Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 20 maja 2025 15:27
  • Data zakończenia: 20 maja 2025 15:54

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 150 g lodu i 50 g chlorku sodu.
B. 100 g lodu i 30 g chlorku amonu.
C. 10 g lodu i 3 g chlorku sodu.
D. 90 g lodu i 30 g chlorku amonu.
Odpowiedź '150 g lodu i 50 g chlorku sodu.' jest poprawna, ponieważ odpowiada stosunkowi masowemu 3:1, co jest kluczowe przy przygotowywaniu mieszanin oziębiających. W przypadku mieszanin takich jak sól i lód, zachodzi reakcja endotermiczna, w której sól obniża temperaturę topnienia lodu, co pozwala uzyskać niską temperaturę. Zgodnie z danymi zawartymi w tabeli, dla uzyskania temperatury -21 °C, konieczne jest zastosowanie odpowiednich proporcji lodu i chlorku sodu, a 150 g lodu w połączeniu z 50 g chlorku sodu są idealnymi składnikami. Tego rodzaju mieszaniny są stosowane w różnych aplikacjach, takich jak chłodzenie w laboratoriach chemicznych, gdzie wymagana jest kontrola temperatury, a także w medycynie, gdzie stosuje się je do przechowywania próbek w niskich temperaturach. Zrozumienie tej zasady jest kluczowe w pracach laboratoryjnych i przemysłowych, gdzie kontrolowanie temperatury ma istotne znaczenie dla zachowania właściwości substancji.

Pytanie 2

Zbiór próbek pierwotnych tworzy próbkę

A. analityczną
B. laboratoryjną
C. ogólną
D. jednostkową
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 3

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. powolnego rozkładu związków
B. uwalniania związków o drażniącym zapachu
C. zajścia nagłej, egzotermicznej reakcji
D. produkcji toksycznych par lub gazów
Wybór odpowiedzi dotyczącej zajścia gwałtownej, egzotermicznej reakcji jest błędny, ponieważ procesy egzotermiczne nie są jedynym lub najważniejszym zagrożeniem związanym z cyjankami. Choć niektóre reakcje chemiczne mogą wydzielać ciepło, to w przypadku cyjanków kluczowym zagrożeniem jest ich zdolność do generowania toksycznych gazów, które stanowią poważne ryzyko dla zdrowia. Wydanie cyjanków do utylizacji prowadzi do sytuacji, w której ich reakcje z innymi substancjami mogą generować niebezpieczne produkty, jednak nie każde zajście reakcji chemicznej jest oparte na gwałtowności. W kontekście drugiej odpowiedzi, powolne rozkładanie się związków nie odzwierciedla natury cyjanków - w rzeczywistości ich toksyczne właściwości nie są związane z ich rozkładem, ale z ich zdolnością do przekształcania się w jeszcze bardziej niebezpieczne formy. Z kolei koncepcja wydzielania się związków o drażniącym zapachu również jest nieadekwatna, ponieważ nie wszystkie cyjanki emitują zauważalne zapachy, a ich obecność w środowisku może być wykrywana jedynie dzięki specjalistycznym metodom analitycznym. Dlatego kluczowe jest, aby zrozumieć, że cyjanki i ich pochodne wymagają szczególnej uwagi i procedur w zakresie ich zarządzania oraz utylizacji, a nie koncentrowania się na nieodpowiednich aspektach ich chemii. W praktyce, nieprzestrzeganie odpowiednich standardów może prowadzić do poważnych zagrożeń zdrowotnych i środowiskowych, a także naruszenia przepisów dotyczących ochrony środowiska.

Pytanie 4

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, kolby stożkowej, zlewki
B. lejka, 2 zlewki, bagietki
C. lejka, zlewki, 2 bagietek
D. lejka, 2 kolb stożkowych, bagietki
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.

