Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 marca 2025 21:14
  • Data zakończenia: 23 marca 2025 21:25

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Reagenty o najwyższej czystości to reagenty

A. czyste.
B. spektralnie czyste.
C. czyste do badań.
D. chemicznie czyste.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.

Pytanie 2

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 390,5 g
B. 584,1 g
C. 469,3 g
D. 210,0 g
Odpowiedzi 390,5 g, 584,1 g i 210,0 g są błędne ze względu na nieprawidłowe założenia dotyczące ilości wody związanej w siarczanie(VI) miedzi(II). W przypadku siarczanu(VI) miedzi(II)·5H2O, istotna jest znajomość proporcji mas molowych obu związków. Typowym błędem jest oszacowanie masy uwodnionej soli bez uwzględnienia, że każda cząsteczka CuSO4·5H2O zawiera pięć cząsteczek wody, co znacznie zwiększa masę potrzebną do uzyskania konkretnej ilości soli bezwodnej. Osoby wykorzystujące niepoprawne dane mogą nie brać pod uwagę, że proces suszenia prowadzi do utraty masy, co wymaga precyzyjnych obliczeń, aby uniknąć niedoboru lub nadmiaru materiałów. Jednym z typowych błędów myślowych jest mylenie mas molowych z masami rzeczywistymi, co prowadzi do próby oszacowania masy bez uwzględnienia proporcji. Dlatego kluczowe jest zrozumienie związków chemicznych oraz ich właściwości fizycznych, aby przeprowadzać odpowiednie obliczenia w laboratorium i poprawnie przygotowywać roztwory oraz substancje chemiczne.

Pytanie 3

Odpady, które w przeważającej mierze składają się z osadów siarczków metali ciężkich, nazywa się

A. toksyczne, palne
B. stałe, palne
C. bardzo toksyczne, niepalne
D. stałe, niepalne
Klasyfikacja odpadów jako stałe, palne, stałe, niepalne czy toksyczne, palne, wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów odpadowych. Odpady z osadami siarczków metali ciężkich są zdecydowanie niebezpieczne, jednak nie można ich zakwalifikować jako palne. Substancje te, ze względu na swoje chemiczne właściwości, nie ulegają zapłonowi w tradycyjnym sensie, co wyklucza klasyfikację jako palne. Klasyfikowanie tych odpadów jako stałe, palne, może prowadzić do błędnych praktyk w zarządzaniu odpadami, gdzie niewłaściwe metody unieszkodliwienia mogłyby skutkować poważnymi konsekwencjami dla zdrowia publicznego i środowiska. Podejście to ignoruje również istotne regulacje prawne, które wymagają stosowania odpowiednich metod zarządzania odpadami niebezpiecznymi. Z kolei klasyfikacja jako stałe, niepalne czy toksyczne, palne, może nie uwzględniać pełnej gamy zagrożeń związanych z obecnością metali ciężkich, które są bardzo toksyczne i nie powinny być lekceważone. Błędne rozumienie kategorii odpadowych może prowadzić do niewłaściwych działań, takich jak niewłaściwe składowanie czy transport, co stwarza dodatkowe ryzyko zanieczyszczenia środowiska. Dlatego kluczowe jest, aby przy klasyfikacji odpadów kierować się odpowiednimi normami, które uwzględniają wszystkie aspekty ich wpływu na zdrowie ludzi oraz środowisko.

