Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 maja 2025 00:10
  • Data zakończenia: 23 maja 2025 00:14

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Proces, w którym woda jest usuwana z zamrożonego materiału poprzez sublimację lodu
(czyli bezpośrednie przejście do stanu pary z pominięciem stanu ciekłego) nazywa się

A. homogenizacja
B. liofilizacja
C. pasteryzacja
D. asocjacja
Liofilizacja to naprawdę ciekawy proces. W skrócie, chodzi o to, że z zamrożonego materiału usuwa się wodę poprzez sublimację, czyli jakby bezpośrednie przejście lodu w parę. To szczególnie ważne w branży spożywczej i farmaceutycznej, bo dzięki temu produkty utrzymują swoje właściwości, smak i wartości odżywcze. Możemy zobaczyć to w przypadku suszonych owoców, liofilizowanej kawy czy nawet leków, które muszą być stabilne. To, co mi się podoba, to że liofilizacja pozwala na długoterminowe przechowywanie bez konserwantów, co jest super zdrowe. W farmacji z kolei, to standard w produkcji niektórych leków, co sprawia, że łatwiej je transportować i podawać, bo rozpuszczają się w wodzie tuż przed użyciem. Po prostu świetna sprawa!

Pytanie 2

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. hydratacja
B. dekantacja
C. absorpcja
D. sedymentacja
Sedymentacja to proces fizyczny, w którym cząstki stałe w zawiesinie opadają na dno pod wpływem siły grawitacji. Jest to kluczowy mechanizm w wielu dziedzinach, takich jak inżynieria środowiska, geologia czy chemia analityczna. W praktyce sedymentacja jest wykorzystywana do oczyszczania ścieków, gdzie cząstki stałe są usuwane z cieczy, co pozwala na oczyszczenie wody. Dobrą praktyką w analizach chemicznych jest zastosowanie sedymentacji w etapach przygotowania próbek, co pozwala na wyizolowanie cząstek osadowych i ich dalsze badanie. Proces ten jest również podstawą wielu technologii, takich jak separacja i recykling materiałów, gdzie skuteczne oddzielanie składników jest kluczowe dla efektywności całego procesu produkcyjnego. W kontekście norm i regulacji, aplikacje sedymentacji muszą spełniać odpowiednie standardy jakości, co gwarantuje bezpieczeństwo i efektywność działań przemysłowych.

Pytanie 3

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,13 cm3
B. 2,50 cm3
C. 2,15 cm3
D. 2,52 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 4

Z podanych w tabeli danych wybierz sprzęt potrzebny do zmontowania zestawu do destylacji z parą wodną.

12345
manometrkociołek miedzianychłodnica powietrznakolba destylacyjnaodbieralnik

A. 2,3,5
B. 1,2,3
C. 1,3,4
D. 2,4,5
Wybór odpowiedzi 2,4,5 jest poprawny, ponieważ do zmontowania zestawu do destylacji z parą wodną potrzebujemy konkretnego sprzętu odpowiadającego wymaganiom technologicznym tego procesu. Kociołek miedziany (2) jest kluczowym elementem, gdyż miedź jest materiałem, który doskonale przewodzi ciepło i nie reaguje z substancjami organicznymi, co jest istotne dla uzyskania czystego destylatu. Kolba destylacyjna (4) jest również niezbędna, ponieważ to w niej umieszczamy substancję, którą chcemy destylować; jej kształt sprzyja efektywnej separacji pary od cieczy. Odbiernik (5) stanowi ostatni element procesu, w którym skroplona ciecz jest zbierana, co jest kluczowe dla efektywności destylacji. Zastosowanie tego zestawu w laboratoriach chemicznych jest powszechne, szczególnie w procesach syntez chemicznych i analitycznych, gdzie czystość substancji ma kluczowe znaczenie. Wiedza na temat doboru sprzętu do destylacji jest fundamentalna nie tylko w edukacji, ale także w praktycznych zastosowaniach przemysłowych.

Pytanie 5

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
B. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
C. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
D. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 6

Roztwory, które wykorzystuje się do kalibracji pehametrów, to

A. kalibracyjne
B. zasadowe
C. buforowe
D. kwasowe
Roztwory buforowe są kluczowe w kalibracji pehametrów, ponieważ utrzymują stałe pH pomimo dodania niewielkich ilości kwasów lub zasad. Dzięki swojej właściwości stabilizacji pH, roztwory buforowe pozwalają na dokładne pomiary, co jest niezbędne w różnych zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach analitycznych, gdzie pomiar pH jest istotny dla jakości analizowanych próbek, kalibracja pehametru za pomocą roztworów buforowych zapewnia wiarygodność wyników. Standardami ISO dla pomiaru pH zaleca się stosowanie roztworów buforowych o znanych wartościach pH, co umożliwia precyzyjne ustawienie punktów kalibracyjnych. Dobre praktyki wymagają także, aby roztwory buforowe były świeże i odpowiednio przechowywane, aby uniknąć zmian ich właściwości chemicznych. Właściwa kalibracja przyczynia się do minimalizacji błędów pomiarowych, a tym samym zwiększa dokładność wyników i niezawodność procesów analitycznych.