Pytanie 5

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. kwasu solnego
B. płynu do zmywania naczyń
C. roztworu KMnO4 z dodatkiem kwasu solnego
D. wody destylowanej
Kwas solny, nazywany też kwasem chlorowodorowym, to naprawdę mocny kwas mineralny, który świetnie radzi sobie z rozpuszczaniem różnych osadów nieorganicznych. Szczególnie dobrze działa na wodorotlenki, tlenki i węglany. W laboratoriach chemicznych używa się go do czyszczenia naczyń szklanych, bo dzięki swoim właściwościom korozyjnym skutecznie likwiduje osady, które mogą się tam zebrać po różnych reakcjach chemicznych. Na przykład, jeśli na ściankach naczyń zgromadziły się węglany w wyniku reakcji gazu z węglanami, to kwas solny sprawia, że wszystko znika. To czyni go naprawdę fajnym środkiem czyszczącym. Oczywiście trzeba pamiętać o bezpieczeństwie przy jego używaniu, bo można nim łatwo zniszczyć naczynia, dlatego korzysta się z odpowiednich stężeń i zawsze zachowuje ostrożność. Przed użyciem kwasu warto też sprawdzić, czy naczynia są na niego odporne. Właściwe obchodzenie się z kwasami i stosowanie środków ochrony osobistej to podstawa, bo jakby nie było, chodzi o bezpieczeństwo w laboratorium.

Pytanie 6

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
B. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
C. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
D. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
Wybór niepoprawnej odpowiedzi często wynika z braku zrozumienia specyfikacji narzędzi laboratoryjnych oraz ich zastosowania w konkretnych procedurach analitycznych. Wiele z błędnych odpowiedzi sugeruje użycie cylinderów o pojemności 100 cm3 lub zlewek, co w przypadku analizy kwasowości mleka jest niewłaściwe. Cylinder miarowy o pojemności 100 cm3 jest zbyt duży do precyzyjnego odmierzania niewielkich objętości wody destylowanej, co może prowadzić do błędów w obliczeniach. Zlewa nie jest narzędziem stosowanym do precyzyjnego odmierzania substancji, co czyni ją nieodpowiednią do zastosowań wymagających dokładności. Ponadto, użycie pipet wielomiarowych zamiast jednomiarowych może prowadzić do nieścisłości w pobieraniu prób, gdyż pipety jednomiarowe są zaprojektowane do precyzyjnego odmierzania pojedynczych objętości. W laboratoriach stosuje się standardy, które nakładają wymogi co do dokładności przygotowywanych roztworów, stąd konieczność przestrzegania procedur opartych na uznanych metodach analitycznych. Przygotowanie roztworów powinno odbywać się z użyciem odpowiednich narzędzi, a ich dobór ma kluczowe znaczenie dla jakości wyników, co podkreśla znaczenie znajomości sprzętu laboratoryjnego i jego funkcji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Destylacja
B. Krystalizacja
C. Sublimacja
D. Chromatografia
Sublimacja, będąca procesem przejścia substancji ze stanu stałego w gazowy bez przejścia przez stan ciekły, nie jest metodą rozdziału związków chemicznych w opisanym kontekście. Metoda ta nie opiera się na różnicach w zachowaniu się składników w układzie dwufazowym, a raczej na zmianie stanu skupienia substancji. Krystalizacja to proces, który również nie pasuje do opisanego rozdziału. W przypadku krystalizacji substancje rozdzielają się na podstawie różnic w rozpuszczalności, a nie na podstawie interakcji z fazą stacjonarną i ruchomą. Choć ta metoda jest przydatna w oczyszczaniu związków chemicznych, nie wykorzystuje mechanizmu, który charakteryzuje chromatografię. Destylacja, z kolei, polega na separacji składników mieszaniny na podstawie różnic w temperaturach wrzenia, co również nie odpowiada zasadzie działania chromatografii. Błędem myślowym w tym przypadku jest pomylenie różnych technik separacyjnych, które mają odmienne podstawy teoretyczne i zastosowania. Rozumienie tych różnic jest kluczowe dla prawidłowego doboru metody w zależności od rodzaju mieszaniny i pożądanych rezultatów analizy.

