Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 26 maja 2025 00:22
  • Data zakończenia: 26 maja 2025 00:41

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Naważkę NaOH o masie 0,0400 g rozpuścić w małej ilości wody, a następnie przelać ten roztwór do kolby miarowej o pojemności 500 cm3 i uzupełnić kolbę miarową wodą do tzw. kreski. Masa molowa NaOH wynosi 40,0 g/mol. Jakie jest stężenie molowe przygotowanego roztworu?

A. 2,000 mol/dm3
B. 0,200 mol/dm3
C. 0,020 mol/dm3
D. 0,002 mol/dm3
Aby obliczyć stężenie molowe sporządzonego roztworu wodorotlenku sodu (NaOH), należy najpierw obliczyć liczbę moli substancji. Masa wodorotlenku sodu wynosi 0,0400 g, a jego masa molowa to 40,0 g/mol. Liczba moli NaOH wynosi zatem: n = m/M = 0,0400 g / 40,0 g/mol = 0,001 mol. Roztwór został rozcieńczony do objętości 500 cm³, co odpowiada 0,500 dm³. Stężenie molowe (C) obliczamy ze wzoru: C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Wstawiając wartości, otrzymujemy: C = 0,001 mol / 0,500 dm³ = 0,002 mol/dm³. Takie obliczenia są fundamentalne w chemii analitycznej i stosowane są w laboratoriach do przygotowywania roztworów o znanym stężeniu. Znajomość stężeń molowych jest kluczowa w reakcjach chemicznych, szczególnie w kontekście analizy ilościowej oraz w procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów ma kluczowe znaczenie dla jakości produktów końcowych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 0,18 mol/dm3
B. 18,02 mol/cm3
C. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
D. 18,02 mol/dm3
Odpowiedź 18,02 mol/dm3 jest poprawna, ponieważ obliczenie stężenia molowego kwasu siarkowego(VI) można przeprowadzić na podstawie jego stężenia wagowego oraz gęstości. Kwas siarkowy(VI) o stężeniu 96% oznacza, że w 100 g roztworu znajduje się 96 g kwasu siarkowego. Molarność (stężenie molowe) obliczamy dzieląc liczbę moli substancji przez objętość roztworu w litrach. W przypadku kwasu siarkowego molarność obliczamy przez zdefiniowanie masy molowej, która wynosi 98 g/mol (H: 1 g/mol, S: 32 g/mol, O: 16 g/mol × 4 = 64 g/mol). Zatem obliczamy ilość moli w 96 g: 96 g / 98 g/mol = 0,98 mol. Aby obliczyć objętość roztworu, używamy gęstości: 100 g / 1,84 g/cm3 = 54,35 cm3 = 0,05435 dm3. Teraz możemy obliczyć stężenie molowe: 0,98 mol / 0,05435 dm3 = 18,02 mol/dm3. Takie obliczenia są niezwykle istotne w praktyce chemicznej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla wyników eksperymentów oraz procesów przemysłowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
B. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
C. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
D. kolby miarowej, tygla, pipety, naczynka wagowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 6

Który z wskaźników nie jest używany w alkacymetrii?

A. Oranż metylowy
B. Fenoloftaleina
C. Skrobia
D. Błękit tymolowy
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 0,5 g
B. 0,02 g
C. 50 g
D. 2 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Próbka, której celem jest ustalenie poziomu składników, dla których oznaczenia przygotowane przez różne laboratoria są niezgodne, to próbka

A. jednostkowa
B. do badań
C. rozjemcza
D. laboratoryjna
Wybór odpowiedzi związanych z terminami "do badań", "laboratoryjna" oraz "jednostkowa" wskazuje na nieporozumienie dotyczące specyfiki próbki rozjemczej. Próbka do badań odnosi się ogólnie do materiału, który ma być poddany analizie, bez ukierunkowania na rozwiązywanie problemów związanych z niezgodnością wyników. Termin ten jest zbyt ogólny i nie odnosi się bezpośrednio do sytuacji, w której różne laboratoria mają odmienne wyniki analityczne. Próbka laboratoryjna również nie jest terminem wskazującym na jej charakterystykę rozjemczą, a raczej definiuje, że próbka jest analizowana w warunkach laboratoryjnych, co nie musi mieć związku z jej reprezentatywnością. Z kolei próbka jednostkowa odnosi się do konkretnego, jednorazowego pomiaru lub analizy, co w praktyce nie uwzględnia procesów porównawczych między różnymi wynikami analitycznymi. Często można spotkać się z błędnym myśleniem, że wszystkie próbki stosowane w laboratoriach mają podobne funkcje, co prowadzi do zafałszowanych wniosków i niewłaściwego podejścia do analizy danych. W rzeczywistości, niezgodności wyników mogą wynikać z wielu czynników, takich jak różnice w metodach analitycznych, przygotowaniu próbek czy stosowanych technologiach, co czyni użycie próbki rozjemczej niezbędnym krokiem w procesie zapewniania jakości i zgodności.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. z polietylenu
B. ze szkła krzemowego
C. ze szkła borokrzemowego
D. ze szkła sodowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 14