Pytanie 4

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
B. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
C. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
D. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
Wybrana odpowiedź jest prawidłowa, ponieważ dokładnie odpowiada wymaganym materiałom do analizy kwasowości mleka zgodnie z ustaloną procedurą. Pipeta jednomiarowa o pojemności 25 cm3 jest kluczowym narzędziem do precyzyjnego odmierzania próbki mleka, co jest niezbędne dla zachowania dokładności wyniku analizy. Kolba stożkowa o pojemności 300 cm3 pozwala na rozcieńczenie próbki mleka z wodą destylowaną, co jest istotne dla uzyskania właściwej reakcji podczas miareczkowania. Biureta służy do precyzyjnego dozowania odczynnika w procesie miareczkowania, co jest standardem w laboratoriach chemicznych, a cylinder miarowy o pojemności 25 cm3 umożliwia dokładne odmierzenie wody destylowanej. Zastosowanie tych narzędzi zgodnie z dobrą praktyką laboratoryjną zapewnia wiarygodność wyników i powtarzalność analiz, co jest niezwykle istotne w kontekście kontroli jakości produktów mleczarskich.

Pytanie 5

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. wzrost ciśnienia może spowodować wybuch
B. może to zwiększyć jej toksyczność
C. istnieje ryzyko zalania palnika
D. może wystąpić niebezpieczeństwo zgaszenia płomienia
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 6

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. koagulacji
B. krystalizacji
C. destylacji
D. filtracji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 7

Gęstość próbki cieczy wyznacza się przy użyciu

A. spektrofotometru
B. piknometru
C. refraktometru
D. biurety
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. niebieskim
B. żółtym
C. zielonym
D. szarym
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 11

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 10 g KCl i 200 g wody
B. 5 g KCl i 200 g wody
C. 10 g KCl i 190 g wody
D. 20 g KCl i 180 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 12

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. względny
B. bezwzględny
C. przypadkowy
D. systematyczny
Błąd bezwzględny to różnica między średnim wynikiem pomiarów a wartością rzeczywistą, która jest stałą wartością odniesienia. Ta miara błędu dostarcza informacji o tym, jak daleko od rzeczywistej wartości znajduje się wartość zmierzona. Przykładowo, jeśli w eksperymencie zmierzono długość obiektu wynoszącą 10 cm, a rzeczywista długość obiektu wynosi 9,5 cm, błąd bezwzględny wynosi 0,5 cm. Obliczenia błędu bezwzględnego są istotne w różnych dziedzinach, takich jak inżynieria, nauki przyrodnicze czy jakość produkcji, gdzie precyzyjność pomiarów jest kluczowa dla uzyskania wiarygodnych wyników. Błędy bezwzględne są również stosowane do oceny sprzętu pomiarowego, gdzie standardy takie jak ISO 9001 podkreślają znaczenie dokładności i precyzji w procesach pomiarowych. Poprawne identyfikowanie błędów bezwzględnych pozwala na podejmowanie działań korygujących, co jest niezbędne dla utrzymania wysokiej jakości procesów produkcyjnych oraz rzetelności badań naukowych.

Pytanie 13

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 11,2 dm3
B. 4,48 dm3
C. 2,24 dm3
D. 22,4 dm3
W przypadku analizy objętości gazu, kluczowe jest zrozumienie, jak molowość substancji wpływa na objętość, jaką zajmuje w danych warunkach. Podstawowym błędem w kilku z niepoprawnych odpowiedzi jest nieprawidłowe zastosowanie zasad dotyczących gazów. Odpowiedzi, które wskazują na 22,4 dm³, 4,48 dm³ oraz 11,2 dm³, wynikają z niezrozumienia liczby moli i ich konwersji na objętość gazu. Odpowiedź 22,4 dm³ sugeruje, że mówimy o całym molu gazu, a nie o 0,1 mola, co jest kluczowe w tym kontekście. W rzeczywistości, tylko 1 mol amoniaku zajmuje 22,4 dm³, a 1,7 g amoniaku to jedynie 0,1 mola. Podobnie, objętości 4,48 dm³ i 11,2 dm³ można uznać za wyniki nieprawidłowych obliczeń, gdzie mogły być pomieszane ilości moli lub zastosowane niewłaściwe przeliczniki. W praktyce, aby uniknąć takich błędów, ważne jest dokładne zrozumienie stoichiometrii reakcji chemicznych oraz umiejętność pracy z jednostkami miary. Często błędy te wynikają z pośpiechu lub nieuwagi podczas rozwiązywania problemów, co w kontekście chemicznym jest szczególnie istotne, gdyż niewłaściwe dane mogą prowadzić do niebezpiecznych sytuacji w laboratoriach i przemyśle.