Pytanie 9

W urządzeniu Soxhleta wykonuje się

A. sublimację
B. krystalizację
C. dekantację
D. ługowanie
Aparat Soxhleta jest narzędziem wykorzystywanym w laboratoriach chemicznych do procesu ługowania, czyli ekstrakcji substancji rozpuszczalnych w cieczy z materiałów stałych. Jego działanie opiera się na cyklicznym procesie, w którym rozpuszczalnik, najczęściej ciecz organiczna, jest wielokrotnie przepuszczany przez próbkę materiału. Dzięki temu można efektywnie wydobyć związek chemiczny, który jest rozpuszczalny w danym rozpuszczalniku. W praktyce, metodyka Soxhleta jest szczególnie przydatna w analizie tłuszczy, olejów, a także innych substancji organicznych. Przykładowo, w analizach żywnościowych, użycie aparatu Soxhleta pozwala na skuteczne oznaczenie zawartości tłuszczu w próbkach, co jest zgodne z normami, takimi jak ISO 6492. Dobrze przeprowadzony proces ługowania w aparacie Soxhleta charakteryzuje się wysoką efektywnością, co czyni go standardem w wielu laboratoriach zajmujących się analizą chemiczną.

Pytanie 10

Jak definiuje się próbkę wzorcową?

A. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
B. próbkę o ściśle określonym składzie
C. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
D. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania
Próbka wzorcowa, definiowana jako próbka o dokładnie znanym składzie, jest kluczowym elementem w analizie laboratoryjnej. Jej głównym celem jest służyć jako punkt odniesienia do porównania z próbkami analitycznymi. W praktyce, użycie próbki wzorcowej pozwala na kalibrację instrumentów pomiarowych oraz weryfikację metod analitycznych. Przykładem zastosowania próbki wzorcowej jest analiza chemiczna, gdzie standardy wzorcowe, takie jak roztwory znanych stężeń substancji, są wykorzystywane do określenia stężenia analitów w próbkach rzeczywistych. Próbki wzorcowe są również istotne w kontekście zgodności z normami ISO, które wymagają stosowania takich standardów w procedurach analitycznych, zapewniając tym samym wiarygodność i powtarzalność wyników. Dodatkowo, laboratoria często korzystają z prób wzorcowych w ramach systemów zapewnienia jakości, co podkreśla ich znaczenie dla utrzymania wysokich standardów analitycznych oraz dokładności wyników.

Pytanie 11

Czego brakuje w zestawie pokazanym na ilustracji?

A. bagietka, termometr oraz siatka
B. stojak, łącznik oraz termometr
C. stojak, łącznik i łapa
D. stojak, termometr oraz siatka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'statyw, łącznik i łapa' jest poprawna, ponieważ te elementy są niezbędne do stabilizacji i prawidłowego montażu sprzętu laboratoryjnego. Statyw jest kluczowym elementem w każdej pracowni chemicznej lub fizycznej, umożliwiającym bezpieczne trzymanie różnych akcesoriów, takich jak naczynia reakcyjne czy przyrządy pomiarowe. Łącznik służy do łączenia różnych elementów sprzętu, co pozwala na bardziej złożone konfiguracje, które mogą być wymagane w trakcie eksperymentów. Łapa natomiast zapewnia pewne uchwycenie i stabilizację, co jest szczególnie ważne w przypadku użycia szkła laboratoryjnego, które jest wrażliwe na uszkodzenia. W praktyce, zastosowanie tych elementów pozwala na przeprowadzanie doświadczeń w sposób bezpieczny oraz efektywny, co jest zgodne z najlepszymi praktykami w laboratoriach. Użycie statywów i uchwytów jest standardem w każdym laboratorium, co podkreśla ich fundamentalne znaczenie w pracy naukowej.

