w obu kierunkach." jest poprawny, ponieważ stanowi kluczowy element systemów sterowania silnikami elektrycznymi, który ma na celu zapewnienie bezpieczeństwa oraz ochrony zarówno urządzenia, jak i użytkownika. W praktyce, w przypadku jednoczesnego załączenia silnika w dwóch przeciwnych kierunkach, mogłoby dojść do poważnych uszkodzeń mechanicznych, a także do zagrożenia dla ludzi znajdujących się w pobliżu. Blokada ta jest standardowym rozwiązaniem w branży automatyki, stosowanym w wielu aplikacjach, od prostych silników jednofazowych po złożone systemy napędowe w przemyśle. Przykładowo, w systemach z wykorzystaniem falowników, implementacja takiej blokady jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa. Dobre praktyki inżynieryjne sugerują wprowadzenie dodatkowych czujników, które monitorują aktywność silnika, co pozwala na automatyczne zatrzymanie pracy w przypadku wykrycia nieprawidłowości. Oprócz tego, zapewnia to również większą niezawodność i dłuższą żywotność komponentów systemu, co jest kluczowe w kontekście kosztów eksploatacji.

Pytanie 19

Jak należy przeprowadzić pomiar ciągłości przewodów w instalacji elektrycznej?

A. przy odłączonych odbiornikach oraz włączonym napięciu zasilania
B. przy odłączonych odbiornikach oraz wyłączonym napięciu zasilania
C. przy podłączonych odbiornikach oraz włączonym napięciu zasilania
D. przy podłączonych odbiornikach oraz wyłączonym napięciu zasilania
Pomiar ciągłości przewodów w instalacji elektrycznej powinien być wykonywany przy odłączonych odbiornikach i wyłączonym napięciu zasilania, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w branży elektrycznej. W takiej sytuacji można zminimalizować ryzyko porażenia prądem elektrycznym oraz zapobiec ewentualnym uszkodzeniom urządzeń. Zastosowanie multimetru do sprawdzenia ciągłości przewodów w tych warunkach umożliwia rzetelną diagnozę ich stanu bez wpływu napięcia, co jest kluczowe w przypadku serwisowania lub modernizacji instalacji. Warto pamiętać, że podczas takich pomiarów, szczególnie w instalacjach pod napięciem, może dochodzić do fałszywych odczytów, co prowadzi do błędnych decyzji serwisowych. Dobre praktyki wymagają także stosowania odpowiednich środków ochrony osobistej oraz dokładnego zapoznania się z dokumentacją techniczną instalacji przed przystąpieniem do pomiarów.

Pytanie 20

W jaki sposób powinno się zdefiniować dane w programach sterowników PLC, które mają postać sekwencji znaków lub cyfr, przy czym cyfry traktowane są jedynie jako znaki (bez przypisanej wartości)?

A. STRING
B. USINT
C. WORD
D. BYTE
Wybór odpowiedzi WORD, USINT lub BYTE jest niepoprawny z kilku powodów. WORD to typ danych, który w standardach PLC odnosi się do liczby całkowitej o długości 16 bitów. Używanie go do reprezentacji ciągów znaków jest niewłaściwe, ponieważ nie obsługuje on liter ani cyfr jako oddzielnych jednostek tekstowych, lecz jako wartości liczbowych. Podobnie, USINT, czyli unsigned short integer, to typ przechowujący liczby całkowite w zakresie od 0 do 255, co wyklucza możliwość reprezentacji jakichkolwiek znaków. Z kolei BYTE jest typem 8-bitowym, który również służy do reprezentowania danych liczbowych. Choć można by go użyć do przechowywania pojedynczego znaku z kodowania ASCII, nie jest on wystarczający do reprezentacji ciągu znaków, a jego zastosowanie byłoby błędne w kontekście opisanym w pytaniu. Kluczową pomyłką przy wyborze tych typów danych jest brak zrozumienia ich przeznaczenia – zarówno WORD, USINT, jak i BYTE są przeznaczone do pracy z danymi liczbowymi, a nie tekstowymi. W związku z tym, dla zadań wymagających manipulacji tekstem, odpowiednim wyborem pozostaje typ STRING, który został stworzony w celu efektywnego zarządzania ciągami liter i cyfr.