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 0,001%
B. 0,01%
C. 0,1%
D. 1%
Wybór wartości 1% jako wielkości próby może wydawać się na pierwszy rzut oka rozsądny, jednak przekracza powszechnie akceptowane standardy w zakresie pobierania próbek. W praktyce, pobieranie próbki w takiej ilości może prowadzić do nieproporcjonalnych strat materiałowych oraz do potencjalnego wprowadzenia błędu systematycznego w analizach. W przypadku materiałów o dużej zmienności, pobranie 1% może skutkować nieodpowiednią reprezentatywnością próbki, co z kolei prowadzi do błędnych wniosków na temat jakości całej partii. Podobnie, wartości takie jak 0,001% i 0,01% są zbyt małe, aby zapewnić odpowiedni poziom dokładności i reprezentatywności próbki. Przykładowo, gdy próbka jest zbyt mała, istnieje ryzyko, że nie odda ona właściwości fizykochemicznych całego materiału, co jest niezgodne z zasadami statystyki prób. Warto zwrócić uwagę, że procesy pobierania próbek powinny być zgodne z wytycznymi norm ISO 2859-1, które sugerują, że optymalna wielkość próbki powinna być określona na podstawie wielkości całej partii oraz jej jednorodności. Stąd, dobór 0,1% jako wartości standardowej w wielu branżach, zwłaszcza tam, gdzie jakość i bezpieczeństwo są kluczowe, jest rozsądnym podejściem, które minimalizuje ryzyko błędów związanych z nieodpowiednią próbą.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Naczynia miarowe o kształcie rurek poszerzonych w środku, z wąskim i wydłużonym dolnym końcem, przeznaczone do pobierania i transportowania cieczy o ściśle określonej objętości, to

A. cylindry
B. wkraplacze
C. biurety
D. pipety
Pipety to takie fajne naczynka, które trzymamy w laboratoriach, żeby dokładnie mierzyć i przenosić różne płyny. Mają specjalną budowę - szerszą część w środku i wąski koniec, co ułatwia nam nalewanie cieczy w ściśle określonych ilościach. Korzysta się z nich w wielu dziedzinach, jak chemia czy biologia, a nawet w medycynie i farmacji. Na przykład, w biologii molekularnej pipety są super do przenoszenia małych ilości chemikaliów, które potem wykorzystujemy w reakcjach PCR. W labach często używamy pipet automatycznych, bo to pozwala na jeszcze dokładniejsze pomiary i szybszą pracę. A pojemności pipet są różne, więc możemy dobrać odpowiednią do naszych potrzeb. Ważne, żeby dobrze korzystać z tych narzędzi, czyli pamiętać o kalibracji i stosować się do wskazówek producenta - to naprawdę robi różnicę.

Pytanie 17

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
B. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
C. rozpuszczanie jodku potasu w wodzie
D. rozpuszczanie azotanu(V) amonu w wodzie
Rozpuszczanie jodku potasu w wodzie, czy azotanu(V) amonu, to przykłady procesów endotermicznych. To znaczy, że wciągają one ciepło z otoczenia. W przypadku jodku potasu, to, że energia potrzebna do przełamania wiązań soli jest większa, powoduje, że temperatura spada. Podobnie jest z azotanem, gdzie też temperatura roztworu spada, bo pochłania energię. Czasem to może być mylące, bo reakcje wyglądają intensywnie, ale ich charakter energetyczny jest inny. Jeśli chodzi o rozcieńczanie stężonych roztworów, takich jak tiosiarczan(VI) sodu, to ten proces nie jest egzotermiczny i nie generuje za dużo energii. W przemyśle chemicznym ważne jest, żeby rozumieć, co się dzieje z energią w reakcjach chemicznych, żeby móc przewidywać i kontrolować, co się stanie. Brak wiedzy o egzotermicznych i endotermicznych procesach może prowadzić do niebezpieczeństw w laboratoriach, gdzie nieodpowiednie rozcieńczanie chemikaliów może skutkować niekontrolowanymi reakcjami. Dlatego ważne, żeby edukować się w kwestiach bezpieczeństwa chemicznego.