Pytanie 7

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. dla człowieka
B. dla środowiska
C. fizyczne
D. chemiczne
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 8

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste
B. spektralnie czyste
C. czyste chemicznie
D. czyste do badań
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 9

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. skorzystać z amoniaku
B. polać 3% roztworem wody utlenionej
C. zastosować 5% roztwór wodorowęglanu sodu
D. zmyć bieżącą wodą
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 10

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 80%
B. 83%
C. 75%
D. 93%
Aby obliczyć wydajność reakcji, najpierw należy określić teoretyczną ilość wodorotlenku wapnia, którą można by uzyskać z 30 g węglanu wapnia. Reakcja wypalania węglanu wapnia (CaCO3) do tlenku wapnia (CaO) można zapisać jako: CaCO3 → CaO + CO2. Obliczając masę molową węglanu wapnia, otrzymujemy 100 g/mol. Zatem 30 g węglanu wapnia to 0,3 mol. Następnie, tlenek wapnia reaguje z wodą, tworząc wodorotlenek wapnia (Ca(OH)2): CaO + H2O → Ca(OH)2. Masa molowa wodorotlenku wapnia wynosi 74 g/mol. Z 0,3 mola CaO możemy uzyskać 0,3 mola Ca(OH)2, co daje 22,2 g teoretycznego wodorotlenku wapnia (0,3 mol * 74 g/mol). W rzeczywistości uzyskaliśmy 18,5 g, więc wydajność reakcji obliczamy jako (18,5 g / 22,2 g) * 100% = 83%. Wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, a jej znajomość jest niezbędna w przemyśle chemicznym, gdzie optymalizacja kosztów i surowców ma ogromne znaczenie.

Pytanie 11

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
B. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
C. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
D. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
Wybór odpowiedzi dotyczącej probówki nr 3 jako roztworu wodorotlenku sodu jest poprawny z kilku powodów. Uniwersalny papier wskaźnikowy to narzędzie, które zmienia kolor w zależności od pH roztworu. W przypadku wodorotlenku sodu, który jest silnym zasadowym elektrolitem, kątem pH może osiągać wartości powyżej 12, co powoduje, że papier zmienia kolor na niebieski. Fenoloftaleina, również stosowana w tym przypadku, zmienia kolor na malinowy w pH powyżej 8,2, co dodatkowo potwierdza obecność wodorotlenku sodu. W praktyce, umiejętność identyfikacji substancji na podstawie ich odczynu jest niezbędna w laboratoriach chemicznych, gdzie konieczne jest precyzyjne określenie właściwości chemicznych roztworów. Zgodnie z dobrymi praktykami, stosowanie wskaźników pH jest kluczowe w procesach analitycznych, a ich interpretacja pozwala na właściwe dobieranie reagentów w dalszych etapach eksperymentu.

Pytanie 12

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 1,00 g
B. 10 mg
C. 0,01 mg
D. 10 g
Wybór innej odpowiedzi niż 10 mg może wynikać z nieporozumienia dotyczącego możliwości pomiarowych wag laboratoryjnych. Odpowiedź 1,00 g jest zbyt dużą wartością, ponieważ wskazuje na możliwość pomiaru masy z dokładnością, która jest znacznie niższa niż ta oferowana przez precyzyjną wagę. W praktyce, wagi o takiej dokładności mogą nie być wystarczające do zastosowań wymagających wysokiej precyzji, co jest istotne w chemii analitycznej, lecz bardziej w codziennym użytkowaniu. Wybór 0,01 mg jest niewłaściwy, ponieważ przekracza możliwości typowych wag laboratoryjnych, które nie osiągają tak wysokiej precyzji w standardowych zastosowaniach, co może prowadzić do niepomiaru lub błędów w analizach. Odpowiedź 10 g również jest nieadekwatna, ponieważ wagi precyzyjne mają na celu dokładne ważenie niewielkich ilości substancji, a nie większych próbek, które mogą być ważone na wagach analitycznych o innej specyfikacji. W związku z tym, każdy z wybranych błędnych odpowiedzi ilustruje typowe błędy myślowe, które mogą wynikać z braku zrozumienia charakterystyki wag laboratoryjnych oraz ich zastosowań w praktyce. Kluczowe jest, aby przy wyborze odpowiedzi na pytania dotyczące pomiarów masy kierować się zrozumieniem dokładności urządzeń oraz ich przeznaczenia w kontekście laboratoryjnym.

