Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 22 maja 2025 22:08
  • Data zakończenia: 22 maja 2025 22:26

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dostosowanie współpracujących ze sobą w parze elementów samochodowych do wymiarów naprawczych polega na

A. wymianie jednego elementu na nowy o wymiarze naprawczym i obróbce drugiego na odpowiedni wymiar i kształt
B. obróbce obu elementów na nowe wymiary i przywróceniu każdemu z nich odpowiedniego pasowania
C. wymianie obu elementów na nowe o większych rozmiarach i kształtach
D. obróbce jednego elementu na wymiar nominalny, a drugiego na wymiar naprawczy
Wymiana jednej części na nową o wymiarze naprawczym oraz obróbka drugiej na odpowiedni wymiar i kształt to podejście zgodne z zasadami inżynierii mechanicznej i standardami naprawy podzespołów samochodowych. Tego rodzaju metoda zapewnia, że obie części będą do siebie idealnie dopasowane, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania w układzie mechanicznym. Przy wymianie części na nowe, należy zwrócić uwagę na specyfikacje producenta, aby nowa część miała odpowiednie parametry techniczne. Obróbka drugiej części na wymiar naprawczy pozwala na zachowanie jej funkcjonalności i żywotności, a także zmniejsza koszty związane z wymianą całych zestawów. W praktyce stosuje się często takie rozwiązania w przypadku elementów, które nie wymagają pełnej wymiany z przyczyn ekonomicznych lub technicznych. Dodatkowo, takie podejście minimalizuje ryzyko powstawania niezgodności w pasowaniu, co mogłoby prowadzić do awarii lub zwiększonego zużycia pozostałych podzespołów. Właściwe wykonanie tej procedury wymaga precyzyjnych narzędzi oraz umiejętności, co czyni ten proces złożonym, ale niezbędnym w branży motoryzacyjnej.

Pytanie 2

Kluczowym czynnikiem wpływającym na możliwości dalszej eksploatacji instalacji LPG jest

A. stan techniczny układu zasilania benzyną
B. stan układu chłodzenia silnika
C. ważność legalizacji butli gazowej
D. ważność okresu gwarancyjnego instalacji LPG
Ważność legalizacji butli gazowej jest kluczowym czynnikiem wpływającym na dalszą eksploatację instalacji LPG. Butle gazowe muszą być regularnie legalizowane, co jest zgodne z przepisami prawa oraz standardami bezpieczeństwa. Legalizacja polega na sprawdzeniu stanu technicznego butli oraz jej elementów, co zapewnia bezpieczeństwo użytkowania. Przykładem praktycznym jest konieczność przeprowadzenia legalizacji butli gazowej co 10 lat. W przypadku stwierdzenia nieprawidłowości, butla może zostać wycofana z eksploatacji, co w skrajnych sytuacjach może prowadzić do poważnych zagrożeń, w tym wycieków gazu. Właściwie przeprowadzona legalizacja pozwala na uniknięcie problemów związanych z bezpieczeństwem i dyskomfortem użytkowania, co jest istotne dla osób korzystających z instalacji LPG w pojazdach.

Pytanie 3

Aby nawiązać łączność pomiędzy samochodem a komputerem diagnostycznym, konieczne jest, aby pojazd był wyposażony w gniazdo

A. ADB
B. EOBD
C. EDB
D. EGR
Odpowiedź EOBD (European On-Board Diagnostics) jest poprawna, ponieważ standard ten definiuje systemy diagnostyczne stosowane w pojazdach. EOBD umożliwia komunikację między pojazdem a komputerem diagnostycznym, co pozwala na monitorowanie stanu technicznego silnika oraz innych istotnych układów. Dzięki gniazdu EOBD, mechanicy mogą odczytywać kody błędów, analizować dane w czasie rzeczywistym oraz przeprowadzać diagnostykę układów emisji spalin. W praktyce, EOBD jest standardem obowiązującym w większości nowoczesnych pojazdów sprzedanych w Europie od 2001 roku (dla samochodów osobowych) oraz od 2004 roku (dla samochodów ciężarowych). Umożliwia to nie tylko szybką identyfikację problemów, ale również przyczynia się do przestrzegania norm emisji, co ma kluczowe znaczenie w kontekście ochrony środowiska. Prawidłowe korzystanie z gniazda EOBD jest więc istotne zarówno dla diagnostyki, jak i dla spełniania wymogów prawnych związanych z emisją spalin.

Pytanie 4

Aby zweryfikować poprawność funkcjonowania sprzęgła wiskotycznego po naprawie, mechanik powinien wykonać test działania układu

A. przeniesienia napędu
B. smarowania
C. wspomagania
D. chłodzenia
Sprzęgło wiskotyczne jest kluczowym elementem w układzie napędowym, który reguluje przenoszenie momentu obrotowego pomiędzy różnymi komponentami. Jego działanie opiera się na różnicy temperatur, co powoduje zmianę lepkości czynnika roboczego wewnątrz sprzęgła. Aby upewnić się, że sprzęgło działa prawidłowo po naprawie, mechanik powinien przeprowadzić próbę chłodzenia. W trakcie tej próby zwraca się uwagę na zdolność sprzęgła do efektywnego odprowadzania ciepła, co jest kluczowe w kontekście jego wydajności i trwałości. Przykładowo, w pojazdach terenowych, gdzie sprzęgła wiskotyczne są powszechnie używane, ich prawidłowe funkcjonowanie wpływa na stabilność i przyczepność. Regularne testy chłodzenia pozwalają na monitorowanie ewentualnych usterek lub degradacji, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Właściwe chłodzenie sprzęgła wiskotycznego jest nie tylko istotne z perspektywy technicznej, ale także ma wpływ na bezpieczeństwo i komfort jazdy.

Pytanie 5

W pojeździe, w którym występuje szarpanie podczas ruszania, należy przede wszystkim zweryfikować stopień zużycia

A. elementów sprzęgła
B. silnika w związku z "wypadaniem zapłonów"
C. synchronizatora pierwszego biegu
D. układu hamulcowego (blokowanie kół)
Elementy sprzęgła są kluczowym układem w pojazdach, który umożliwia płynne przekazywanie momentu obrotowego z silnika na skrzynie biegów. Szarpanie podczas ruszania z miejsca często wskazuje na problemy z tym układem, takie jak zużycie tarcz sprzęgłowych lub niewłaściwe ustawienie pedału sprzęgła. W przypadku zużycia tarcz, ich niewłaściwe zgrzewanie może prowadzić do szarpania, ponieważ tarcze nie zaciskają się równomiernie. W praktyce, diagnozując problemy ze sprzęgłem, mechanicy często sprawdzają grubość tarcz, a także działanie łożyska oporowego, które także może wpłynąć na komfort ruszania. Dobre praktyki w diagnostyce obejmują również testowanie działania sprzęgła w różnych warunkach, co pozwala na dokładne zidentyfikowanie problemu. Warto również pamiętać o regularnym przeglądzie układu sprzęgłowego, co może zapobiec poważnym awariom w przyszłości.