Pytanie 12

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła sodowego
B. ze szkła borowo-krzemowego
C. z tworzywa sztucznego
D. z kwarcu
Chociaż przechowywanie próbek w naczyniach ze szkła kwarcowego czy borowo-krzemowego może wydawać się sensowne, nie jest to najlepszy pomysł, gdy mowa o krzemie. Kwarc, choć jest trwały, może wprowadzać krzemionkę do próbki, przez co wyniki mogą być fałszywe. Z kolei szkło borowo-krzemowe też może mieć trochę krzemu, co znowu wpływa na pomiar. A szkło sodowe, no tutaj to już w ogóle, bo reaguje z różnymi substancjami w wodzie, zwłaszcza przy mocnych kwasach lub zasadach. Dużo osób myśli, że całe szkło jest neutralne, ale to nieprawda - ich właściwości mogą być bardzo różne. To wszystko prowadzi do tego, że źle dobrane materiały do przechowywania próbek mogą nam zepsuć wyniki analizy, co w badaniach środowiskowych czy przy ocenie jakości wody pitnej może mieć poważne skutki. Dlatego ważne jest, żeby używać naczyń, które są odpowiednie i nie dodają niczego do naszych próbek.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Przedstawiony sposób dotyczy pobierania próbki wody do przeprowadzenia badań

Sposób pobierania próbki wody do przeprowadzenia badań:
- próbki pobrać do sterylnych butelek;
- przed przystąpieniem do pobierania wody zdjąć z kurka wszelkie urządzenia, zeskrobać zanieczyszczenia, następnie całkowicie otwierając i zamykając zawór, wielokrotnie płukać;
- metalowy kurek wysterylizować płomieniem, a kurek z tworzywa sztucznego alkoholem etylowym;
- kurek otworzyć do połowy przepływu i spuszczać wodę przez około 2-3 minuty do osiągnięcia stałej temperatury;
- pobrać próbkę wody napełniając butelkę do około ¾ objętości i natychmiast zamknąć korkiem.

A. fizykochemicznych.
B. w celu oznaczenia zawartości metali ciężkich.
C. w celu oznaczenia zawartości rozpuszczonych gazów.
D. mikrobiologicznych.
Odpowiedź wskazująca na badania mikrobiologiczne jest poprawna, ponieważ proces pobierania próbki wody wymaga szczególnej dbałości o sterylność, aby uniknąć zanieczyszczenia mikroorganizmami. W kontekście badań mikrobiologicznych, każde wprowadzenie obcych mikroorganizmów może zafałszować wyniki analizy. Przykładowo, w laboratoriach stosuje się specjalne techniki sterylizacji, takie jak autoklawowanie, aby zapewnić, że wszystkie sprzęty i pojemniki są wolne od patogenów i niespecyficznych mikroorganizmów. Standardy takie jak ISO 17025 określają wymagania dotyczące kompetencji laboratoriów, w tym procedury pobierania próbki wody do badań mikrobiologicznych. W praktyce, jeśli próbka zostanie zanieczyszczona, może to prowadzić do błędnych wyników, co z kolei może mieć poważne konsekwencje dla bezpieczeństwa wody pitnej i zdrowia publicznego.

Pytanie 15

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu solnego.
B. kwasu azotowego(V).
C. kwasu siarkowego(VI).
D. kwasu fosforowego(V).
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 16

Jakie urządzenie jest wykorzystywane do procesu ekstrakcji?

A. aparat Kippa
B. pompa próżniowa
C. aparat Soxhleta
D. kolba ssawkowa
Aparat Soxhleta jest specjalistycznym urządzeniem wykorzystywanym w procesach ekstrakcji, szczególnie w laboratoriach chemicznych i analitycznych. Działa na zasadzie ciągłej ekstrakcji substancji rozpuszczalnych z materiałów stałych, co umożliwia uzyskanie wysokiej wydajności ekstrakcji. Ekstrakcja w aparacie Soxhleta polega na cyklicznym podgrzewaniu rozpuszczalnika, który paruje, a następnie skrapla się w kondensatorze, opadając z powrotem na próbkę. Taki proces pozwala na efektywne wydobycie substancji, takich jak oleje, tłuszcze czy inne składniki aktywne z roślin. Zastosowanie tego aparatu jest powszechne w przemyśle farmaceutycznym, kosmetycznym oraz przy badaniach jakości surowców naturalnych. Standardy branżowe, takie jak ISO, zalecają korzystanie z metod ekstrakcji, które zapewniają powtarzalność i dokładność wyników, co czyni aparat Soxhleta doskonałym narzędziem w tej dziedzinie.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Wody pobrane ze studni powinny być przewożone w szczelnie zamkniętych butelkach z przezroczystego materiału