Pytanie 14

Metoda przygotowania próbki do badania, która nie jest

A. stapianie
B. miareczkowanie
C. spopielenie
D. mineralizacja
Miareczkowanie nie jest metodą przygotowania próbki do analizy, ponieważ jest to technika analityczna służąca do określenia stężenia substancji w roztworze. W procesie miareczkowania dodaje się roztwór o znanym stężeniu do próbki, która zawiera substancję analizowaną, aż do osiągnięcia punktu końcowego reakcji. Przykładem zastosowania jest analiza zawartości kwasu w roztworze, gdzie miareczkowanie kwasu solnego roztworem wodorotlenku sodu pozwala na precyzyjne określenie jego stężenia. W praktyce stosuje się miareczkowanie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Aby miareczkowanie było efektywne, laboratoria powinny stosować odpowiednie metody kalibracji i prowadzić staranną dokumentację, co jest zgodne z wytycznymi ISO 17025 dotyczących akredytacji laboratoriów.

Pytanie 15

Przy transporcie próbek wody zaleca się, aby próbki były

A. zakwaszone do pH < 6
B. schłodzone do temperatury 2 - 5°C
C. narażone na działanie światła
D. zalkalizowane
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 16

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. kwas
B. czerwień metylowa
C. roztwór wodorowęglanu potasu
D. woda destylowana
Czerwony metylowy, wodorowęglan potasu oraz woda destylowana nie są titrantami w kontekście miareczkowania opisanego w pytaniu. Czerwień metylowa jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości roztworu, jednak nie bierze udziału w samym procesie miareczkowania jako reagent. Używa się jej jedynie do wizualizacji końca miareczkowania, co jest istotne dla interpretacji wyników, ale nie wpływa na reakcję chemiczną, która się odbywa. Wodorowęglan potasu jest substancją, którą miareczkujemy, a nie titrantem; jego rola jest pasywna, jako że reaguje z kwasem, a nie dostarcza go do roztworu. Woda destylowana służy jedynie jako rozpuszczalnik, ułatwiający rozprowadzenie wodorowęglanu potasu w kolbie, ale sama w sobie nie ma roli reagenta w miareczkowaniu. Zrozumienie ról różnych substancji w procesie miareczkowania jest kluczowe, aby prawidłowo przeprowadzać eksperymenty chemiczne. Umiejętność ta wymaga znajomości nie tylko reagujących substancji, ale również mechanizmów reakcji oraz odpowiednich wskaźników, co pozwala na uzyskanie dokładnych wyników analitycznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. KNO3
B. Cu(NO3)2
C. Al(NO3)3
D. AgNO3
Odpowiedzi, które proponują wykorzystanie KNO3, Cu(NO3)2 lub Al(NO3)3 jako reagentów do wykrywania jonów chlorkowych, są nieprawidłowe z kilku powodów. KNO3, czyli azotan potasu, nie ma zdolności do tworzenia osadów z jonami chlorkowymi. Jego główną rolą jest dostarczanie jonów potasu i azotanowych, które w kontekście badania chlorków nie dają żadnych informacji o ich obecności w próbce. W przypadku Cu(NO3)2, azotanu miedzi(II), reakcja z jonami chlorkowymi również nie prowadzi do powstania osadu, a jego zastosowanie w analizie chemicznej wiąże się z innymi reakcjami, które nie są związane z identyfikacją chlorków. Z kolei Al(NO3)3, azotan glinu, jest reagentem, który reaguje z innymi anionami, ale nie wykazuje specyficzności dla jonów chlorkowych, co czyni go nieprzydatnym w tym kontekście. W kontekście analizy chemicznej, ważne jest, aby stosować reagenty, które reagują selektywnie z poszukiwanymi jonami. Użycie niewłaściwych reagentów może prowadzić do błędnych wniosków i zafałszowania wyników analizy. Zrozumienie specyficznych reakcji chemicznych oraz ich zastosowania jest kluczowe w laboratoriach, aby unikać typowych pułapek analitycznych, które mogą wynikać z nieodpowiednio dobranych reagentów.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Roztwór amoniaku o stężeniu 25% nie powinien być trzymany