Pytanie 21

Jakie ciśnienie cieczy powinno być w układzie hydraulicznym, aby siłownik o powierzchni czynnej tłoka A = 80 cm2 był w stanie wygenerować siłę F = 150 kN?

A. 1,875 bara
B. 1875 barów
C. 187,5 bara
D. 18,75 bara
Analizując pozostałe odpowiedzi, warto zwrócić szczególną uwagę na błędne zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 1,875 bara czy 18,75 bara sugerują, że osoba udzielająca odpowiedzi może nie dostrzegać proporcji między jednostkami. Przy obliczaniu ciśnienia, kluczowe jest prawidłowe przeliczenie jednostek. 1,875 bara to zbyt niskie ciśnienie, które w żadnym przypadku nie mogłoby wygenerować siły 150 kN na powierzchni 80 cm², ponieważ przy takim ciśnieniu uzyskalibyśmy siłę nieprzekraczającą 15 kN, co jest znacznie poniżej wymaganej wartości. Z kolei odpowiedź 187,5 bara, choć poprawna, wyjaśnia, dlaczego takie podejście jest właściwe. 1875 barów to zbyt wysoka wartość ciśnienia, która mogłaby prowadzić do uszkodzenia układów hydraulicznych. Takie błędy często wynikają z nieprawidłowej interpretacji wzoru i błędnego przeliczania jednostek, co skutkuje znacznymi różnicami w obliczeniach. W hydraulice, precyzyjne obliczenia są niezbędne, a zrozumienie podstawowych zasad, takich jak prawo Pascala, jest kluczowe dla efektywnego projektowania systemów. Nie można też zapominać, że w praktyce, ciśnienie musi być dostosowane do specyfikacji komponentów układu, co może się różnić w zależności od zastosowania i wymagań technicznych. Zastosowanie nieprawidłowych wartości ciśnienia może prowadzić do awarii, a w skrajnych przypadkach do zagrażających życiu wypadków w miejscu pracy.

Pytanie 22

Jakim rodzajem linii oznacza się sygnały sterujące wewnętrzne na schematach pneumatycznych?

A. Kreskową
B. Punktową
C. Ciągłą
D. Dwupunktową
Wybór niektórych linii, jak punktowa, ciągła czy dwupunktowa, na schematach pneumatycznych może prowadzić do wielu nieporozumień. Punktowa linia, na przykład, często stosowana jest do oznaczania elementów pomocniczych lub nieistniejących połączeń, co wprowadza w błąd, gdy myślimy o sygnałach sterujących. Używając punktowych linii, można nieumyślnie zasugerować, że sygnał jest przerywany lub nieaktywny, co jest sprzeczne z funkcją sygnałów sterujących. Ciągła linia z kolei zazwyczaj reprezentuje fizyczne połączenia, takie jak przewody i rury, co również nie pasuje do idei sygnałów wewnętrznych. Z kolei linia dwupunktowa nie jest standardowo uznawana w przepisach dotyczących schematów pneumatycznych, co może prowadzić do dalszych nieporozumień. W skutecznym projektowaniu systemów pneumatycznych kluczowe jest stosowanie ustalonych standardów, aby zapewnić jednoznaczność i zrozumiałość schematów. Stosując nieodpowiednie oznaczenia, można łatwo wprowadzić chaos w dokumentacji technicznej, co z kolei może prowadzić do błędów w instalacji, serwisie lub późniejszej konserwacji urządzeń. W związku z tym, kluczowym jest, aby każdy technik czy inżynier był dobrze zaznajomiony z właściwymi symbolami i ich znaczeniem w kontekście nie tylko teoretycznym, ale przede wszystkim praktycznym, co podkreśla znaczenie edukacji w tej dziedzinie.