A. szklanych, w temperaturze około 20°C
B. z tworzywa sztucznego, w temperaturze około 20°C
C. z tworzywa sztucznego, w temperaturze około 4°C
D. szklanych, w temperaturze około 30°C
Odpowiedź dotycząca użycia butelek z tworzywa sztucznego, w temperaturze około 4°C, jest zgodna z zaleceniami dotyczącymi transportu próbek wody. Tworzywo sztuczne, takie jak polipropylen lub PET, jest preferowane, ponieważ jest lekkie, odporne na pęknięcia i dobrze zabezpiecza próbki przed zanieczyszczeniami. Przechowywanie próbek w niskiej temperaturze, około 4°C, minimalizuje rozwój mikroorganizmów i stabilizuje skład chemiczny wody, co jest kluczowe dla wiarygodności analizy. W praktyce zaleca się, aby próbki były transportowane w ciągu maksymalnie 24 godzin od pobrania, aby zminimalizować ryzyko zmiany parametrów analitycznych. Dobre praktyki laboratoria wodociągowego wskazują, że każda próbka powinna być odpowiednio oznakowana i zarejestrowana, co ułatwia późniejsze śledzenie wyników analizy. W takich sytuacjach warto korzystać z wytycznych takich jak Standard ISO 5667 dotyczący pobierania próbek wody, co zapewnia jakość i wiarygodność uzyskiwanych danych.

Pytanie 19

Jaką substancję należy koniecznie oddać do utylizacji?

A. Glukoza
B. Chromian(VI) potasu
C. Sodu chlorek
D. Gliceryna
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 20

Sączenie na gorąco powinno być użyte, aby

A. miało miejsce wydzielanie kryształów z roztworu
B. nie miało miejsca wydzielanie kryształów z roztworu
C. nie doszło do rozpuszczenia substancji obecnych w roztworze
D. doszło do rozpuszczenia substancji obecnych w roztworze
Odpowiedzi, które sugerują, że sączenie na gorąco ma na celu rozpuszczenie substancji zawartych w roztworze lub zapobieganie ich wydzielaniu w postaci kryształów, nie uwzględniają rzeczywistych zasad fizykochemicznych, które rządzą tym procesem. Sącząc na gorąco, dąży się do tego, aby zminimalizować ryzyko krystalizacji, a nie do rozpuszczania substancji. W rzeczywistości, podczas podgrzewania roztworu, substancje, które są mniej rozpuszczalne w wyższych temperaturach, mogą zacząć wytrącać się w postaci kryształów, co jest niepożądane w kontekście oczyszczania. Sącząc na gorąco, kluczowe jest również zrozumienie, że proces ten pozwala na przeprowadzenie filtracji w warunkach, które zapobiegają osadzaniu się zanieczyszczeń na dnie naczynia, co może prowadzić do błędnych wniosków analitycznych. W praktyce laboratoryjnej ignorowanie tych aspektów może prowadzić do nieefektywnego oczyszczania i uzyskiwania produktów o niższej jakości, co jest niezgodne z dobrymi praktykami w chemii analitycznej. Zrozumienie zasad działania sączenia na gorąco jest kluczowe dla prawidłowego przeprowadzania analiz chemicznych oraz procesów syntezy.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. słaby kwas
B. gorącą wodę
C. słabą zasadę
D. mieszaninę chromową
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.