Pytanie 13

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Wodorotlenku sodu.
B. Chlorku sodu.
C. Glukozy.
D. Stearynianu sodu.
Wybór błędnej odpowiedzi może wynikać z nieporozumienia dotyczącego właściwości chemicznych substancji oraz ich oznakowania. Chlorek sodu, będący powszechnie znaną solą, nie jest substancją żrącą, dlatego nie wymaga stosowania piktogramu wskazującego na substancje niebezpieczne. Podobnie, stearynian sodu oraz glukoza są substancjami, które nie wykazują agresywnych właściwości chemicznych i nie stwarzają ryzyka dla użytkowników, co sprawia, że nie powinny być oznaczane symbolem substancji żrących. Wiele osób myli właściwości chemiczne na podstawie ogólnych informacji o substancjach, co prowadzi do błędnych wniosków. Zrozumienie kategorii substancji chemicznych oraz ich potencjalnych zagrożeń jest kluczowe w kontekście bezpieczeństwa, szczególnie w laboratoriach oraz środowisku przemysłowym. Oznakowanie substancji chemicznych jest regulowane przez międzynarodowe standardy bezpieczeństwa, takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów). Dlatego ważne jest, aby znać zasady dotyczące oznaczeń oraz klasyfikacji substancji, co pozwoli uniknąć pomyłek i zapewni odpowiednie środki ostrożności w pracy z różnorodnymi substancjami chemicznymi.

Pytanie 14

Jaka minimalna pojemność powinna mieć miarka, aby jednorazowo zmierzyć 60,0 cm3 wody?

A. 250 cm3
B. 50 cm3
C. 100 cm3
D. 25 cm3
Żeby dobrze odpowiedzieć na to pytanie, warto zrozumieć, jak to jest z pomiarem objętości cieczy. Cylinder miarowy powinien mieć pojemność, która jest większa lub równa tej, którą chcemy zmierzyć, czyli w tym przypadku 60,0 cm³. Najlepiej użyć cylindra o pojemności 100 cm³. Dlaczego? Bo to zapewnia dokładność pomiaru i daje odpowiednią przestrzeń na ewentualne błędy oraz na nabieranie cieczy. W laboratoriach chemicznych to dosyć istotne, bo źle dobrana pojemność może prowadzić do przelania albo niedokładnych pomiarów. Takie rzeczy lepiej omijać, żeby mieć pewność, że pracujemy zgodnie z dobrymi praktykami. Dlatego wybór cylindra 100 cm³ to nie tylko spełnienie wymogów, ale i zadbanie o bezpieczeństwo i dokładność podczas eksperymentów.

Pytanie 15

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
B. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
C. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
D. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 16

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. może wystąpić niebezpieczeństwo zgaszenia płomienia
B. może to zwiększyć jej toksyczność
C. wzrost ciśnienia może spowodować wybuch
D. istnieje ryzyko zalania palnika
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 17

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 100g
B. 150g
C. 250g
D. 200g
Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.

Pytanie 18

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. NaOH
C. Na2B4O7·10H2O
D. Na2C2O4
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 19

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. ze szkła krzemowego
B. ze szkła sodowego
C. ze szkła borokrzemowego
D. z polietylenu
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 20

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodorotlenek sodu
B. tlenek cynku i wodorotlenek sodu
C. cynk i wodę
D. chlorek cynku i wodę
Chlorek cynku (ZnCl2) w reakcji z wodorotlenkiem sodu (NaOH) prowadzi do powstania wodorotlenku cynku (Zn(OH)2), który jest nierozpuszczalny w wodzie. W reakcjach chemicznych, w których powstaje osad, takie jak ta, kluczowe jest zrozumienie zasad rozpuszczalności związków. Wodorotlenek cynku wytrąca się z roztworu, co można zobaczyć jako białe zabarwienie. Jest to ważne w wielu zastosowaniach, na przykład w chemii analitycznej do oznaczania cynku w różnych próbkach. Zastosowanie wodorotlenku cynku znajduje się także w przemyśle farmaceutycznym, kosmetycznym oraz w produkcji materiałów budowlanych. Znajomość takich reakcji jest istotna dla chemików, którzy pracują nad syntezami nowych związków oraz w procesach kontroli jakości. Zawężając się do dobrych praktyk, zawsze należy przeprowadzać te reakcje w odpowiednich warunkach laboratoryjnych, dbając o bezpieczeństwo i właściwe postępowanie z odpadami chemicznymi.

Pytanie 21

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. szarym
B. zielonym
C. żółtym
D. niebieskim
Odpowiedź 'żółty' jest prawidłowa, ponieważ zgodnie z europejskimi standardami dotyczącymi oznaczeń kolorystycznych instalacji gazowych, szczególnie w kontekście palników, kolor żółty jest używany do oznaczania instalacji związanych z gazem. Takie oznaczenie ma na celu zwiększenie bezpieczeństwa, umożliwiając łatwe zidentyfikowanie instalacji gazowych w obiektach przemysłowych oraz mieszkalnych. Praktycznie, jeśli instalacja gazowa jest pomalowana na kolor żółty, operatorzy i serwisanci mogą szybko zidentyfikować, że mają do czynienia z systemem wymagającym szczególnej uwagi, co jest kluczowe w kontekście zapobiegania awariom. Dodatkowo, w dokumentacji technicznej wielu krajów europejskich, w tym Polskim Normie PN-EN 60079, podkreśla się znaczenie użycia odpowiednich kolorów do oznaczania instalacji, co ułatwia prace konserwacyjne i serwisowe. Użycie właściwego koloru minimalizuje ryzyko pomyłek i poprawia ogólne bezpieczeństwo w miejscu pracy.