Pytanie 23

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 1F3H
B. 10EH
C. 2B3H
D. 1A4H
Wybór innych odpowiedzi może wynikać z pewnych nieporozumień dotyczących konwersji między systemami liczbowymi. Na przykład, odpowiedź 1A4H sugeruje, że wartość binarna 1010110011 mogłaby być reprezentowana jako 1A4, co jest niepoprawne. Liczba heksadecymalna 1A4H odpowiada wartości dziesiętnej 420, która nie odpowiada liczbie 11 w zakresie bitów binarnych. Odpowiedź 10EH również nie jest właściwa, ponieważ jej wartość dziesiętna wynosi 270, co także nie zgadza się z naszymi obliczeniami. Możliwe, że problem wynika z nieprawidłowego założenia dotyczącego liczby cyfr wymaganych do konwersji lub błędnej interpretacji wartości poszczególnych cyfr szesnastkowych. Odpowiedzi te mogą też wskazywać na typowe błędy w obliczeniach związanych z mnożeniem potęg liczby 16, co jest kluczowym elementem zrozumienia konwersji. Prawidłowe podejście do tego zadania powinno polegać na zrozumieniu, że każda cyfra heksadecymalna odpowiada grupie 4 bitów, co oznacza, że przy 10 bitach konieczne jest odpowiednie zgrupowanie wartości, aby uzyskać dokładny wynik, a nie tylko poleganie na intuicji czy domysłach.

Pytanie 24

Jaki z wymienionych sposobów powinien być zastosowany podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Automatyczne powtarzanie ruchów, z prędkością ustawioną na 20%
B. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 100%
C. Automatyczne powtarzanie ruchów z prędkością ustawioną na 100%
D. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 20%
Ręczne odtwarzanie ruchów robota przemysłowego, krok po kroku, z prędkością ustawioną na 20% jest kluczowym podejściem podczas wstępnego testowania programów. Takie podejście zapewnia możliwość szczegółowego monitorowania każdego etapu ruchu robota, co jest niezbędne w kontekście analizy poprawności funkcjonowania zaprogramowanych sekwencji. Prędkość 20% umożliwia dokładne obserwowanie zachowań robota, co jest szczególnie istotne przy pierwszych testach, kiedy to jeszcze nie ma pełnej pewności co do stabilności i bezpieczeństwa działania robota. Działania te są zgodne z najlepszymi praktykami w obszarze automatyzacji i robotyki, gdzie bezpieczeństwo użytkowników i sprzętu ma kluczowe znaczenie. W praktyce, zarówno w laboratoriach jak i w środowiskach przemysłowych, zaleca się wprowadzenie stopniowego zwiększania prędkości po pomyślnym zakończeniu testów przy niskiej prędkości, co pozwala na minimalizację ryzyka uszkodzeń oraz błędów w działaniu systemu.

Pytanie 25

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Download
B. Erase Memory
C. Upload
D. Write
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 26

Jaką z podanych zależności logicznych należy uwzględnić w programie kontrolnym, aby można było każdorazowo sygnalizować aktywność tylko jednego z trzech czujników podłączonych do kolejnych wejść sterownika?

A. Koniunkcję
B. Alternatywę
C. Równowartość
D. Alternatywę wykluczającą
Zrozumienie logiki, która rządzi działaniem sensorów, jest kluczowe dla projektowania efektywnych systemów sterowniczych, jednak niektóre koncepcje mogą wydawać się mylące. Koniunkcja, jako logiczna operacja, wskazuje na sytuację, w której wszystkie warunki muszą być spełnione jednocześnie. W kontekście sensorów, oznaczałoby to, że wszystkie sensory muszą być aktywne, co jest sprzeczne z wymaganiem, by zasygnalizować tylko jeden z sensorów. Takie podejście prowadzi do sytuacji, w której nie jesteśmy w stanie zidentyfikować, który sensor powinien zasygnalizować zadziałanie, co jest sprzeczne z podstawowym założeniem tego pytania. Równowartość z kolei, która jest stosowana do porównywania dwóch wyrażeń, również nie jest odpowiednia w naszym przypadku, ponieważ nie możemy porównywać statusu sensorów w sposób, który pozwoli na ich jednoznaczne rozróżnienie. Wprowadzenie alternatywy w tej sytuacji może wydawać się kuszące, jednak prowadzi to do możliwości aktywacji wielu sensorów w tym samym czasie, co jest niepożądane. Tego typu błędy myślowe wynikają z niepełnego zrozumienia zasad logiki boolowskiej oraz ich praktycznych zastosowań w systemach automatyki. Kluczowe jest zatem, aby w projektowaniu systemów sterowniczych priorytetowo traktować alternatywę wykluczającą, która skutecznie eliminuje ryzyko jednoczesnego aktywowania więcej niż jednego sensora.