Pytanie 6

Trudności w włączeniu jednego z biegów w synchronizowanej skrzyni biegów zazwyczaj są spowodowane uszkodzeniem

A. łożyskowania synchronizatora tego biegu
B. łożyskowania koła zębatego tego biegu na wałku
C. koła zębatego tego biegu
D. synchronizatora tego biegu
Synchronizator biegu w skrzyni biegów pełni kluczową rolę w procesie zmiany przełożeń, umożliwiając płynne włączanie biegów. Jego zadaniem jest dostosowanie prędkości obrotowej wałka skrzyni biegów do prędkości obrotowej koła zębatego, co eliminuje ryzyko zgrzytu podczas włączania biegu. Uszkodzenie synchronizatora, na przykład poprzez zużycie materiału ciernego lub zatarcie, prowadzi do trudności w przełączaniu biegów. Przykładem praktycznym może być sytuacja, w której kierowca próbuje włączyć drugi bieg, a skrzynia blokuje się lub wydaje nieprzyjemne dźwięki. W takim przypadku konieczna jest diagnostyka i ewentualna wymiana synchronizatora. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja elementów skrzyni biegów, w tym synchronizatorów, są kluczowe dla zapewnienia ich długotrwałej wydajności. Warto zwrócić uwagę na odpowiednią eksploatację pojazdu, co również wpływa na trwałość tych elementów.

Pytanie 7

Symbol 16V wskazuje na

A. silnik Wankla
B. silnik szesnastozaworowy
C. silnik widlasty z szesnastoma cylindrami
D. silnik rzędowy z szesnastoma cylindrami
Oznaczenie silnika 16V odnosi się do liczby zaworów w każdej głowicy cylindrów silnika, co w przypadku silników czterocylindrowych oznacza, że każdy cylinder ma po cztery zawory: dwa ssące i dwa wydechowe. Takie rozwiązanie pozwala na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną oraz efektywniejsze odprowadzanie spalin, co przekłada się na wyższą moc silnika oraz lepszą ekonomikę spalania. Silniki 16V są powszechnie stosowane w nowoczesnych pojazdach, co czyni je standardem w przemyśle motoryzacyjnym. Przykładem mogą być popularne jednostki napędowe w pojazdach marki Volkswagen czy Honda, które charakteryzują się dużą wydajnością i oszczędnością paliwa. Zastosowanie technologii 16V jest zgodne z dobrymi praktykami konstrukcyjnymi, które dążą do optymalizacji parametrów silnika. Warto również dodać, że silniki z większą liczbą zaworów mogą osiągać lepsze osiągi przy wyższych prędkościach obrotowych, co jest istotne w kontekście sportowego charakteru niektórych pojazdów.

Pytanie 8

Który z poniższych elementów jest częścią układu dolotowego samochodu?

A. Sworzeń wahacza
B. Bęben hamulcowy
C. Filtr powietrza
D. Uszczelka miski olejowej
Filtr powietrza to kluczowy element układu dolotowego w samochodzie. Jego głównym zadaniem jest oczyszczanie powietrza zasysanego do silnika z zanieczyszczeń takich jak kurz, pyłki czy inne drobne cząsteczki. Dzięki temu chroni wnętrze silnika przed przedwczesnym zużyciem i uszkodzeniami. Filtr powietrza znajduje się zazwyczaj w obudowie filtra, która jest częścią układu dolotowego, i jest umiejscowiony przed przepustnicą. W praktyce, regularna wymiana filtra powietrza jest niezbędna do zapewnienia optymalnej pracy silnika oraz ekonomii spalania. Zaniedbanie tej czynności może prowadzić do zwiększonego zużycia paliwa, spadku mocy silnika oraz potencjalnych uszkodzeń mechanicznych. Współczesne samochody są wyposażone w różne typy filtrów powietrza, w tym papierowe, bawełniane czy piankowe, każdy z nich ma swoje specyficzne właściwości i wymagania serwisowe. Filtr powietrza spełnia także rolę w redukcji emisji szkodliwych związków do atmosfery, co jest zgodne z coraz bardziej restrykcyjnymi normami ekologicznymi na całym świecie.

Pytanie 9

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h

A. 4,0 h
B. 5,0 h
C. 3,5 h
D. 4,5 h
Odpowiedź 4,5 h jest poprawna, ponieważ czas wymiany uszczelnień tłoczków hamulcowych w samochodzie Polonez 1500 został dokładnie określony w taryfikatorze czasochłonności napraw. Wymiana uszczelnień tłoczków hamulcowych z przodu zajmuje 1,5 h, a z tyłu 2 h, co razem daje 3,5 h. Dodatkowo, odpowietrzenie układu hamulcowego to kolejny proces, który wymaga dodatkowej godziny. Sumując te czasy, otrzymujemy całkowity czas naprawy wynoszący 4,5 h. W praktyce, właściwe oszacowanie czasu naprawy jest kluczowe dla efektywności pracy warsztatu, umożliwiając lepsze planowanie zadań oraz obliczanie kosztów usług. Zrozumienie taryfikatorów oraz umiejętność ich stosowania w codziennej praktyce jest niezbędne dla mechaników, by móc świadczyć usługi zgodnie z przyjętymi standardami branżowymi.

Pytanie 10

Podczas analizy kąta wyprzedzenia wtrysku paliwa, zmierzona wartość wynosiła od 7° do 12°. Powodem nieustalonej wartości kąta wyprzedzenia wtrysku paliwa może być

A. zużycie elementów napędu pompy wtryskowej
B. zbyt wysokie ciśnienie otwarcia wtryskiwacza
C. niewystarczające ciśnienie otwarcia wtryskiwacza
D. zużycie komponentów napędu układu rozrządu
Zużycie elementów napędu pompy wtryskowej jest kluczowym czynnikiem wpływającym na wartość kąta wyprzedzenia wtrysku paliwa. Wtryskiwacze w silnikach spalinowych muszą być precyzyjnie sterowane, aby zapewnić optymalną pracę silnika, a zmiany w konstrukcji lub zużycie pompy wtryskowej mogą powodować nieregularności w dostarczaniu paliwa. Kiedy napęd pompy jest uszkodzony lub zużyty, ciśnienie paliwa może się wahać, co prowadzi do zmiany kąta wyprzedzenia, a tym samym do nieefektywnego spalania. Przykładem może być sytuacja, w której pompa wtryskowa traci ciśnienie, co skutkuje opóźnionym wtryskiem paliwa i powoduje problemy z osiągnięciem wymaganej wartości kąta wyprzedzenia. Zgodnie z najlepszymi praktykami branżowymi, regularne serwisowanie elementów układu wtryskowego, w tym pompy, jest niezbędne do utrzymania optymalnej wydajności silnika oraz redukcji emisji spalin. Monitorowanie stanu tych komponentów jest kluczowe, aby zminimalizować ryzyko uszkodzeń i zapewnić długotrwałe funkcjonowanie silnika.