Pytanie 23

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. uzyskano ester o 100% wydajności
B. równowaga reakcji została silnie przesunięta w lewo
C. alkohol uległ całkowitej reakcji
D. równowaga reakcji została silnie przesunięta w prawo
Analizując alternatywne odpowiedzi, warto zauważyć, że stwierdzenie, iż równowaga reakcji przesunęła się silnie w lewo, jest niepoprawne. Tego typu wnioski mogą wynikać z mylnego zrozumienia dynamiki reakcji chemicznych oraz wpływu stosunku reagentów na równowagę. W sytuacji, gdy stosunek alkoholu do kwasu jest znacznie większy, równowaga nie będzie się przesuwać w lewo, ponieważ dostępność alkoholu w reakcji sprzyja tworzeniu estru. Odpowiedź mówiąca o 100% wydajności również jest błędna, ponieważ w praktyce osiągnięcie takiej wydajności jest niemal niemożliwe z uwagi na różne czynniki, takie jak straty produktu, nieodwracalność reakcji czy obecność innych substancji. Ponadto, twierdzenie, że alkohol przereagował całkowicie, jest również mylne, gdyż nawet przy dużych ilościach alkoholu zawsze pozostaje pewna ilość substratów, które nie przekształcają się w produkty. Kluczowym błędem myślowym jest zakładanie, że zwiększenie jednego z reagentów w układzie reakcyjnym automatycznie prowadzi do całkowitej konwersji, co nie uwzględnia zasad chemii równowagi i możliwości powstawania rewersyjnej reakcji. Zrozumienie tych zasad jest fundamentalne w chemii organicznej oraz w syntezach przemysłowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. mineralizacja mokra
B. mineralizacja sucha
C. ekstrakcja do fazy stałej
D. roztworzenie
Mineralizacja mokra to proces, który różni się znacząco od mineralizacji suchej. W mineralizacji mokrej organiczne substancje są rozkładane w obecności reagentów chemicznych, takich jak kwasy, co sprawia, że charakter tego procesu jest zupełnie inny. Technika ta jest często stosowana do analizy materiałów, w których nie można zastosować wysokich temperatur ze względu na ryzyko degradacji próbki. W kontekście mineralizacji suchej, na przykład, często pojawia się mylne przekonanie, że można połączyć te metody, co prowadzi do nieścisłości w interpretacji wyników. Ekstrakcja do fazy stałej to zupełnie odmienny proces, który polega na wydobywaniu związków chemicznych z próbki za pomocą materiałów adsorpcyjnych, a nie na ich spalaniu. Z kolei roztworzenie odnosi się do procesu rozpuszczania substancji w cieczy, co również nie jest związane z mineralizacją. Często błędnie sądzimy, że wszystkie te procesy mają podobne zastosowania, podczas gdy ich mechanizmy działania, efektywność oraz cel są odmienne. Kluczowa jest umiejętność rozróżnienia tych technik, co pozwala na uniknięcie nieporozumień i błędnych wniosków w analizach chemicznych.

Pytanie 30

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 1%
B. 0,001%
C. 0,1%
D. 0,01%
Odpowiedź 0,1% jest poprawna, ponieważ w praktyce laboratoryjnej oraz w wielu branżach, takich jak przemysł farmaceutyczny czy chemiczny, stosuje się tę wartość jako standard dla pobierania próbki ogólnej z dużej partii materiału. Zgodnie z wytycznymi dotyczącymi pobierania próbek, takimi jak normy ISO, wartość ta zapewnia reprezentatywność próbki przy jednoczesnym minimalizowaniu odpadów materiałowych. Przykładowo, w procesie kontroli jakości materiałów sypkich, pobranie 0,1% materiału pozwala na dokładne oszacowanie właściwości całej partii, co jest kluczowe dla zapewnienia jej zgodności z wymaganiami. W praktyce, odpowiednia wielkość próbki wpływa na wiarygodność analiz chemicznych i fizycznych, a tym samym na bezpieczeństwo i efektywność procesów produkcyjnych. Używając tej wartości, laboratoria mogą także efektywnie monitorować zmiany w jakości surowców oraz gotowych produktów.