Pytanie 27

Aby szybko zmienić rozmiary projektowanego elementu w programie CAD, należy zastosować metodę modelowania

A. powierzchniowego
B. bryłowego
C. parametrycznego
D. bezpośredniego
Wybór technik modelowania w oprogramowaniu CAD jest istotny dla efektywności procesu projektowania. Technika modelowania powierzchniowego, chociaż użyteczna w niektórych kontekstach, nie oferuje tej samej elastyczności co modelowanie parametryczne. W przypadku modelowania powierzchniowego, projektant musi ręcznie modyfikować kształty i krzywe, co jest czasochłonne i bardziej podatne na błędy. Ponadto nie pozwala to na automatyczne dostosowanie wymiarów do zmieniających się wymagań, co może prowadzić do konieczności wprowadzania wielu poprawek w różnych częściach modelu. Z kolei podejście bezpośrednie, polegające na modyfikacji modelu w trybie rzeczywistym, również nie zapewnia spójności i efektywności, z jaką można pracować w metodzie parametrycznej. Takie podejście może prowadzić do powstawania niezamierzonych konsekwencji w geometrii modelu, co z kolei wiąże się z ryzykiem błędów w dalszych etapach produkcji. Na koniec, modelowanie bryłowe, choć może być użyteczne, nie oferuje takiej elastyczności w zakresie szybkich zmian wymiarów jak modelowanie parametryczne. Typowym błędem myślowym jest założenie, że wszystkie techniki mogą być stosowane zamiennie, podczas gdy każda z nich ma swoje specyficzne zastosowania i ograniczenia. Używanie nieodpowiedniej techniki w niewłaściwym kontekście może znacząco obniżyć wydajność pracy oraz jakość końcowego produktu.

Pytanie 28

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
B. powierzchnie elementów, które są poddawane obróbce powierzchniowej
C. linie gięcia przedmiotów ukazanych w rozwinięciu
D. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
Wybór odpowiedzi, która wskazuje, że linie dwupunktowe cienkie oznaczają widoczne krawędzie i wyraźne zarysy przedmiotów w widokach i przekrojach, jest błędny, ponieważ te elementy są zazwyczaj reprezentowane przez linie ciągłe grube. Zrozumienie konwencji rysunków technicznych jest kluczowe, ponieważ każda linia pełni określoną funkcję, a ich niewłaściwe stosowanie może prowadzić do poważnych błędów w interpretacji dokumentacji. Co więcej, powierzchnie elementów podlegających obróbce powierzchniowej, które w rysunkach technicznych oznaczane są najczęściej liniami przerywanymi, również nie są reprezentowane przez linie dwupunktowe cienkie. W ten sposób można zauważyć, że błędne rozpoznanie tych elementów może prowadzić do nieporozumień w procesie produkcyjnym. Ponadto, przejścia jednej powierzchni w drugą w miejscach łagodnie zaokrąglonych są zazwyczaj oznaczane innymi rodzajami linii, co również można pomylić, jeśli nie zna się podstawowych zasad rysunku technicznego. W ten sposób, niewłaściwa interpretacja linii i ich znaczenia na rysunkach może prowadzić do poważnych konsekwencji, jak błędne wykonanie elementów, co naraża na straty finansowe oraz czasowe. Dlatego niezwykle istotne jest przyswojenie wiedzy na temat oznaczeń stosowanych w rysunkach technicznych oraz ich znaczenia w praktyce inżynierskiej.

Pytanie 29

Jaką linią powinno się przedstawiać niewidoczne kontury oraz krawędzie obiektów?