Pytanie 11

Luz zaworów w silniku powinno się kontrolować

A. w temperaturze silnika według wskazówek producenta
B. w temperaturze silnika wynoszącej 95°C
C. w temperaturze silnika 70°C
D. po demontażu głowicy silnika
Kontrola luzu zaworów w silniku ma kluczowe znaczenie dla prawidłowego funkcjonowania jednostki napędowej. Przeprowadzanie tej operacji przy temperaturze silnika zgodnej z zaleceniami producenta jest kluczowe, ponieważ różne materiały silnikowe mają różne współczynniki rozszerzalności cieplnej. W wyniku podgrzewania silnika, metalowe części rozszerzają się, co ma wpływ na luz zaworowy. Właściwe ustawienie luzu zaworowego zapewnia odpowiednią wydajność silnika, wpływa na jego moc oraz oszczędność paliwa. Na przykład, w przypadku silników spalinowych, niewłaściwy luz może prowadzić do zjawiska znanego jako „palenie zaworów”, które może skutkować kosztownymi naprawami. W związku z tym, bardzo ważne jest, aby zawsze odnosić się do specyfikacji producenta, które dostarczają szczegółowych informacji na temat optymalnych warunków przeprowadzania tej procedury. W praktyce, mechanicznym standardem jest przeprowadzanie kontroli luzu zaworowego po schłodzeniu silnika, a jeśli zachodzi potrzeba, to po jego nagrzaniu do określonej temperatury, co powinno być zgodne z instrukcją dostarczoną przez producenta pojazdu.

Pytanie 12

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. centralnym systemem blokady drzwi
B. skrzynką biegów
C. układem przeciwpoślizgowym
D. układem wtryskowo-zapłonowym
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 13

Common rail to system zasilania silnika o zapłonie

A. iskrowym z wtryskiem jednopunktowym
B. iskrowym
C. samoczynnym
D. iskrowym z wtryskiem wielopunktowym
System common rail to nowoczesny układ zasilania silników diesla, który pozwala na precyzyjne dawkowanie paliwa i optymalizację procesu spalania. W przeciwieństwie do tradycyjnych systemów wtryskowych, common rail umożliwia wielokrotne wtryski paliwa w trakcie jednego cyklu pracy silnika, co prowadzi do większej efektywności oraz redukcji emisji szkodliwych substancji. W silnikach z zapłonem samoczynnym, takich jak silniki diesla, paliwo jest wtryskiwane pod wysokim ciśnieniem do komory spalania, gdzie samoczynnie zapala się w wyniku wysokiej temperatury. Ten system jest szczególnie korzystny w kontekście spełniania norm emisji spalin, takich jak Euro 6, ponieważ pozwala na lepsze wymieszanie paliwa z powietrzem, co prowadzi do bardziej kompletnych procesów spalania. Przykładem zastosowania systemu common rail są nowoczesne samochody osobowe i ciężarowe, które zyskują na wydajności i ekonomice paliwowej.

Pytanie 14

Termostat uruchamia przepływ cieczy chłodzącej do dużego układu

A. gdy temperatura cieczy chłodzącej jest wysoka.
B. tuż po zapłonie silnika.
C. po uruchomieniu ogrzewania wnętrza.
D. gdy temperatura cieczy chłodzącej jest niska.
Odpowiedź, że termostat otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy chłodzącej jest wysoka, jest jak najbardziej prawidłowa. Termostaty w układach chłodzenia silnika pełnią kluczową rolę w zarządzaniu temperaturą pracy silnika. Kiedy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybsze nagrzewanie się silnika. Gdy temperatura cieczy chłodzącej osiąga określony poziom, termostat otwiera przelot do dużego obiegu, co pozwala na cyrkulację cieczy chłodzącej przez chłodnicę. To z kolei zapobiega przegrzewaniu się silnika, co jest kluczowe dla jego optymalnej pracy i żywotności. Przykładem zastosowania tej zasady są nowoczesne pojazdy, które wyposażone są w inteligentne systemy zarządzania temperaturą, które optymalizują wydajność silnika oraz emisję spalin. Dobrze działający termostat zapewnia, że silnik osiąga i utrzymuje optymalną temperaturę roboczą, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 15

Który z komponentów mechanizmu tłokowo-korbowego silnika samochodowego odpowiada za przekazywanie sił z tłoka na korbowód?

A. Główka korbowodu
B. Stopa korbowodu
C. Pierścień tłokowy
D. Sworzeń tłokowy
Sworzeń tłokowy jest kluczowym elementem mechanizmu tłokowo-korbowego, który odpowiedzialny jest za przenoszenie sił generowanych przez tłok na korbowód. Działa on jako łącznik między tłokiem a korbowodem, umożliwiając przekazywanie ruchu posuwistego tłoka na ruch obrotowy korbowodu. W praktyce, gdy mieszanka paliwowo-powietrzna ulega spaleniu, generuje znaczne ciśnienie, które działa na tłok, powodując jego ruch w dół cylindra. Ten ruch posuwisty jest następnie przenoszony przez sworzeń tłokowy, co skutkuje obrotem korbowodu. Prawidłowe działanie sworzenia tłokowego ma kluczowe znaczenie dla efektywności silnika, jego mocy i żywotności. Właściwa konstrukcja oraz montaż sworzenia tłokowego są zgodne z normami branżowymi i dobrymi praktykami, co wpływa na niezawodność całego układu. Zastosowanie odpowiednich materiałów oraz technik obróbczych zwiększa trwałość tego elementu, co jest istotne w kontekście współczesnych silników spalinowych, gdzie zwiększone obciążenia i prędkości robocze stanowią duże wyzwanie.

Pytanie 16

Jaką konfigurację silnika oznacza skrót DOHC?

A. górnozaworowy z jednym wałkiem rozrządu w głowicy
B. górnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
C. górnozaworowy z dwoma wałkami rozrządu w głowicy
D. dolnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
Odpowiedź wskazująca na górnozaworowy układ z dwoma wałkami rozrządu w głowicy (DOHC) jest poprawna, ponieważ skrót ten pochodzi z angielskiego 'Double Overhead Camshaft'. Ta konstrukcja silnika zapewnia lepsze osiągi i wyższą efektywność pracy, co jest szczególnie istotne w nowoczesnych jednostkach napędowych. Dwa wałki rozrządu umożliwiają niezależne sterowanie zaworami ssącymi i wydechowymi, co przekłada się na lepsze parametry silnika, wyższe obroty oraz efektywne spalanie mieszanki paliwowo-powietrznej. W praktyce oznacza to zwiększenie mocy i momentu obrotowego, a także redukcję emisji spalin. Konstrukcje DOHC są powszechnie stosowane w silnikach sportowych oraz w nowoczesnych samochodach osobowych, co czyni je standardem w branży motoryzacyjnej. Zastosowanie systemu VVT (Variable Valve Timing) w połączeniu z DOHC może dodatkowo zwiększyć wydajność silnika w różnych warunkach pracy, co jest zgodne z trendami w inżynierii silników. Wysoka jakość wykonania i precyzyjne dopasowanie elementów są kluczowe w tej technologii.