Pytanie 22

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. 5 maja 2017 roku
B. 13 maja 2017 roku
C. w kwietniu 2017 roku
D. w czerwcu 2017 roku
Odpowiedź 'w czerwcu 2017 roku' jest prawidłowa, ponieważ wskazuje na termin, w którym niezużyty odczynnik powinien być zutylizowany zgodnie z zaleceniami przedstawionymi na etykiecie. Niezbędne jest przestrzeganie dat ważności i instrukcji dotyczących utylizacji odczynników chemicznych, aby zapewnić bezpieczeństwo oraz minimalizować negatywny wpływ na środowisko. Na przykład, jeśli odczynnik został dopuszczony do użycia do czerwca 2017 roku, oznacza to, że jego skuteczność może być już obniżona, a stosowanie go po tym terminie może prowadzić do nieprzewidywalnych rezultatów w badaniach. W praktyce, laboratoria chemiczne, zgodnie z normą ISO 14001, powinny mieć wdrożone procedury zarządzania odpadami niebezpiecznymi, co obejmuje odpowiednią klasyfikację, przechowywanie oraz utylizację odczynników. Dokładne przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa pracowników oraz ochrony środowiska. Warto również pamiętać o odpowiednim dokumentowaniu wszystkich procesów związanych z utylizacją, co wspiera transparentność oraz zgodność z regulacjami prawnymi.

Pytanie 23

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. kwasu solnego
B. roztworu KMnO4 z dodatkiem kwasu solnego
C. wody destylowanej
D. płynu do zmywania naczyń
Kwas solny, nazywany też kwasem chlorowodorowym, to naprawdę mocny kwas mineralny, który świetnie radzi sobie z rozpuszczaniem różnych osadów nieorganicznych. Szczególnie dobrze działa na wodorotlenki, tlenki i węglany. W laboratoriach chemicznych używa się go do czyszczenia naczyń szklanych, bo dzięki swoim właściwościom korozyjnym skutecznie likwiduje osady, które mogą się tam zebrać po różnych reakcjach chemicznych. Na przykład, jeśli na ściankach naczyń zgromadziły się węglany w wyniku reakcji gazu z węglanami, to kwas solny sprawia, że wszystko znika. To czyni go naprawdę fajnym środkiem czyszczącym. Oczywiście trzeba pamiętać o bezpieczeństwie przy jego używaniu, bo można nim łatwo zniszczyć naczynia, dlatego korzysta się z odpowiednich stężeń i zawsze zachowuje ostrożność. Przed użyciem kwasu warto też sprawdzić, czy naczynia są na niego odporne. Właściwe obchodzenie się z kwasami i stosowanie środków ochrony osobistej to podstawa, bo jakby nie było, chodzi o bezpieczeństwo w laboratorium.

Pytanie 24

Które z poniższych działań należy wykonać przed rozpoczęciem pracy z nowym szkłem laboratoryjnym?

A. Przetrzeć szkło suchą szmatką
B. Ogrzać szkło w suszarce do 200°C bez mycia
C. Włożyć szkło do zamrażarki na 30 minut
D. Dokładnie umyć, wypłukać wodą destylowaną i wysuszyć
Przed przystąpieniem do pracy w laboratorium, odpowiednie przygotowanie szkła laboratoryjnego jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Zaleca się, aby każdy nowy element szkła został dokładnie umyty, wypłukany wodą destylowaną i następnie wysuszony. To nie jest tylko formalność – na powierzchni nowego szkła mogą pozostawać resztki środków produkcyjnych, pyłów, opiłków lub nawet tłuszczów używanych w procesie produkcji i transportu. Takie zanieczyszczenia potrafią znacząco wpłynąć na przebieg reakcji chemicznych, fałszować wyniki pomiarów czy powodować wytrącanie się niepożądanych osadów. W praktyce laboratoryjnej normą jest wieloetapowe mycie szkła: najpierw wodą z detergentem, następnie dokładne płukanie wodą z kranu, a na końcu kilkukrotne płukanie wodą destylowaną. Suszenie zapewnia, że do wnętrza próbki nie dostanie się woda o nieznanym składzie. Moim zdaniem, sumienne podejście do czystości szkła jest jedną z najważniejszych zasad pracy laboranta. Każdy zawodowiec wie, że nawet drobny brud czy mgiełka tłuszczu mogą przekreślić godziny żmudnej pracy. W wielu laboratoriach, szczególnie tych akredytowanych, są nawet specjalne protokoły przygotowania sprzętu – warto je poznać i stosować, bo to naprawdę się opłaca.