A. pod sprawnie działającym wyciągiem.
B. w butelce z ciemnego szkła.
C. w pobliżu otwartego ognia.
D. z dala od źródeł ciepła i promieni słonecznych.
Roztwór amoniaku o stężeniu 25% jest substancją chemiczną, która może być niebezpieczna, zwłaszcza w przypadku kontaktu z wysoką temperaturą lub otwartym ogniem. Amoniak ma niską temperaturę zapłonu i może łatwo ulegać zapłonowi w obecności źródeł ciepła, co prowadzi do ryzyka pożaru czy nawet wybuchu. Dlatego przechowywanie go w pobliżu otwartego ognia jest wysoce niewłaściwe i niezgodne z zasadami BHP. W laboratoriach, w których stosuje się substancje chemiczne, istotne jest przestrzeganie norm bezpieczeństwa, takich jak OSHA (Occupational Safety and Health Administration) czy EU REACH, które podkreślają konieczność przechowywania substancji chemicznych w odpowiednich warunkach, z dala od niebezpiecznych źródeł. Przykładowo, amoniak powinien być przechowywany w chłodnym, dobrze wentylowanym pomieszczeniu, w szczelnych pojemnikach, a nie w miejscach, gdzie mogą występować źródła zapłonu. Zrozumienie i przestrzeganie tych zasad nie tylko zwiększa bezpieczeństwo w laboratorium, ale także przyczynia się do ochrony zdrowia pracowników oraz środowiska.

Pytanie 21

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
B. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
C. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
D. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
Wybór odpowiedzi dotyczącej probówki nr 3 jako roztworu wodorotlenku sodu jest poprawny z kilku powodów. Uniwersalny papier wskaźnikowy to narzędzie, które zmienia kolor w zależności od pH roztworu. W przypadku wodorotlenku sodu, który jest silnym zasadowym elektrolitem, kątem pH może osiągać wartości powyżej 12, co powoduje, że papier zmienia kolor na niebieski. Fenoloftaleina, również stosowana w tym przypadku, zmienia kolor na malinowy w pH powyżej 8,2, co dodatkowo potwierdza obecność wodorotlenku sodu. W praktyce, umiejętność identyfikacji substancji na podstawie ich odczynu jest niezbędna w laboratoriach chemicznych, gdzie konieczne jest precyzyjne określenie właściwości chemicznych roztworów. Zgodnie z dobrymi praktykami, stosowanie wskaźników pH jest kluczowe w procesach analitycznych, a ich interpretacja pozwala na właściwe dobieranie reagentów w dalszych etapach eksperymentu.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. wysuszyć
B. wyprażyć
C. zważyć
D. przemyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 24

Wskaż prawidłowo dobrany sposób kalibracji i zastosowanie szkła miarowego.

Nazwa naczyniaSposób kalibracjiZastosowanie
A.kolba miarowaExdo sporządzania roztworów mianowanych o określonej objętości
B.cylinder miarowyExdo sporządzania roztworów mianowanych o określonej objętości
C.pipeta MohraExdo odmierzania określonej objętości cieczy
D.biuretaIndo odmierzania określonej objętości cieczy