Pytanie 17

Popychacz w systemie rozrządu wpływa bezpośrednio na

A. chłodzenie silnika
B. spalanie paliwa
C. lubrykację silnika
D. otwieranie zaworu
Popychacz w układzie rozrządu pełni kluczową rolę w otwieraniu i zamykaniu zaworów silnika. Jego działanie jest bezpośrednio związane z cyklem pracy silnika, gdzie popychacz przekształca ruch obrotowy wału korbowego na ruch liniowy, co z kolei prowadzi do otwierania zaworów dolotowych lub wylotowych. Przykładem zastosowania popychaczy są silniki typu OHV (Overhead Valve), w których popychacze przekazują ruch z wałka rozrządu na zawory, co zapewnia precyzyjne synchronizowanie otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Właściwe działanie popychaczy jest kluczowe dla osiągnięcia optymalnej efektywności silnika, co potwierdzają standardy branżowe przy projektowaniu układów rozrządu. Dobre praktyki w tej dziedzinie obejmują regularne serwisowanie układów rozrządu oraz stosowanie komponentów zgodnych z wytycznymi producentów, co zapewnia niezawodność i wydajność silnika.

Pytanie 18

Klasyczny mechanizm różnicowy pozwala na

A. aktywowanie napędu na cztery koła.
B. prowadzenie samochodu z różnymi prędkościami obrotowymi kół napędowych.
C. płynne dostosowywanie prędkości pojazdu.
D. przeniesienie momentu obrotowego z skrzyni biegów na wał.
Klasyczny mechanizm różnicowy jest kluczowym elementem układu napędowego pojazdów, który umożliwia jazdę z różnymi prędkościami obrotowymi kół napędzanych. Jego podstawowym zadaniem jest kompensowanie różnic w prędkości obrotowej kół, co jest szczególnie istotne podczas pokonywania zakrętów. W momencie, gdy pojazd skręca, zewnętrzne koło pokonuje dłuższą drogę niż wewnętrzne, co prowadzi do różnicy w prędkości obrotowej. Mechanizm różnicowy pozwala na swobodne obracanie się kół w zależności od ich potrzeb, co zwiększa stabilność i komfort jazdy. Przykładem zastosowania mechanizmu różnicowego są samochody osobowe, które wykorzystują go do poprawy trakcji i manewrowości. Działanie to jest zgodne z najlepszymi praktykami inżynieryjnymi, które postulują efektywne wykorzystanie mocy silnika oraz zmniejszenie zużycia paliwa, a także zwiększenie bezpieczeństwa jazdy.

Pytanie 19

Podczas naprawy silnika mechanik zauważył biały dym wydobywający się z rury wydechowej. Co może być tego przyczyną?

A. Zużycie bieżnika opon
B. Przegrzanie tarcz hamulcowych
C. Uszkodzenie uszczelki pod głowicą
D. Niedrożność układu paliwowego
Biały dym wydobywający się z rury wydechowej samochodu jest często symptomem uszkodzenia uszczelki pod głowicą. Uszczelka ta znajduje się między blokiem silnika a głowicą cylindrów i pełni kluczową rolę w zapewnieniu szczelności komory spalania. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynu chłodzącego do komory spalania. Spalanie płynu chłodzącego w cylindrach prowadzi do powstawania białego dymu, który jest widoczny na zewnątrz przez rurę wydechową. Taka sytuacja jest nie tylko oznaką problemu, ale może prowadzić do poważniejszych uszkodzeń silnika, jeśli nie zostanie szybko naprawiona. Dobrą praktyką jest regularne sprawdzanie stanu uszczelki pod głowicą, szczególnie przy objawach takich jak biały dym lub nadmierne zużycie płynu chłodzącego. Wymiana uszczelki jest skomplikowanym zadaniem, które wymaga precyzji i odpowiednich narzędzi, dlatego zazwyczaj powinno być zlecone doświadczonemu mechanikowi. Warto także pamiętać o przestrzeganiu zaleceń producenta dotyczących momentów dokręcania śrub głowicy, co może zapobiec przyszłym problemom.

Pytanie 20

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 204 zł
B. 124 zł
C. 224 zł
D. 154 zł
Aby obliczyć całkowity koszt naprawy głowicy silnika, musimy uwzględnić zarówno koszty części zamiennych, jak i czas pracy mechanika. W tej sytuacji wymieniono 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę. Obliczamy koszty części: (2 x 27 zł) + (2 x 25 zł) = 54 zł + 50 zł = 104 zł. Następnie obliczamy czas potrzebny na dostarczenie zaworów. Każdy zawór wymaga 20 minut, więc dla 4 zaworów potrzebujemy 80 minut. Przeliczając to na godziny, otrzymujemy 1,33 godziny (80 minut / 60 minut). Koszt robocizny wynosi 90 zł za godzinę, więc całkowity koszt robocizny to 90 zł x 1,33 godziny = 119,7 zł. Łącząc te wartości, otrzymujemy 104 zł + 119,7 zł = 223,7 zł, co zaokrągla się do 224 zł. Zastosowanie tego typu obliczeń jest istotne w branży motoryzacyjnej, aby właściwie wyceniać usługi oraz planować budżet na ewentualne naprawy.

Pytanie 21

Reaktor katalityczny stanowi część systemu

A. napędowego
B. zasilania
C. wylotowego
D. dolotowego
Reaktor katalityczny jest kluczowym komponentem układu wylotowego w pojazdach z silnikami spalinowymi. Jego głównym zadaniem jest redukcja emisji szkodliwych substancji, takich jak tlenki azotu, węglowodory i tlenek węgla, poprzez katalityczną konwersję ich w mniej szkodliwe związki, takie jak azot i dwutlenek węgla. Przykładem zastosowania reaktora katalitycznego jest jego rola w układzie wydechowym, gdzie zachodzi reakcja chemiczna na powierzchni katalizatora. W praktyce, reaktory te współpracują z systemem monitorowania emisji, co pozwala na spełnienie norm ekologicznych, takich jak te określone w normach Euro. Dobre praktyki branżowe zalecają regularne kontrole stanu reaktora katalitycznego, aby zapewnić jego efektywność i długowieczność, co z kolei wpływa na zmniejszenie kosztów eksploatacyjnych pojazdów oraz ograniczenie ich wpływu na środowisko. Współczesne technologie wytwarzania katalizatorów, w tym rozwój katalizatorów na bazie platyny, palladu czy rod, pozwalają na osiąganie coraz lepszych parametrów redukcji emisji, co czyni reaktory katalityczne niezbędnym elementem nowoczesnych układów wydechowych.

Pytanie 22

Płyn o najwyższej temperaturze wrzenia to?