Pytanie 25

Ile masy kwasu mrówkowego jest wymagane do uzyskania 11,2 dm3 tlenku węgla(II) (w warunkach normalnych) w procesie odwodnienia kwasu mrówkowego (M = 46 g/mol) za pomocą kwasu siarkowego(VI), zakładając efektywność procesu na poziomie 70%?

A. 16,1 g
B. 32,9 g
C. 23,1 g
D. 18,6 g
Aby obliczyć masę kwasu mrówkowego potrzebnego do otrzymania 11,2 dm³ tlenku węgla(II) w warunkach normalnych, możemy skorzystać z zależności gazów doskonałych oraz stochiometrii reakcji chemicznych. W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Stąd dla 11,2 dm³ tlenku węgla(II) potrzebujemy 0,5 mola CO. Reakcja odwodnienia kwasu mrówkowego (HCOOH) przy użyciu kwasu siarkowego(VI) prowadzi do powstania tlenku węgla(II) oraz wody. Równanie reakcji chemicznej można zapisać jako: HCOOH → CO + H₂O. Z równania wynika, że 1 mol kwasu mrówkowego daje 1 mol tlenku węgla(II). Skoro potrzebujemy 0,5 mola CO, to oznacza, że potrzebujemy 0,5 mola HCOOH. Molarna masa kwasu mrówkowego wynosi 46 g/mol, więc masa potrzebnego kwasu wynosi: 0,5 mol × 46 g/mol = 23 g. Z uwagi na to, że proces ma wydajność 70%, rzeczywista masa kwasu mrówkowego, którą musimy zastosować, wynosi: 23 g / 0,7 = 32,9 g. Ta odpowiedź jest zatem prawidłowa i opiera się na standardach obliczeń chemicznych oraz praktykach laboratoryjnych, które uwzględniają wydajność reakcji. W praktyce, takie obliczenia są kluczowe w przemyśle chemicznym oraz laboratoriach badawczych.

Pytanie 26

W którym wierszu są zapisane nazwy wyłącznie rozpuszczalników palnych?

Właściwości wybranych rozpuszczalników.
RozpuszczalnikGęstość
[g/cm3]
Temperatura
wrzenia
[°C]
Temperatura
zapłonu
[°C]
Rozpuszczalność
w wodzie
[g/100 cm3]
Eter dietylowy0,7135-457
Heksan0,6660-80-230,01
Aceton0,7957-18
Benzen0,8880-110,07
Chloroform1,4961-0,82
Tetrachlorometan1,5977-0,08
Etanol0,817812
Chlorometan1,3441-2

A. Aceton, etanol, chloroform.
B. Aceton, etanol, benzen.
C. Chloroform, chlorometan, tetrachlorometan.
D. Heksan, benzen, tetrachlorometan.
Odpowiedź "Aceton, etanol, benzen" jest poprawna, ponieważ wszystkie te substancje są klasyfikowane jako łatwopalne rozpuszczalniki. Kluczowym parametrem, który pozwala na ich identyfikację, jest temperatura zapłonu. Aceton, ze swoją temperaturą zapłonu wynoszącą -18°C, etanol z 12°C oraz benzen z -11°C, charakteryzują się niskimi wartościami, co czyni je niebezpiecznymi w kontekście pożaru. W praktyce, znajomość właściwości chemicznych rozpuszczalników jest niezbędna dla bezpieczeństwa w laboratoriach oraz w przemyśle chemicznym. Właściwe magazynowanie tych substancji oraz przestrzeganie norm bezpieczeństwa, takich jak zachowanie odpowiednich odległości od źródeł zapłonu, jest kluczowe dla uniknięcia niebezpieczeństw. Przykładowo, w laboratoriach stosuje się odpowiednie pojemniki i wentylację, aby zminimalizować ryzyko wybuchu. Ponadto, znajomość tych substancji jest istotna w kontekście ochrony środowiska, ponieważ łatwopalne rozpuszczalniki mogą mieć szkodliwy wpływ na atmosferę i zdrowie ludzi, jeśli nie są odpowiednio używane lub utylizowane.