A. Grubą przerywaną
B. Cienką ciągłą
C. Grubą ciągłą
D. Cienką przerywaną
Wybór grubych linii, zarówno przerywanych, jak i ciągłych, raczej nie spełnia zasad rysunku technicznego. Gruba linia ciągła jest do oznaczania widocznych krawędzi i konturów obiektów, więc nie powinna być używana do niewidocznych elementów. Jak ktoś pomiesza te dwa typy, to może naprawdę narobić bałaganu w swoich rysunkach. A gruba linia przerywana, choć może wyglądać na coś innego, wcale nie nadaje się do oznaczania niewidocznych zarysów. To wprowadza zamieszanie, bo grubość może sugerować, że te elementy są ważniejsze, a to jest mylące. Cienka linia ciągła, tak jak gruba, też pokazuje widoczne krawędzie, więc to nie jest dobry wybór. W rysunku technicznym kluczowe jest, żeby trzymać się ustalonych zasad, które pomagają w zrozumieniu dokumentacji. Ignorowanie tego prowadzi do błędów, na przykład dezinformacji czy mylenia wizji projektowanej konstrukcji. Dlatego tak istotne jest, żeby korzystać z uznanych standardów rysunkowych, bo to fundament inżynierii i architektury. Dzięki temu komunikacja między wszystkimi jest jasna i precyzyjna.

Pytanie 30

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego określ wartość grubości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej stali.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4

A. 0,8 mm
B. 5,0 mm
C. 0,5 mm
D. 2,0 mm
Wybór wartości głębokości skrawania na poziomie 0,8 mm, 0,5 mm lub 2,0 mm jest niewłaściwy, ponieważ żadna z tych opcji nie spełnia wymagań dla obróbki zgrubnej stali, która wymaga co najmniej 4 mm. Zastosowanie mniejszych wartości głębokości skrawania w obróbce zgrubnej prowadzi do nieefektywnego usuwania materiału, co skutkuje wydłużeniem czasu obróbki oraz zwiększa zużycie narzędzia. Operatorzy mogą być skłonni błędnie przyjąć, że mniejsze głębokości skrawania są bardziej bezpieczne dla narzędzi lub że poprawią jakość powierzchni, jednak w rzeczywistości prowadzi to do zwiększonego obciążenia narzędzi, co może powodować ich szybsze zużycie i uszkodzenia. Ponadto, podejście to może wpływać na proces chłodzenia, który w przypadku większych głębokości skrawania jest bardziej efektywny. W kontekście standardów przemysłowych, nieprzestrzeganie zalecanych głębokości skrawania może prowadzić do niestabilności procesu obróbczej oraz zwiększenia odpadów. Dlatego warto znać i stosować odpowiednie parametry skrawania dla różnych materiałów oraz typów obróbki, aby zapewnić zarówno efektywność, jak i jakość produkcji.

Pytanie 31

Jaką rozdzielczość ma przetwornik A/C o 10-bitowej głębokości w sterowniku PLC, gdy zakres pomiarowy wynosi 0÷10 V?

A. 9,8 mV/bit
B. 1,1 mV/bit
C. 49,4 mV/bit
D. 100,5 mV/bit
Wybrane odpowiedzi, takie jak 49,4 mV/bit, 1,1 mV/bit oraz 100,5 mV/bit, są błędne i wynikają z różnych nieporozumień dotyczących sposobu obliczania rozdzielczości przetwornika A/C. Odpowiedź 49,4 mV/bit sugeruje, że zakładano inny zakres pomiarowy, co jest nieprawidłowe, ponieważ dla 10 V i 10 bitów rozdzielczość powinna wynosić 9,8 mV/bit. Z kolei odpowiedź 1,1 mV/bit może sugerować mylne założenie o znacznie większej liczbie bitów lub innej wartości zakresu, co jest technicznie niepoprawne. Odpowiedź 100,5 mV/bit ukazuje błędne zrozumienie zasad dotyczących konwersji analogowo-cyfrowej, gdzie ignoruje się istotny wpływ liczby bitów na podział zakresu. Typowe błędy myślowe obejmują nieuwzględnienie podstawowych zasad matematyki dotyczących potęg oraz niewłaściwe rozumienie, jak zakres pomiarowy wpływa na rozdzielczość. Zrozumienie tego zagadnienia jest kluczowe, ponieważ niewłaściwa interpretacja wyników pomiarów prowadzi do błędnych decyzji w projektowaniu systemów automatyki, co może wpłynąć na całkowitą efektywność i bezpieczeństwo operacji przemysłowych.