A. DOT 4
B. R3
C. DA 1
D. DOT 3
Prawidłowa odpowiedź to DOT 4, który jest płynem hamulcowym o najwyższej temperaturze wrzenia w porównaniu do innych wymienionych płynów. DOT 4 charakteryzuje się wyższą temperaturą wrzenia, wynoszącą zazwyczaj od 230 do 260°C w porównaniu do DOT 3, który ma temperaturę wrzenia od 205 do 230°C. W kontekście zastosowania płynów hamulcowych, wybór DOT 4 jest szczególnie istotny w samochodach sportowych oraz w pojazdach, które są narażone na intensywne hamowanie, ponieważ wyższa temperatura wrzenia minimalizuje ryzyko zjawiska wrzenia płynu hamulcowego, co może prowadzić do utraty skuteczności hamowania. Zgodnie z normami SAE i DOT, wybór odpowiedniego płynu powinien być zgodny z wymaganiami producenta pojazdu, co zapewnia bezpieczeństwo i efektywność systemu hamulcowego. Dodatkowo, DOT 4 jest bardziej odporny na wchłanianie wilgoci, co przekłada się na dłuższą żywotność i stabilność chemiczną.

Pytanie 23

Podejmując się głównej naprawy ciągnika siodłowego, na początku należy

A. rozłączyć naczepę z ciągnikiem
B. zdemontować ciągnik na poszczególne części
C. poddać cały pojazd czyszczeniu
D. odprowadzić płyny eksploatacyjne
Odłączenie naczepy od ciągnika siodłowego jest kluczowym krokiem przed przystąpieniem do naprawy głównej pojazdu. Właściwe procedury bezpieczeństwa nakładają obowiązek na mechaników, aby upewnili się, że pojazd jest stabilny i bezpieczny do pracy. Rozłączenie naczepy minimalizuje ryzyko przypadkowego przewrócenia się lub przesunięcia ciągnika podczas dokonywania napraw. Praktyka ta jest zgodna z ogólnymi standardami BHP w warsztatach mechanicznych, które podkreślają znaczenie zabezpieczenia pojazdu przed nieautoryzowanym ruchem. Dodatkowo, brak naczepy ułatwia dostęp do silnika oraz układów mechanicznych, co jest niezbędne do przeprowadzenia dokładnej inspekcji oraz wymiany podzespołów. Zgodnie z dobrą praktyką, przed rozpoczęciem jakiejkolwiek pracy, mechanik powinien również sprawdzić, czy pojazd jest odpowiednio zablokowany, co dodatkowo zwiększa bezpieczeństwo pracy. Znajomość procedur oraz stosowanie się do nich jest nie tylko zalecane, ale wręcz niezbędne dla zapewnienia efektywności oraz bezpieczeństwa w warsztacie.

Pytanie 24

Jakie substancje wykorzystuje się do konserwacji przegubów krzyżakowych?

A. oleju silnikowego
B. smaru stałego
C. oleju przekładniowego
D. silikonu
Użycie oleju silnikowego do smarowania przegubów krzyżakowych jest niewłaściwe, ponieważ tego typu olej nie jest przystosowany do pracy w warunkach dużego obciążenia i nie zapewnia wystarczającej przyczepności do metalowych powierzchni. Oleje silnikowe mają tendencję do spływania, co prowadzi do niewystarczającego zabezpieczenia przed korozją i zużyciem. Zastosowanie oleju przekładniowego również nie jest odpowiednie, ponieważ jego formuła nie została zaprojektowana z myślą o długotrwałym smarowaniu przegubów. Oleje te, mimo że są doskonałe do smarowania przekładni, mogą nie utrzymywać się na powierzchniach przegubów w wystarczającej ilości. Silikon, będący materiałem stosowanym głównie jako uszczelniacz, nie nadaje się do smarowania mechanicznemu. Jego właściwości nie są odpowiednie do redukcji tarcia w ruchomych częściach, co może prowadzić do szybszego zużycia mechanizmów. Typowym błędem przy wyborze środka smarnego jest zakładanie, że wszystkie oleje i smary działają podobnie, co nie jest prawdą. Właściwy wybór środka do smarowania jest kluczowy dla zapewnienia długotrwałej i niezawodnej pracy mechanizmów.

Pytanie 25

Proces ładowania akumulatora, który został rozładowany, powinien trwać aż do momentu pojawienia się "gazowania" oraz osiągnięcia napięcia na ogniwie, które wynosi

A. 2,00 Y
B. 2,20 Y
C. 1,75 Y
D. 2,40 Y
Odpowiedź 2,40 V jest prawidłowa, ponieważ jest to wartość napięcia, przy której akumulator kwasowo-ołowiowy osiąga stan pełnego naładowania. W trakcie ładowania akumulatorów ważne jest, aby monitorować napięcie, ponieważ przekroczenie wartości 2,40 V na ogniwie może prowadzić do gazowania, co oznacza, że ​​elektrolit zaczyna się rozkładać na wodór i tlen. To zjawisko jest nie tylko nieefektywne, ale także może być niebezpieczne z uwagi na możliwość powstania mieszaniny wybuchowej. W praktyce, gdy akumulator osiąga napięcie 2,40 V, można uznać, że jest w pełni naładowany i gotowy do użycia. Dobrą praktyką jest również stosowanie ładowarek z funkcją automatycznego wyłączania, które zapobiegają przeładowaniu. Wartości te są zgodne z normami IEC oraz SAE, które definiują procedury ładowania akumulatorów kwasowo-ołowiowych, co dodatkowo potwierdza poprawność tej odpowiedzi.

Pytanie 26

Jakim narzędziem dokonujemy pomiaru średnicy czopa głównego wału korbowego?

A. mikrometrem
B. sprawdzianem pierścieniowym
C. średnicówką trójpunktową
D. czujnikiem zegarowym
Mikrometr jest narzędziem pomiarowym o wysokiej precyzji, które umożliwia dokładne mierzenie średnicy czopa głównego wału korbowego. Jego konstrukcja, oparta na śrubie mikrometrycznej, pozwala na odczyt wartości z dokładnością do 0,01 mm, co jest kluczowe w zastosowaniach motoryzacyjnych i mechanicznych, gdzie tolerancje wymiarowe są bardzo ograniczone. Mikrometry są powszechnie stosowane do pomiaru średnic wałów, co zapewnia ich odpowiednią jakość oraz precyzyjne dopasowanie w silnikach. W praktyce, użycie mikrometru polega na umieszczeniu narzędzia wokół czopa i delikatnym dokręceniu śruby, aż do momentu, gdy mikrometr zacznie stawiać opór. Odczyt na skali mikrometru dostarcza bezpośrednich informacji o średnicy. Dodatkowo, mikrometry są kalibrowane zgodnie z normami ISO, co zapewnia ich wiarygodność w procesie pomiarowym. W przypadku pomiaru średnicy czopa głównego wału, dokładność oraz precyzja oferowane przez mikrometr są nieodzowne, aby uniknąć błędów, które mogłyby prowadzić do niewłaściwego montażu lub uszkodzenia silnika.