Pytanie 27

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
B. stężonym kwasem azotowym(V)
C. mieszaniną kwasów azotowego(V) oraz solnego
D. rozcieńczonym kwasem azotowym(V)
Reakcji nitrowania nie można przeprowadzać skutecznie przy użyciu wyłącznie rozcieńczonego kwasu azotowego(V), ponieważ w takim przypadku reakcja nie zachodzi z odpowiednią wydajnością. Rozcieńczony kwas azotowy ma zbyt niską stężenie, co powoduje, że nie jest w stanie dostarczyć wystarczającej ilości grup nitrowych do substratu organicznego. Z tego powodu stężony kwas azotowy jest znacznie bardziej efektywny, ale sam w sobie także nie jest wystarczający dla optymalizacji procesu, jak pokazuje praktyka. Mieszanina kwasów azotowego i siarkowego, a nie samodzielny kwas azotowy, jest standardem w chemii organicznej. Ponadto, stosowanie stężonego kwasu azotowego bez kwasu siarkowego może prowadzić do niekontrolowanych reakcji, takich jak nadmierne nitrowanie, co skutkuje powstawaniem niepożądanych produktów ubocznych. Użycie samego kwasu solnego nie tylko nie ma sensu w kontekście nitrowania, ale również może prowadzić do całkowicie innych reakcji chemicznych, co podkreśla znaczenie właściwego doboru reagentów. W praktyce, w laboratoriach i przemyśle chemicznym należy zawsze dążyć do użycia sprawdzonych metod, aby uzyskać pożądane produkty. Właściwe przygotowanie reagentów oraz kontrola warunków reakcji są kluczowe dla sukcesu procesów chemicznych.

Pytanie 28

Materiał uzyskany przez zmieszanie prób pobranych w ustalonych odstępach czasu określa się mianem próbki

A. ogólnej
B. złożonej
C. proporcjonalnej
D. ogólną okresową
Odpowiedzi "proporcjonalną", "złożoną" i "ogólną" są błędne z kilku powodów związanych z definicjami oraz kontekstem, w którym są używane. Próbka proporcjonalna odnosi się do próbki, która jest zbierana w sposób, który odzwierciedla proporcje różnych składników w populacji, lecz nie uwzględnia aspektu czasowego. Takie podejście może prowadzić do zniekształceń wyników, szczególnie w dynamicznych systemach, gdzie warunki mogą się zmieniać w czasie. Z kolei termin "złożona" używany jest w kontekście materiałów, które składają się z wielu różnych komponentów, ale niekoniecznie odnosi się do prób pobranych w określonych odstępach czasowych. Definicja ta jest zbyt ogólna i nie oddaje istoty badań o długoterminowym monitoringu. Ostatnia odpowiedź, "ogólna", również jest nieprecyzyjna, ponieważ nie wskazuje na regularność pobierania próbek, co jest kluczowe w kontekście analizy okresowej. Niezrozumienie tych subtelności może prowadzić do poważnych błędów w analizach, a także do niewłaściwych wniosków opartych na danych, które nie odzwierciedlają rzeczywistości. W kontekście badań naukowych oraz kontroli jakości, ważne jest, aby stosować odpowiednie metody pobierania próbek, które spełniają uzgodnione standardy i praktyki, aby wyniki były rzetelne i użyteczne.

Pytanie 29

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 68,5 g Na2SO4·10H2O i 131,5 g H2O
B. 22,4 g Na2SO4·10H2O i 177,6 g H2O
C. 54,4 g Na2SO4·10H2O i 145,6 g H2O
D. 56,6 g Na2SO4·10H2O i 143,4 g H2O
To jest świetny wynik! Odpowiedź 54,4 g Na2SO4·10H2O i 145,6 g H2O jest jak najbardziej trafna. Masz dobrą kontrolę nad obliczeniami związanymi z masą molową siarczanu(VI) sodu oraz stężeniem roztworu. Przypomnę, że masa molowa Na2SO4·10H2O to 322 g/mol, co można łatwo wyliczyć (2 * 23 + 32 + 10 * 18). Żeby zrobić 200 g roztworu o stężeniu 12%, potrzebujesz 24 g substancji rozpuszczonej (0,12 * 200 g). A z tej masy Na2SO4·10H2O wychodzi, że 54,4 g zawiera dokładnie 24 g Na2SO4, a reszta to woda – czyli 145,6 g H2O. W laboratoriach to naprawdę ważne, żeby umieć takie obliczenia, bo wpływają na wyniki eksperymentów. Fajnie, że się tym zajmujesz, bo dokładność to klucz w naszej pracy!

Pytanie 30

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. wodorotlenek miedzi(II)
B. tlenek miedzi(I)
C. wodorotlenek miedzi(I)
D. tlenek miedzi(II)
Dobra robota z tą odpowiedzią! Tlenek miedzi(II) (CuO) naprawdę powstaje kiedy ogrzewasz wodorotlenek miedzi(II) (Cu(OH)2), który, swoją drogą, jest tym niebieskim osadem, który dostajesz mieszając CuSO4 z NaOH. Kiedy to podgrzewasz, wodorotlenek miedzi(II) traci wodę i zamienia się w tlenek miedzi(II), który ma czarną barwę. To ciekawa reakcja, bo tlenek miedzi(II) ma sporo zastosowań – używa się go jako katalizatora w różnych reakcjach chemicznych, a także w ceramice. Na przykład, w przemyśle ceramicznym korzysta się z niego przy produkcji pigmentów, a dzięki swoim przewodzącym właściwościom, także w elektronice. Warto to rozumieć, bo nie tylko chemia analityczna na tym korzysta, ale też nauka w laboratoriach, gdzie obserwacja takich reakcji jest mega ważna.