A. A.
B. D.
C. C.
D. B.
Wybór innych opcji niż C wskazuje na nieprawidłowe zrozumienie metod kalibracji i zastosowania narzędzi miarowych. Kolby miarowe, na przykład, są zaprojektowane do kalibracji metodą In, gdzie odczytywana jest objętość cieczy na wewnętrznej krawędzi menisku. Użycie kolby miarowej do precyzyjnych pomiarów wymaga znajomości jej zastosowania, co może prowadzić do błędów, jeśli zostanie użyta zamiast pipety Mohra. Cylindry miarowe oferują większą objętość, ale ich kalibracja również opiera się na odczycie wewnętrznej krawędzi menisku, co czyni je mniej idealnymi do precyzyjnych pomiarów objętości. Biurety są narzędziem do titracji, a ich kalibracja i zastosowanie są inne niż w przypadku pipety Mohra. Typowe błędy myślowe obejmują brak zrozumienia różnicy między metodami kalibracji oraz nieodpowiednie przypisanie narzędzi do ich zastosowania. Kluczowe jest zrozumienie, że wybór odpowiedniego narzędzia pomiarowego w laboratorium ma zasadnicze znaczenie dla uzyskania dokładnych i wiarygodnych wyników, co jest zgodne z normami jakości i standardami branżowymi. Brak tej wiedzy może prowadzić do poważnych błędów w analizach chemicznych lub biotechnologicznych.

Pytanie 25

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Zwiększenia temperatury wrzenia cieczy
B. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
C. Uniknięcia miejscowego przegrzewania się cieczy
D. Obniżenia temperatury wrzenia cieczy
Kamyczki wrzenne, znane też jako rdzenie wrzenia, są naprawdę ważne, gdy chodzi o zapobieganie przegrzewaniu się cieczy. Działają na zasadzie zwiększania powierzchni, na której zachodzi wrzenie, co w efekcie pozwala na równomierne rozprowadzenie temperatury. Gdyby nie one, mogłyby powstawać pęcherzyki pary, które czasem wybuchają i mogą prowadzić do niebezpiecznych sytuacji, takich jak gwałtowny wzrost ciśnienia. Dlatego użycie kamyczków wrzennych jest w laboratoriach czy w chemii naprawdę istotne, ponieważ pozwala na lepszą kontrolę temperatury i uzyskanie wiarygodnych wyników. Na przykład w destylacji, stabilne wrzenie jest kluczem do efektywnego oddzielania różnych składników. Można powiedzieć, że to standardy jak ISO 17025 to potwierdzają – mówią, jak ważne jest to dla jakości i bezpieczeństwa badań.

Pytanie 26

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Destylacja.
B. Sedymentacja.
C. Dekantacja.
D. Filtracja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. zobojętniania
B. redoks
C. wytrącania osadu
D. hydrolizy
Odpowiedź 'zobojętniania' jest prawidłowa, ponieważ podczas reakcji pomiędzy kwasem solnym (HCl) a zasadowym roztworem sodowym (NaOH) dochodzi do neutralizacji, co jest klasycznym przykładem reakcji zobojętniania. W tej reakcji protony (H+) z kwasu reagują z jonami hydroksylowymi (OH-) z zasady, tworząc cząsteczki wody (H2O) oraz sól (NaCl). Proces ten jest fundamentalny w chemii analitycznej, szczególnie w titracji, gdzie precyzyjne określenie stężenia kwasu czy zasady jest kluczowe. Stosując mianowany roztwór NaOH do titracji HCl, uzyskujemy dokładny wynik, który jest niezbędny w laboratoriach do opracowywania roztworów o znanym stężeniu. Reakcje zobojętnienia są powszechnie wykorzystywane w różnych dziedzinach, w tym w przemyśle chemicznym, farmaceutycznym oraz w produkcji żywności, aby kontrolować pH i zapewnić właściwe warunki dla procesów chemicznych.