Pytanie 27

Na podstawie tabeli oblicz koszt wymiany świec zapłonowych w 4-cylindrowym silniku systemu DOHC 16 V, jeżeli czynność zajmuje 45 minut.

Nazwa części / usługiKwota [zł]
szlifowanie głowicy70,00
świeca zapłonowa30,00
wymiana prowadnicy 1 zaworu15,00
prowadnica zaworu10,00
1 roboczogodzina120,00

A. 240,00 zł
B. 570,00 zł
C. 210,00 zł
D. 120,00 zł
Poprawna odpowiedź wynika z dokładnego obliczenia kosztów związanych z wymianą świec zapłonowych. Koszt świec zapłonowych wynosi 30,00 zł za sztukę. W przypadku 4-cylindrowego silnika, potrzebujemy 4 świec, co daje łączny koszt zakupu wynoszący 120,00 zł. Następnie, musimy uwzględnić koszt robocizny. Czas wymiany wynosi 45 minut, co w przeliczeniu na godziny daje 0,75 godziny. Stawka za godzinę pracy wynosi 120,00 zł, co przekłada się na koszt robocizny równy 90,00 zł. Sumując oba koszty (120,00 zł za świece i 90,00 zł za robociznę), otrzymujemy 210,00 zł. Warto zwrócić uwagę, że przy obliczeniach należy zawsze uwzględniać zarówno koszt materiałów, jak i robocizny, co jest zgodne z ogólnymi zasadami kalkulacji kosztów w branży motoryzacyjnej.

Pytanie 28

Określając natężenie prądu podczas ładowania akumulatora za pomocą prostownika sieciowego, jakie czynniki powinny być brane pod uwagę?

A. nominalny prąd rozruchowy
B. elektryczną pojemność akumulatora
C. nominalne napięcie akumulatora
D. maksymalny prąd rozładowania
Maksymalny prąd rozładowania, nominalny prąd rozruchowy oraz nominalne napięcie akumulatora to parametry, które mogą być mylnie uznawane za kluczowe przy ustalaniu natężenia prądu ładowania. Maksymalny prąd rozładowania odnosi się do maksymalnej wartości prądu, jaką akumulator może dostarczyć podczas rozładowania, co nie ma bezpośredniego wpływu na proces ładowania. W rzeczywistości, zbyt wysokie natężenie prądu podczas ładowania może prowadzić do uszkodzenia akumulatora, a nie do jego efektywnego zasilania. Nominalny prąd rozruchowy określa wartość prądu potrzebnego do uruchomienia silnika, co również nie jest wskaźnikiem dla procesu ładowania. Jego znaczenie jest ograniczone do momentów, gdy akumulator jest używany w układach rozruchowych. Nominalne napięcie akumulatora, mimo że jest istotnym parametrem, nie odzwierciedla całkowitej pojemności akumulatora i nie powinno być jedynym czynnikiem decydującym o natężeniu prądu ładowania. Niestety, ignorowanie elektrycznej pojemności akumulatora i opieranie się na tych innych parametrach może prowadzić do przeładowania lub niewystarczającego naładowania, co w dłuższej perspektywie skutkuje skróceniem żywotności akumulatora oraz zwiększeniem ryzyka awarii. Dlatego zrozumienie i uwzględnienie pojemności akumulatora jest niezbędne dla zapewnienia jego optymalnego działania oraz bezpieczeństwa podczas ładowania.

Pytanie 29

W jakich jednostkach mierzy się pojemność akumulatora?

A. amperogodzinach [Ah]
B. amperach [A]
C. omach [Ohm]
D. woltach [V]
Pojemność akumulatora mierzona jest w amperogodzinach [Ah], co odzwierciedla jego zdolność do przechowywania energii elektrycznej. Jedno amperogodzina oznacza, że akumulator może dostarczać prąd o natężeniu 1 ampera przez 1 godzinę. W praktyce oznacza to, że im większa pojemność akumulatora, tym dłużej może on zasilać urządzenia elektryczne. W kontekście zastosowań, akumulatory o dużej pojemności są wykorzystywane w systemach zasilania awaryjnego, pojazdach elektrycznych oraz w magazynach energii odnawialnej, takich jak systemy fotowoltaiczne. W branży akumulatorowej stosowane są standardy, takie jak IEC 61960, które definiują metody testowania pojemności akumulatorów oraz ich cykli ładowania i rozładowania. Zrozumienie pojemności akumulatora jest kluczowe dla projektowania systemów zasilania, gdyż pozwala na odpowiednie skalowanie urządzeń do wymagań energetycznych.

Pytanie 30

Aby zlikwidować wyciek płynu hamulcowego z cylindra zacisku hamulcowego, należy wykonać

A. naciśnięcie tłoczka głębiej do cylindra
B. wymianę pierścienia uszczelniającego
C. użycie smaru do uszczelnienia
D. dodanie dodatkowej uszczelki
Wymiana pierścienia uszczelniającego jest kluczowym krokiem w usuwaniu wycieków płynu hamulcowego z cylindra zacisku hamulcowego. Pierścienie uszczelniające pełnią istotną funkcję w zapewnieniu szczelności układu hamulcowego, a ich uszkodzenie może prowadzić do niepożądanych wycieków, co z kolei może wpływać na skuteczność hamowania. Gdy pierścień uszczelniający jest zużyty lub uszkodzony, jego wymiana jest jedynym sposobem na przywrócenie prawidłowej funkcji zacisku. W praktyce, aby wymienić pierścień uszczelniający, należy zdjąć zacisk hamulcowy, co może wymagać demontażu kół i zasięgnięcia do odpowiednich narzędzi, takich jak klucze i szczypce. Ważne jest, aby przed rozpoczęciem wymiany upewnić się, że nowy pierścień uszczelniający jest zgodny z zaleceniami producenta. Wymiana pierścienia uszczelniającego jest zgodna z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwację układu hamulcowego w celu zapewnienia bezpieczeństwa pojazdu. W sytuacjach, gdy mamy do czynienia z nieszczelnościami, natychmiastowa reakcja i zastosowanie odpowiednich metod naprawczych mogą zapobiec poważniejszym uszkodzeniom układu hamulcowego oraz zagrożeniu podczas jazdy.

Pytanie 31

Gdzie znajduje zastosowanie sprzęgło wielotarczowe typu Haldex?