Pytanie 31

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę wielomiarową o pojemności 25 cm3
B. pipetę jednomiarową o pojemności 20 cm3
C. pipetę jednomiarową o pojemności 10 cm3
D. cylinder miarowy o pojemności 25 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 32

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. glicerynę
B. sód
C. cynk
D. etanol
Odpowiedź 'sodu' jest prawidłowa, ponieważ sód reaguje gwałtownie z wodą, co prowadzi do wydzielania wodoru i może spowodować niebezpieczne eksplozje. Z tego powodu, podczas prac związanych z sodem, stosowanie łaźni wodnej jest całkowicie niewskazane. W praktyce, jeśli zajmujesz się sodem, powinieneś używać innych metod chłodzenia lub podgrzewania, takich jak piekarniki lub inne systemy grzewcze, które nie wchodzą w reakcję z tym pierwiastkiem. W laboratoriach chemicznych i podczas produkcji chemikaliów, standardy bezpieczeństwa, takie jak te określone przez OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), zalecają unikanie kontaktu sodu z wodą. Dlatego ważne jest, aby stosować odpowiednie materiały i metody pracy, aby uniknąć potencjalnych wypadków i zapewnić bezpieczeństwo w miejscu pracy.

Pytanie 33

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.d.a.
B. cz.
C. cz.ch.
D. techn.
Odpowiedzi "cz.ch.", "techn." oraz "cz.d.a." są błędne w kontekście pytania, ponieważ każda z tych terminologii odnosi się do innych klas substancji. Termin "cz.ch." odnosi się do substancji czystych chemicznie, które muszą spełniać wysokie standardy czystości i są używane w bardziej wymagających analizach, gdzie nawet najmniejsze zanieczyszczenia mogą wpływać na wyniki. W kontekście analiz jakościowych i ilościowych, wybór substancji czystych chemicznie w sytuacjach, gdy nie jest to wymagane, nie tylko zwiększa koszty, ale również komplikuje procedury laboratoryjne. Z kolei "techn." odnosi się do substancji technicznych, które mogą być używane w procesach przemysłowych, ale ich standardy czystości również mogą nie być odpowiednie dla analiz laboratoryjnych. Używanie takich substancji w analizach może prowadzić do zafałszowań wyników, co jest absolutnie niedopuszczalne w kontekście rzetelnych badań. Termin "cz.d.a." odnosi się do czystości dla analizy, co również oznacza wyższe wymagania dotyczące czystości, a więc nie pasuje do koncepcji substancji pomocniczych, które nie muszą spełniać tych standardów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to niepełne zrozumienie różnic w wymaganiach czystości oraz niewłaściwe przypisywanie terminów do kontekstu ich zastosowania w analizach chemicznych.

Pytanie 34

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia masy na szalce zastosowano odważniki: 10 g, 5 g, 500 mg, 200 mg, 200 mg, 50 mg, 20 mg, 10 mg oraz 10 mg. Masa substancji razem z naczynkiem wyniosła

A. 15,94 g
B. 16,04 g
C. 16,94 g
D. 15,99 g
Odpowiedź 15,99 g jest prawidłowa, ponieważ podczas ważenia substancji w naczynku wagowym, sumujemy masy odważników, które zostały użyte do zrównoważenia. W analizowanym przypadku odważniki to: 10 g, 5 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 200 mg (0,2 g), 50 mg (0,05 g), 20 mg (0,02 g), 10 mg (0,01 g) i 10 mg (0,01 g). Gdy dodamy te wartości, otrzymujemy: 10 g + 5 g + 0,5 g + 0,2 g + 0,2 g + 0,05 g + 0,02 g + 0,01 g + 0,01 g = 15,99 g. W praktyce, ważenie substancji należy przeprowadzać na dobrze skalibrowanych wagach technicznych, które powinny być regularnie poddawane kalibracji zgodnie z normami ISO 9001, aby zapewnić dokładność pomiarów. Użycie odważników o precyzyjnych wartościach jest kluczowe dla uzyskania wiarygodnych wyników, co ma ogromne znaczenie w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie niewielkie odchylenia w ważeniu mogą prowadzić do poważnych konsekwencji dla jakości produktów.