Pytanie 30

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 78,3%
B. 19,6%
C. 36,8%
D. 39,2%
W przypadku stężeń procentowych, zrozumienie roli gęstości oraz stężenia molowego jest kluczowe dla prawidłowego oszacowania wartości procentowych. Odpowiedzi wskazujące na błędne wartości stężenia często wynikają z pomyłek w obliczeniach lub nieodpowiedniego zastosowania definicji stężenia. Niezrozumienie, że stężenie procentowe odnosi się do masy substancji w stosunku do masy całego roztworu, może prowadzić do błędnych wyników. Na przykład, niektóre odpowiedzi mogły powstać poprzez pomieszanie jednostek, takich jak gęstość i stężenie molowe, co jest powszechnym błędem w obliczeniach chemicznych. Ponadto, pomijanie przeliczeń masy do stężenia procentowego nie tylko prowadzi do błędnych wniosków, ale także może wpływać na całkowity wynik eksperymentu. W praktyce laboratoryjnej niezbędne jest zrozumienie, że błędne założenia dotyczące masy roztworu lub objętości mogą znacznie zafałszować wyniki. Dlatego kluczowe jest przestrzeganie dobrych praktyk przy obliczaniu stężeń, w tym dokładne ważenie substancji oraz stosowanie odpowiednich wzorów do obliczeń, aby uniknąć pomyłek i uzyskać wiarygodne dane eksperymentalne.

Pytanie 31

W tabeli przedstawiono wymiary, jakie powinny mieć oznaczenia opakowań substancji niebezpiecznych.
Korzystając z informacji w tabeli, określ minimalne wymiary, jakie powinno mieć oznaczenie dla cysterny o pojemności 32840 dm3.

Pojemność opakowaniaWymiary (w centymetrach)
Nieprzekraczająca 3 litrówco najmniej 5,2 x 7,4
Ponad 3 litry, ale nieprzekraczająca 50 litrówco najmniej 7,4 x 10,5
Ponad 50 litrów, ale nieprzekraczająca 500 litrówco najmniej 10,5 x 14,8
Ponad 500 litrówco najmniej 14,8 x 21,0

A. 10,5 x 14,8 cm
B. 5,2 x 7,4 cm
C. 14,8 x 21,0 cm
D. 7,4 x 10,5 cm
Wybór niewłaściwego wymiaru oznaczenia opakowań substancji niebezpiecznych, takiego jak "7,4 x 10,5 cm" czy "5,2 x 7,4 cm", wskazuje na niepełne zrozumienie wymagań dotyczących oznakowania transportu niebezpiecznych materiałów. W przypadku cysterny o pojemności 32840 dm³, istotne jest, aby wymiary oznaczenia były wystarczająco duże, by zapewnić ich czytelność i widoczność z odpowiedniej odległości. Oznaczenia te muszą być zgodne z międzynarodowymi standardami, które jednoznacznie określają minimalne wymagania dla różnych pojemności. Mniejsze wymiary, takie jak te wskazane w błędnych odpowiedziach, mogą prowadzić do sytuacji, w której oznaczenia są niewidoczne lub nieczytelne w sytuacjach awaryjnych, co z kolei naraża życie ludzi i środowisko na niebezpieczeństwo. Ponadto, nieprzestrzeganie tych norm może skutkować konsekwencjami prawnymi dla przewoźników i przedsiębiorstw zajmujących się transportem substancji niebezpiecznych. Znajomość tych regulacji jest kluczowa dla zapewnienia bezpieczeństwa i ochrony zdrowia publicznego, dlatego ważne jest, aby zawsze stosować się do ustalonych wymagań i standardów.