Pytanie 32

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 7 bar
B. 8 bar
C. 5 bar
D. 6 bar
Odpowiedź 6 bar jest poprawna, ponieważ zgodnie z równaniem F = η·p·A możemy obliczyć ciśnienie powietrza w komorze siłownika. W naszym przypadku mamy siłę F równą 2100 N, sprawność η równą 0,7 oraz powierzchnię tłoka A równą 0,005 m². Podstawiając te wartości do wzoru, otrzymujemy p = F / (η·A) = 2100 N / (0,7·0,005 m²) = 6 bar. Dzięki tym obliczeniom możemy stwierdzić, że ciśnienie 6 bar jest wystarczające do przeniesienia zadanego obciążenia. Takie obliczenia są kluczowe w projektowaniu układów hydraulicznych, gdzie precyzyjne oszacowanie ciśnienia roboczego pozwala na zapewnienie efektywności oraz bezpieczeństwa działania siłowników. W praktyce, odpowiednie ciśnienie ma wpływ na dynamikę ruchu oraz na żywotność komponentów systemu, a także na oszczędność energii.

Pytanie 33

Aby zmienić skok gwintu należy zmienić wartość liczbową przy literze adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3

A. D (korektor narzędzia)
B. F (prędkość posuwu)
C. T (wybór narzędzia)
D. Q (promień wodzący)
Odpowiedź "F" dotycząca prędkości posuwu jest poprawna, ponieważ w programowaniu obrabiarek CNC litera adresowa "F" definiuje właśnie tę prędkość. Prędkość posuwu to kluczowy parametr, który wpływa na jakość obróbki oraz efektywność procesu skrawania. Ustalając odpowiednią prędkość posuwu, operator może kontrolować tempo, w jakim narzędzie porusza się wzdłuż materiału, co przekłada się na dokładność i wydajność obróbki. W praktyce, zmiana wartości przy literze "F" pozwala na dostosowanie parametrów do rodzaju obrabianego materiału oraz zastosowanego narzędzia skrawającego, co jest niezbędne do osiągnięcia optymalnych efektów. Warto również zaznaczyć, że w przypadku gwintowania za pomocą obrabiarek CNC, odpowiednia prędkość posuwu jest kluczowa dla uzyskania pożądanej jakości gwintu, dlatego operatorzy muszą być świadomi znaczenia tego parametru oraz umieć go odpowiednio dostosować w zależności od specyfiki zadania. Zmiana skoku gwintu odbywa się poprzez inne parametry, takie jak G32 lub G33, co podkreśla znaczenie właściwego przypisania liter adresowych w programowaniu CNC.