Pytanie 31

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 18,40 g
B. 20,00 g
C. 24,06 g
D. 26,04 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć masę chlorku baru potrzebną do przygotowania 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3, należy skorzystać z wzoru na stężenie masowe. Stężenie masowe (C) definiuje się jako masa substancji (m) dzielona przez objętość roztworu (V) pomnożoną przez 100%. W tym przypadku C = 10%, V = 200 cm3. Zatem: m = C * V / 100 = 10 * (200) / 100 = 20 g. Jednakże, aby obliczyć masę rzeczywistą roztworu, musimy uwzględnić jego gęstość. Gęstość (d) roztworu wynosi 1,203 g/cm3, co oznacza, że masa roztworu wyniesie: masa roztworu = objętość * gęstość = 200 cm3 * 1,203 g/cm3 = 240,6 g. Teraz, skoro mamy 20 g chlorku baru, to masa pozostałej części roztworu (czyli wody) wyniesie 240,6 g - 20 g = 220,6 g. W końcu należy złożyć obliczenia: 20 g chlorku baru stanowi 10% całości, co jest zgodne z założeniem stężenia. Ostatecznie, aby uzyskać roztwór o pożądanym stężeniu, konieczne jest rozpuszczenie 24,06 g chlorku baru, co odpowiada odpowiedzi nr 4.

Pytanie 32

W którym wierszu tabeli podano ilości substancji i wody, potrzebne do sporządzenia 350 g roztworu o stężeniu 7%?

Masa substancjiMasa wody
A.24,5 g350 g
B.24,5 g325,5 g
C.7 g343 g
D.7 g350 g

A. A.
B. B.
C. D.
D. C.
Odpowiedź B jest poprawna, ponieważ została obliczona zgodnie z zasadami dotyczących stężenia roztworów. Stężenie 7% oznacza, że w 100 g roztworu znajduje się 7 g substancji rozpuszczonej. W przypadku 350 g roztworu, masa substancji wynosi 7% z 350 g, co daje 24.5 g. Różnica między masą całkowitą roztworu a masą substancji, czyli 350 g - 24.5 g, daje 325.5 g wody. Takie obliczenia są zgodne z fundamentalnymi zasadami chemii i są powszechnie stosowane w laboratoriach chemicznych, farmaceutycznych i różnych dziedzinach przemysłu, gdzie precyzyjne przygotowanie roztworów jest kluczowe. Zrozumienie obliczeń stężenia roztworów pozwala na dokładne przygotowania roztworów o określonych właściwościach, co jest istotne w procesach analitycznych oraz produkcyjnych.

Pytanie 33

W celu przygotowania 100 cm3 roztworu mianowanego, jaką kolbę należy zastosować?

A. stożkową o pojemności 100 cm3
B. miarową o pojemności 0,1 dm3
C. miarową o pojemności 10 cm3
D. stożkową o pojemności 0,1 dm3
Wybór kolby miarowej 0,1 dm³ (czyli 100 cm³) to dobry ruch. Przygotowując roztwór mianowany, ważne jest, żeby robić to w naczyniu, które zapewnia dokładne pomiary objętości. Kolby miarowe są super dokładne i to ma duże znaczenie w chemii. Nawet małe błędy w objętości mogą namieszać wyniki analizy. Na przykład, jeśli przygotowujesz roztwór standardowy do miareczkowania, kolba miarowa będzie niezbędna. Pamiętaj, że każda kolba powinna być używana zgodnie z jej pojemnością, co sprawia, że wyniki są bardziej rzetelne i powtarzalne. W laboratoriach chemicznych dokładność pomiaru to klucz, więc dobrze jest wiedzieć, jaką kolbę wybrać, żeby wszystko wyszło zgodnie z planem.

Pytanie 34

Losowo należy pobierać próbki z opakowań

A. z górnej części opakowania
B. z kilku punktów w obrębie opakowania
C. z dolnej części opakowania
D. z krawędzi opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 35

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 50 cm3
B. 20 cm3
C. 25 cm3
D. 10 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. B
B. EX
C. A
D. IN
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.