Pytanie 32

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Utrwalanie.
B. Liofilizację.
C. Oznaczanie wilgoci.
D. Wstępne suszenie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 33

Aby oddzielić mieszankę etanolu i wody, konieczne jest przeprowadzenie procesu

A. ekstrakcji
B. dekantacji
C. destylacji
D. sączenia
Destylacja jest procesem fizycznym, który wykorzystuje różnice w temperaturach wrzenia składników mieszaniny do ich rozdzielenia. W przypadku etanolu i wody, etanol ma niższą temperaturę wrzenia (78,37 °C) w porównaniu do wody (100 °C). Podczas destylacji podgrzewamy mieszaninę, aż etanol zacznie parować, a następnie skraplamy pary, zbierając czysty etanol. Proces ten jest powszechnie stosowany w przemyśle chemicznym oraz w produkcji alkoholu, gdzie oczyszcza się etanol od niepożądanych substancji. Destylacja jest również kluczowym procesem w laboratoriach chemicznych, gdzie czystość substancji ma ogromne znaczenie. Warto zaznaczyć, że dobór odpowiednich sprzętów, takich jak kolumna destylacyjna, może znacząco wpłynąć na efektywność rozdzielania. W praktyce, destylacja jest uważana za jedną z najważniejszych metod separacji w chemii, szczególnie w kontekście tworzenia czystych reagentów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie czynniki wpływają na zmiany jakościowe w składzie próbki?

A. składu biologicznego próbki.
B. lokalizacji pobrania.
C. przeprowadzonych analiz.
D. wiedzy i umiejętności próbobiorcy.
Wybór zleconych badań jako czynnika determinującego zmiany jakościowe w składzie próbki jest mylący, ponieważ zlecenia odnoszą się do procedur badawczych, a nie do samej próbki. Zlecenia definiują cele badań i metodykę, ale nie wpływają bezpośrednio na jakość czy skład próbki. Podobnie, miejsce poboru próbki może mieć znaczenie w kontekście kontaminacji lub zmienności środowiskowej, jednak nie jest kluczowym czynnikiem wpływającym na zmiany jakościowe w składzie próbki, które są przede wszystkim rezultatem procesów zachodzących wewnątrz próbki. Z kolei wiedza i umiejętności próbobiorcy są istotne dla zapewnienia rzetelności i powtarzalności wyników badań, ale same w sobie nie determinują zmian jakościowych. Kluczowe jest zrozumienie, że zmiany jakościowe wynikają z interakcji składników biologicznych, które są podstawą składu próbki. Takie myślenie pozwala uniknąć typowych błędów, takich jak skupienie się na aspektach proceduralnych zamiast na naturze samej próbki. Zrozumienie biologicznych i chemicznych właściwości składników próbek jest niezbędne do prawidłowej analizy i interpretacji wyników, dlatego należy kierować się w badaniach głębszymi podstawami naukowymi, a nie jedynie wytycznymi czy formalnymi zleceniami.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. średni
B. twardy
C. częściowy
D. miękki
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 39

Jednym z sposobów oddzielania jednorodnych mieszanin jest

A. sedymentacja
B. dekantacja
C. filtracja
D. destylacja
Destylacja to naprawdę ważna metoda, jeśli chodzi o rozdzielanie mieszanin jednorodnych. Działa to tak, że różne składniki mają różne temperatury wrzenia. Fajnie sprawdza się to szczególnie w cieczy, gdzie te różnice są wyraźne. W praktyce, destylacja ma wiele zastosowań, zwłaszcza w przemyśle chemicznym, petrochemicznym i farmaceutycznym. Na przykład, podczas produkcji etanolu z fermentacji, destylacja pomaga oddzielić alkohol od wody i innych substancji. W branży chemicznej korzysta się z niej do oczyszczania rozpuszczalników, a w przemyśle naftowym do separacji różnych frakcji ropy naftowej. Metoda destylacji frakcyjnej jest super, bo pozwala skupić się na skutecznym rozdzielaniu skomplikowanych mieszanin na poszczególne składniki. To wszystko jest zgodne z normami przemysłowymi, które wymagają, żeby produkty końcowe były czyste i żeby proces był jak najbardziej efektywny.

Pytanie 40

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 384,6 g lodu i 115,4 g chlorku amonu.
B. 375,0 g lodu i 125,0 g chlorku sodu.
C. 250,0 g wody i 250,0 g rodanku amonu.
D. 384,6 g wody i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.