Pytanie 34

Badanie szczelności układu hydraulicznego powinno być wykonane przy ciśnieniu

A. wyższym o 100% od ciśnienia roboczego
B. wyższym o 50% od ciśnienia roboczego
C. niższym o 20% od ciśnienia roboczego
D. równym ciśnieniu roboczemu
Ocena szczelności układu hydraulicznego przy ciśnieniu równym roboczemu nie jest wystarczająca, ponieważ nie pozwala na identyfikację potencjalnych słabości układu. Ustalenie, że ciśnienie testowe powinno być mniejsze o 20% od roboczego, może prowadzić do niebezpiecznych sytuacji, gdyż nie bada się wówczas charakterystyki układu przy warunkach przeciążeniowych. Należy zauważyć, że przy korzystaniu z ciśnienia roboczego jako punktu odniesienia nie identyfikuje się potencjalnych nieszczelności, które mogą wystąpić tylko przy wyższych ciśnieniach. Z kolei testowanie układu przy ciśnieniach mniejszych o 20% wprowadza dodatkowe ryzyko, gdyż nie odzwierciedla rzeczywistych warunków pracy, jakie mogą wystąpić w wyniku wahań ciśnienia czy awarii. Praktyka ta może być szczególnie niebezpieczna w kontekście systemów hydraulicznych, gdzie w przypadku niewłaściwego przygotowania do pracy może dojść do poważnych uszkodzeń lub wypadków. Dlatego istotne jest, aby przy przeprowadzaniu testów szczelności zawsze stosować się do sprawdzonych standardów i procedur, które zalecają przeprowadzanie testów ciśnieniowych wyższych od roboczych, co zwiększa bezpieczeństwo i niezawodność systemów hydraulicznych.

Pytanie 35

Jakie urządzenie opisuje parametr określany jako liczba stopni swobody?

A. Manipulator
B. Pralka automatyczna
C. Prasa hydrauliczna
D. Kserokopiarka
Manipulator to urządzenie, które charakteryzuje się liczbą stopni swobody, co oznacza, że może poruszać się w wielu kierunkach i na różnych płaszczyznach. Liczba ta wskazuje, ile niezależnych ruchów manipulator może wykonać, co jest kluczowe w kontekście automatyzacji i robotyki. Przykładowo, w robotyce przemysłowej manipulatory stosowane są do precyzyjnego montażu, gdzie wymagana jest zdolność do ruchu w wielu osiach. Manipulatory z sześcioma stopniami swobody potrafią wykonywać ruchy podobne do ruchów ludzkiej ręki, co niezwykle zwiększa ich funkcjonalność. Ważne jest, aby projektowanie robotów uwzględniało standardy ergonomiczne oraz normy bezpieczeństwa, takie jak ISO 10218 dotyczące robotów przemysłowych, aby zapewnić ich efektywność i bezpieczeństwo w użytkowaniu. Wiedza na temat liczby stopni swobody jest kluczowa dla inżynierów i specjalistów zajmujących się automatyzacją, ponieważ pozwala na optymalne dobieranie i programowanie manipulatorów do konkretnych zadań produkcyjnych.

Pytanie 36

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. R
B. S
C. L
D. N
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 37

Podczas montażu napędów hydraulicznych należy przestrzegać określonych norm technicznych. Która z wymienionych zasad jest nieprawidłowa?

A. Wszystkie uszczelnienia powinny być bardzo starannie złożone
B. Podczas montażu konieczne jest zapewnienie czystości, aby do instalowanego systemu nie dostały się zanieczyszczenia
C. Przed finalnym zamontowaniem wszystkie komponenty urządzeń hydraulicznych muszą być dokładnie oczyszczone
D. Uszczelki oraz podkładki gumowe powinny być oczyszczone za pomocą rozpuszczalnika i wysuszone na świeżym powietrzu
No więc, jeśli chodzi o to, że trzeba przemyć uszczelki i podkładki gumowe rozpuszczalnikiem, to nie jest najlepsza opcja. Dlaczego? Bo gumowe elementy bardzo źle reagują na te chemikalia i mogą się po prostu zniszczyć. W praktyce, jak używasz rozpuszczalników, to możesz osłabić właściwości tych uszczelek, co potem da się we znaki w hydraulice. A tam liczy się każda kropla i musisz mieć pewność, że wszystko działa jak należy. Wiesz, są różne standardy, jak na przykład ISO 4414, które mówią, że lepiej unikać chemii, bo to może zaszkodzić materiałom uszczelniającym. Więc zawsze warto trzymać się odpowiednich środków czyszczących, które są pokazane przez producenta, żeby wszystko działało długo i bezproblemowo.