Pytanie 35

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. powodują nadmierny wzrost roślinności w zbiornikach wodnych
B. prowadzą do zakwaszenia wód
C. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
D. wykazują toksyczne działanie na organizmy żywe
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 36

Laboratoryjny aparat szklany, który wykorzystuje kwasy do wytwarzania gazów w reakcji z metalem lub odpowiednią solą, to

A. aparat Kippa
B. aparat Soxhleta
C. aparat Orsata
D. aparat Hofmanna
Aparat Kippa jest specjalistycznym narzędziem laboratoryjnym, które służy do wytwarzania gazów poprzez reakcje chemiczne, najczęściej polegające na działaniu kwasów na metale lub odpowiednie sole. Jego konstrukcja pozwala na kontrolowane wydobywanie gazu, co jest niezbędne w wielu procesach chemicznych. Kluczowym elementem tego aparatu jest jego zdolność do gromadzenia gazów w komorze, a następnie ich wydawania w sposób zorganizowany. Przykładowo, w laboratoriach chemicznych aparat Kippa jest wykorzystywany do produkcji gazu wodoru poprzez reakcję kwasu solnego z cynkiem. Stosując ten aparat, laboranci mogą utrzymać bezpieczeństwo i kontrolować ilość wytwarzanego gazu, co jest szczególnie istotne przy pracy z substancjami łatwopalnymi lub toksycznymi. Warto również podkreślić, że aparat Kippa jest zgodny z normami bezpieczeństwa i praktykami laboratoryjnymi, co czyni go niezastąpionym narzędziem w chemii analitycznej i preparatywnej.

Pytanie 37

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słaby kwas
B. mieszaninę chromową
C. słabą zasadę
D. rozpuszczalnik organiczny
Mieszanina chromowa składa się z kwasu siarkowego i dichromianu potasu, co czyni ją klasycznym środkiem do oczyszczania powierzchni zanieczyszczonych zwęglonymi osadami. Jej działanie polega na utlenianiu związków organicznych, co umożliwia ich skuteczne usunięcie. Przykładem zastosowania mieszaniny chromowej jest czyszczenie narzędzi laboratoryjnych oraz szkła laboratoryjnego, gdzie trudne do usunięcia resztki organiczne mogą zakłócać eksperymenty. W branży chemicznej stosowanie tej metody jest zgodne z najlepszymi praktykami, ponieważ nie tylko efektywnie usuwa osady, ale również minimalizuje ryzyko kontaminacji kolejnych prób. Ponadto, zgodnie z normami bezpieczeństwa, osoby pracujące z mieszanką chromową powinny stosować odpowiednie środki ochrony osobistej oraz przestrzegać zasad dotyczących zarządzania odpadami chemicznymi, aby zminimalizować wpływ na środowisko. Właściwe korzystanie z mieszaniny chromowej jest kluczowe dla osiągnięcia wysokiej jakości wyników w laboratoriach badawczych.

Pytanie 38

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. selektywny
B. grupowy
C. specyficzny
D. maskujący
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 39

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. aparat Boetiusa
B. wiskozymetr
C. kriometr
D. piknometr
Wiskozymetr to narzędzie, które służy do pomiaru lepkości cieczy, co jest naprawdę ważne w różnych branżach, jak chemia, inżynieria materiałowa czy nawet przemysł spożywczy. Lepkość to w sumie miara tego, jak bardzo ciecz opiera się zmianom. W praktyce ma to znaczenie podczas mieszania, transportu czy przerabiania cieczy. Wiskozymetry działają na różne sposoby. Na przykład, wiskozymetr kinematyczny mierzy czas, w którym ciecz przepływa przez określony przekrój, a wiskozymetr dynamiczny oblicza lepkość na podstawie siły potrzebnej do przepływu. Przykładowo, w przemyśle farmaceutycznym ważne, żeby lepkość była odpowiednia, bo to wpływa na działanie leków. W przemyśle spożywczym natomiast, lepkość ma spory wpływ na to, jak mają smakować i wyglądać produkty. Poza tym, wiskozymetry są często spotykane w laboratoriach, a metody pomiaru lepkości są nawet określone przez normy ISO.

Pytanie 40

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl
0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm3 w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.
Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
B. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
C. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
D. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
Wybrana odpowiedź jest prawidłowa, ponieważ do przygotowania wzorcowego roztworu NaCl w kolbie miarowej o pojemności 1 dm³ konieczne jest użycie wagi analitycznej o dokładności 0,0001 g oraz kolby miarowej o pojemności 1000 cm³. Waga analityczna umożliwia precyzyjne ważenie masy NaCl, co jest kluczowe w analizach chemicznych, aby uzyskać roztwór o dokładnej koncentracji. NaCl musi być dokładnie odważony, aby zapewnić, że przygotowany roztwór będzie zgodny z wymaganiami jakościowymi, ponieważ nawet niewielkie odchylenia od właściwej masy mogą prowadzić do błędów w dalszych analizach, takich jak miareczkowanie. Kolba miarowa o pojemności 1000 cm³ jest odpowiednia, ponieważ pozwala na rozpuszczenie całej masy NaCl w określonej objętości wody, co umożliwia uzyskanie jednorodnego roztworu. Tego typu procedury są standardem w laboratoriach chemicznych, co podkreśla znaczenie zachowania dokładności oraz precyzji w analizach chemicznych i bioanalitycznych, a także w pracach badawczych.