A. w klasycznym układzie napędowym
B. w przednim zblokowanym układzie napędowym
C. w tylnym zblokowanym układzie napędowym
D. w układzie napędowym z napędem na cztery koła
Sprzęgło wielotarczowe typu Haldex jest kluczowym elementem w układach napędowych z napędem na cztery koła (4WD), które pozwala na dynamiczne zarządzanie momentem obrotowym między osiami. Jego działanie opiera się na hydraulice oraz elektronicznej kontroli, co umożliwia włączanie napędu na tylne koła w odpowiedzi na zmieniające się warunki drogowe i obciążenie. Przykładem zastosowania sprzęgła Haldex są pojazdy marki Audi, Volkswagen i Seat, gdzie zapewnia ono optymalną trakcję w różnych warunkach, takich jak jazda po śniegu czy błocie. Dzięki technologii Haldex, pojazdy mogą efektywniej rozdzielać moc silnika, co prowadzi do lepszej stabilności oraz bezpieczeństwa. Ponadto, sprzęgło to jest zgodne z najlepszymi praktykami branżowymi, które kładą nacisk na komfort jazdy oraz wydajność energetyczną, a jego konstrukcja umożliwia szybką reakcję na pojawiające się sytuacje, co znacząco zwiększa kontrolę nad pojazdem. W związku z tym, sprzegło Haldex stanowi doskonały przykład innowacji w dziedzinie motoryzacji, łącząc zaawansowaną technologię z praktycznymi rozwiązaniami.

Pytanie 32

Materiał charakteryzujący się dużym współczynnikiem przewodzenia ciepła

A. szybko się nagrzewa i szybko chłodzi.
B. szybko się nagrzewa i długo chłodzi.
C. długo się nagrzewa i długo chłodzi.
D. długo się nagrzewa i szybko chłodzi.
Materiał o wysokim współczynniku przewodnictwa ciepła charakteryzuje się zdolnością do szybkiego przekazywania energii cieplnej. Odpowiedź "szybko się nagrzewa i szybko stygnie" jest poprawna, ponieważ takie materiały, jak metale (np. miedź, aluminium), mają zdolność do błyskawicznego wchłaniania ciepła i równie szybkie oddawanie go do otoczenia. Przykładem może być wykorzystanie miedzi w produkcji wymienników ciepła w systemach grzewczych i chłodniczych, gdzie efektywność wymiany ciepła jest kluczowa. Wysoka przewodność cieplna materiału jest istotna w zastosowaniach inżynierskich, takich jak budowa elektroniki, gdzie szybkie odprowadzanie ciepła od komponentów elektronicznych zapobiega ich przegrzewaniu i wydłuża żywotność urządzeń. Dobre praktyki w projektowaniu systemów termicznych z wykorzystaniem materiałów o wysokiej przewodności cieplnej obejmują również odpowiedni dobór grubości materiałów oraz ich obróbkę, co pozwala na maksymalne wykorzystanie ich właściwości. Przykłady zastosowań w przemyśle samochodowym to układy chłodzenia silników, gdzie zastosowanie materiałów o wysokim współczynniku przewodnictwa cieplnego znacząco wpływa na efektywność całego systemu.

Pytanie 33

Z załączonej normy zużycia materiałów eksploatacyjnych wynika, że roczne zużycie oleju silnikowego (bez jego wymiany) pojazdu który przejechał 12 000 km wyniosło

Norma zużycia materiałów eksploatacyjnych
podzespół- silnik
Rodzaj materiałuOlej silnikowy
Pojemność miski olejowej8 l
Norma zużycia na 1000 km0,5 l
Czasokres wymiany1 0000 km

A. 8,51
B. 6,01
C. 14,01
D. 8,01
Wybór innej odpowiedzi mógł wynikać z tego, że nie zrozumiałeś norm dotyczących zużycia oleju. Odpowiedzi jak 8,01 czy 14,01 wyglądają na nadmierne, co może być typowym błędem osób, które nie są na bieżąco z branżowymi standardami. Często ludzie nie zdają sobie sprawy, że zużycie oleju nie zawsze jest liniowe i zależy od różnych czynników, jak typ silnika czy warunki jazdy. Normy zużycia opierają się na danych uzyskanych w praktyce i obejmują różne scenariusze, więc nie można zakładać, że wyższe przebiegi zawsze oznaczają wyższe zużycie oleju. Warto też pamiętać, że niektóre samochody mają lepsze systemy smarowania, co może prowadzić do mniejszego zużycia. Kluczowe jest opieranie się na danych i normach, by lepiej prognozować potrzeby serwisowe i zarządzać eksploatacją pojazdów.

Pytanie 34

Po wykonaniu próby olejowej i ponownym zmierzeniu ciśnienia sprężania zauważono, że ciśnienie w jednym z cylindrów pozostało bez zmian. Co najprawdopodobniej jest uszkodzone w tym cylindrze?

A. Pierścień tłokowy.
B. Uszczelka głowicy.
C. Gładź cylindra.
D. Gniazdo zaworowe.
W przypadku braku zmiany ciśnienia w cylindrze, wielu mechaników może pomyśleć, że problem leży w uszczelce głowicy, pierścieniach tłokowych lub gładzi cylindra. Jednakże, uszczelka głowicy jest odpowiedzialna za uszczelnienie pomiędzy głowicą a blokiem silnika, a jej uszkodzenie prowadzi do wycieku płynów chłodzących lub oleju, co w praktyce zazwyczaj wiąże się z zauważalnym spadkiem ciśnienia, a nie jego brakiem. Podobnie, pierścienie tłokowe pełnią kluczową rolę w utrzymywaniu ciśnienia w cylindrze, a ich uszkodzenie prowadzi do spadku ciśnienia sprężania i widocznego dymu z układu wydechowego, co również nie znajduje odzwierciedlenia w zjawisku braku zmian ciśnienia. Gładź cylindra, z kolei, odpowiada za właściwe prowadzenie tłoka, a jej zużycie również objawia się spadkiem ciśnienia sprężania. W związku z tym, koncentrowanie się na tych elementach może prowadzić do błędnych diagnoz i niepotrzebnych napraw, a kluczowe jest zrozumienie, że w przypadku braku zmiany ciśnienia w cylindrze, najprawdopodobniejszym problemem są właśnie nieszczelności w gniazdach zaworowych. Wiedza na temat prawidłowego funkcjonowania tych komponentów oraz ich wzajemnych relacji jest niezbędna dla skutecznej diagnostyki i naprawy silnika.

Pytanie 35

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. awaria pompy olejowej
B. uszkodzenie uszczelki pod głowicą
C. zużycie czopów wału korbowego
D. zbyt duże zanieczyszczenie filtra oleju
Uszkodzenie uszczelki pod głowicą jest jedną z najczęstszych przyczyn wzrostu poziomu oleju w silniku. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynów chłodniczych do komory spalania lub do układu smarowania. Płyn chłodniczy, który dostaje się do silnika, może powodować zubożenie oleju lub jego nadmiar z powodu zjawiska emulgacji, co prowadzi do wzrostu poziomu oleju. W praktyce, mechanik powinien regularnie sprawdzać uszczelki oraz wykonywać testy ciśnienia, aby wykryć potencjalne nieszczelności. Dobre praktyki w zakresie konserwacji silnika obejmują również korzystanie z oleju i płynów chłodniczych o odpowiednich parametrach, co ma kluczowe znaczenie dla długowieczności silnika. Rekomendowane jest również regularne przeprowadzanie inspekcji wizualnych, które mogą pomóc w wczesnym wykryciu problemów z uszczelką pod głowicą, co może zapobiec poważniejszym uszkodzeniom silnika.