Pytanie 38

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Optyczny
B. Ultradźwiękowy
C. Kontaktronowy
D. Piezoelektryczny
Czujnik kontaktronowy jest idealnym rozwiązaniem do wykrywania położenia tłoczyska z magnesem w siłownikach. Działa na zasadzie zjawiska magnetycznego, co oznacza, że gdy magnes znajdujący się na tłoczysku zbliża się do czujnika, jego styk zamyka się, co pozwala na precyzyjne określenie pozycji. Kontaktrony charakteryzują się dużą wytrzymałością na warunki atmosferyczne i mechaniczne, co czyni je niezawodnymi w trudnych warunkach pracy. W praktyce są szeroko stosowane w automatyce przemysłowej, gdzie precyzyjne pomiary położenia są kluczowe. Dodatkowo, zgodnie z normami ISO 13849 dotyczącymi bezpieczeństwa maszyn, czujniki kontaktronowe mogą być wykorzystywane w systemach bezpieczeństwa, co zwiększa ich wszechstronność. Wybór czujnika kontaktronowego na korpusie siłownika jest zatem zgodny z najlepszymi praktykami branżowymi i zapewnia niezawodność oraz bezpieczeństwo systemów automatyki.

Pytanie 39

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. sprawdzania połączeń elektrycznych
B. wymiany zabrudzonego komutatora wirnika
C. czyszczenia żeber radiatorów
D. sprawdzania napięć silnika
Wybrana przez Ciebie odpowiedź sugerująca, że przegląd konserwacyjny obejmuje wymianę zabrudzonego komutatora wirnika, pokazuje pewne nieporozumienie. Przegląd konserwacyjny ma na celu zapewnienie, że wszystko działa w optymalnych warunkach, a nie robienie dużych napraw, jak wymiana kluczowych części. Wymiana komutatora to proces dość skomplikowany, wymaga demontażu silnika, a nie prostej czynności jak czyszczenie radiatorów czy sprawdzanie napięć. Często można się spotkać z sytuacją, że osoby zajmujące się konserwacją mylnie myślą, że wymiana zużytych części powinna być częścią ich rutynowych zadań, co może prowadzić do marnotrawstwa czasu i zasobów. Dlatego warto dobrze wiedzieć, co naprawdę powinno się robić w ramach rutynowych przeglądów, a które zadania wymagają więcej przygotowania i specjalistycznej wiedzy.

Pytanie 40

W dokumentacji dotyczącej obsługi i konserwacji sieci komunikacyjnej sterowników PLC, które współpracują z urządzeniami mechatronicznymi, powinno się zawrzeć zalecenie dotyczące

A. dodawania dodatkowego przewodu do wyrównywania potencjałów pomiędzy żyłami
B. układania przewodów komunikacyjnych równolegle do przewodów zasilających
C. stosowania tylko przewodów nieekranowanych
D. wykorzystania przewodów o dużej pojemności wzajemnej żył
W przypadku prowadzenia przewodów komunikacyjnych stosowanie przewodów o wysokiej pojemności wzajemnej żył jest podejściem błędnym, ponieważ zwiększa ryzyko zakłóceń i pogorszenia jakości sygnału. Przewody o wysokiej pojemności mogą prowadzić do pojawiania się opóźnień i zniekształceń sygnałów, co w systemach mechatronicznych, gdzie czas reakcji jest kluczowy, może być katastrofalne. Ponadto, stosowanie wyłącznie przewodów nieekranowanych naraża instalacje na wpływ zewnętrznych pól elektromagnetycznych, co z kolei może prowadzić do dodatkowych zakłóceń w komunikacji. Z kolei dołączanie dodatkowego przewodu wyrównującego potencjały między żyłami, mimo iż może być uzasadnione w niektórych przypadkach, nie rozwiązuje problemu zakłóceń wywołanych przez równoległe prowadzenie przewodów zasilających i komunikacyjnych. Często pojawia się błędne przekonanie, że wystarczającym rozwiązaniem jest ekranowanie przewodów, jednakże to nie eliminuje wszystkich rodzajów zakłóceń, szczególnie w sytuacjach, gdzie przewody są prowadzone ze sobą równolegle. Dobre praktyki w tej dziedzinie, zgodne ze standardami branżowymi, zalecają unikanie takich metod, które mogą osłabić integrację i stabilność systemów, co jest szczególnie ważne w złożonych układach mechatronicznych.