Pytanie 36

Zanim przystąpimy do analizy geometrii kół kierowanych, należy przede wszystkim

A. zablokować koło kierownicy
B. zablokować pedał hamulca
C. sprawdzić ciśnienie w ogumieniu
D. sprawdzić stopień tłumienia amortyzatorów
Sprawdzenie ciśnienia w ogumieniu przed przystąpieniem do diagnostyki geometrii kół jest kluczowym krokiem, który zapewnia prawidłowe ustawienie geometrii pojazdu. Niewłaściwe ciśnienie w oponach może prowadzić do nieprawidłowego zużycia opon oraz wpływać na stabilność i bezpieczeństwo jazdy. Standardy branżowe zalecają, aby ciśnienie w oponach było dostosowane do wartości określonych przez producenta pojazdu, co można znaleźć na etykietach umieszczonych na drzwiach lub w instrukcji obsługi. Przykładem praktycznego zastosowania tej wiedzy jest sytuacja, gdy kierowca zauważa nierównomierne zużycie bieżnika. W takim przypadku, zanim przeprowadzi się diagnostykę geometrii, zaleca się sprawdzenie ciśnienia, ponieważ niewłaściwe wartości mogą być przyczyną problemów z ustawieniem kół. Regularne kontrolowanie ciśnienia w oponach nie tylko wpływa na bezpieczeństwo, ale także na wydajność paliwową pojazdu, co jest istotne w kontekście zrównoważonego rozwoju motoryzacji.

Pytanie 37

Który z objawów sugeruje potrzebę wymiany amortyzatora na nowy?

A. Pulsowanie pedału hamulca w trakcie hamowania
B. Wibracje kierownicy podczas rozpoczynania jazdy
C. Widoczne skrócenie drogi hamowania
D. Ślady wycieków na obudowie
Jak widać, ślady wycieków na obudowie amortyzatora to poważna sprawa. To znak, że czas wymienić ten element. Amortyzatory są mega ważne, bo zapewniają komfort jazdy i stabilność samochodu. Ich głównym zadaniem jest tłumienie drgań, które pojawiają się, gdy jedziemy po nierównościach. Jeżeli zauważysz, że coś przecieka, to znaczy, że uszczelnienia są już do wymiany, a to prowadzi do utraty oleju w środku. A to nie jest dobre, bo jak oleju brakuje, to amortyzacja działa słabiej. To może wpłynąć na prowadzenie samochodu, zwłaszcza w zakrętach, gdzie nagle zauważysz, że coś jest nie tak. Dlatego, gdy zauważysz wycieki, lepiej wymienić amortyzator jak najszybciej. W końcu bezpieczeństwo jest najważniejsze. Branżowe standardy, jak te od SAE, mówią o tym, jak ważne są regularne przeglądy, żeby wychwycić problemy zanim staną się poważne.

Pytanie 38

Kompletne oddzielenie współdziałających elementów za pomocą środka smarowego ma miejsce

A. w momencie tarcia płynnego
B. w trakcie docierania wstępnego
C. w przypadku tarcia suchego
D. w sytuacji tarcia granicznego
Tarcie płynne to coś, co dobrze znasz. W takim stanie wszystkie części są oddzielone smarem, co jest super ważne. Smar nie tylko zmniejsza tarcie, ale też tworzy warstwę ochronną, która chroni przed bezpośrednim kontaktem. To naprawdę kluczowe, żeby urządzenia działały długo i bez problemów. Na przykład w silnikach spalinowych olej silnikowy robi dokładnie to, tworzy film ochronny i zmniejsza zużycie części. Jak korzystasz z oleju, warto zwrócić uwagę na oznaczenia, takie jak API, bo to daje pewność, że wszystko działa jak należy. Regularna wymiana oleju i dobór smarów zgodnych z zaleceniami producenta jest mega istotne, żeby zminimalizować ryzyko awarii, które mogą się zdarzyć, jeśli tarcie będzie źle dobrane. W końcu, tarcie płynne to temat, który naprawdę ma znaczenie w inżynierii mechanicznej, bo wpływa na efektywność i trwałość maszyn.

Pytanie 39

Typowy układ napędowy samochodu składa się

A. z silnika umiejscowionego z tyłu pojazdu, napędzane są koła tylne
B. z silnika umiejscowionego z przodu pojazdu, napędzane są koła tylne
C. z silnika umiejscowionego z tyłu pojazdu, napędzane są koła przednie
D. z silnika umiejscowionego z przodu pojazdu, napędzane są koła przednie
Klasyczny układ napędowy, w którym silnik jest umieszczony z przodu pojazdu, a napędzane są koła tylne, jest najbardziej powszechnym rozwiązaniem w motoryzacji. Tego typu układ, często określany jako RWD (Rear Wheel Drive), zapewnia lepszą równowagę masy pojazdu, co przekłada się na lepsze właściwości jezdne, zwłaszcza podczas dynamicznej jazdy. W sytuacjach, gdy pojazd jest obciążony, silnik umieszczony z przodu generuje dodatkową masę nad tylnymi kołami, co zwiększa przyczepność. Przykłady pojazdów z takim układem to wiele modeli sportowych i luksusowych, takich jak BMW serii 3 czy Mercedes-Benz klasy C. Tego rodzaju układ jest również preferowany w pojazdach terenowych, gdzie napęd na tylną oś zapewnia lepszą kontrolę w trudnym terenie. W praktyce, układ RWD umożliwia bardziej efektywne przekazywanie mocy na drodze i lepszą stabilność podczas zakrętów, co jest istotne w kontekście bezpieczeństwa i komfortu jazdy.

Pytanie 40

Częścią systemu chłodzenia nie jest

A. czujnik temperatury
B. przekładnia ślimakowa
C. termostat
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia, ponieważ jej główną funkcją jest przekazywanie momentu obrotowego i zmiana kierunku obrotów w mechanizmach napędowych, a nie chłodzenie silników czy innych elementów maszyny. W układzie chłodzenia kluczowe są komponenty takie jak pompa wody, która cyrkuluje płyn chłodzący, czujnik temperatury, który monitoruje temperaturę płynu, oraz termostat, który reguluje przepływ płynu chłodzącego w zależności od temperatury silnika. Przekładnie ślimakowe znajdują zastosowanie w różnych dziedzinach, ale nie w układach chłodzenia, co podkreśla ich specyfikę i zastosowanie w przekładniach mechanicznych. W praktyce, zastosowanie przekładni ślimakowej może być widoczne w napędach elektrycznych lub w mechanizmach, gdzie istotne jest uzyskanie dużego przełożenia przy małych wymiarach konstrukcyjnych.