Pytanie 18

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. etanol
B. glicerynę
C. sód
D. cynk
Odpowiedź 'sodu' jest prawidłowa, ponieważ sód reaguje gwałtownie z wodą, co prowadzi do wydzielania wodoru i może spowodować niebezpieczne eksplozje. Z tego powodu, podczas prac związanych z sodem, stosowanie łaźni wodnej jest całkowicie niewskazane. W praktyce, jeśli zajmujesz się sodem, powinieneś używać innych metod chłodzenia lub podgrzewania, takich jak piekarniki lub inne systemy grzewcze, które nie wchodzą w reakcję z tym pierwiastkiem. W laboratoriach chemicznych i podczas produkcji chemikaliów, standardy bezpieczeństwa, takie jak te określone przez OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), zalecają unikanie kontaktu sodu z wodą. Dlatego ważne jest, aby stosować odpowiednie materiały i metody pracy, aby uniknąć potencjalnych wypadków i zapewnić bezpieczeństwo w miejscu pracy.

Pytanie 19

Gdzie należy przechowywać cyjanek potasu KCN?

A. w pojemniku, z dala od źródeł ciepła
B. w szczelnie zamkniętym eksykatorze
C. w stalowej szafie, zamkniętej na klucz
D. w warunkach chłodniczych
Przechowywanie cyjanku potasu (KCN) w stalowej szafie zamkniętej na klucz jest kluczowym aspektem zapewnienia bezpieczeństwa w laboratoriach i miejscach pracy, ponieważ jest to substancja silnie toksyczna. Właściwe przechowywanie tego związku chemicznego minimalizuje ryzyko przypadkowego kontaktu z osobami nieuprawnionymi oraz zapobiega przypadkowemu uwolnieniu substancji do otoczenia. Stalowe szafy przeznaczone do przechowywania substancji niebezpiecznych muszą być zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), które nakładają obowiązki dotyczące ochrony zdrowia i środowiska. Przykładem dobrej praktyki jest stosowanie systemów monitorowania, które informują o ewentualnych nieprawidłowościach w temperaturze czy wilgotności w miejscu przechowywania. Umożliwia to wczesne wykrywanie zagrożeń oraz odpowiednie działania w celu ich minimalizacji, co jest niezbędne w zarządzaniu substancjami chemicznymi o wysokim ryzyku. Ponadto, regularne szkolenia pracowników z zakresu obsługi substancji niebezpiecznych wspierają kulturę bezpieczeństwa w organizacji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(III) z azotu
B. kwasu azotowego(IV) z azotu
C. kwasu azotowego(V) z azotu
D. kwasu azotowego(II) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 24

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. czysty do analizy
B. techniczny
C. czysty
D. spektralnie czysty
Odczynnik chemiczny oznaczany jako "techniczny" jest substancją, w której domieszki stanowią od 1 do 10% całkowitej masy. To definiuje jego szersze zastosowanie w przemyśle, ponieważ odczynniki techniczne często nie są wymagane do wysokiej czystości, ale muszą spełniać określone normy jakościowe. Na przykład, w laboratoriach chemicznych odczynniki techniczne mogą być stosowane w procesach, gdzie nie jest konieczne użycie substancji czystych do analizy. Często wykorzystywane są w syntezach chemicznych, produkcji farb, lakierów czy w kosmetykach. Zgodnie z normą ISO 9001, przedsiębiorstwa muszą dążyć do stosowania odpowiednich standardów jakości, co obejmuje również stosowanie odczynników technicznych, które muszą być odpowiednio oznakowane oraz dokumentowane. Dzięki temu można zapewnić ich właściwe użycie w procesach produkcyjnych oraz badawczych, co podkreśla znaczenie znajomości właściwych klas substancji chemicznych.

Pytanie 25

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. rozpoczęciu reanimacji
B. wyniesieniu osoby poszkodowanej na świeże powietrze
C. zwilżeniu zimną wodą czoła i karku
D. rozpoczęciu resuscytacji
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 26

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,740 g
B. 27,745 g
C. 27,740 g
D. 22,745 g
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W celu przeprowadzenia opisanego doświadczenia, należy przygotować:

Opis procesu wydzielenia kwasu acetylosalicylowego z tabletek
Pięć rozgniecionych tabletek aspiryny (polopiryny) umieszcza się w kolbie stożkowej o pojemności 100 ml, dodaje 10 ml etanolu i ogrzewa na łaźni wodnej, aż do momentu rozpadnięcia się tabletek. W roztworze znajduje się kwas acetylosalicylowy, natomiast masa tabletkowa pozostaje w osadzie. Osad ten odsącza się na ogrzanym lejku szklanym zaopatrzonym w sączek karbowany. Do odebiornego przesączu dodaje się 20-30 ml zimnej wody destylowanej. Dodatek wody powoduje wypadanie osadu aspiryny z roztworu (zmniejsza się rozpuszczalność aspiryny w roztworze wodno-alkoholowym). Wydzielone kryształy odsączyć na lejku sitowym i suszyć na powietrzu.

A. polopirynę, metanol, kolbę stożkową 100 ml, łaźnię wodną, bagietkę, lejek szklany, termometr.
B. aspirynę etanol, kolbę stożkową 250 ml, łaźnię wodną, lejek metalowy do sączenia na gorąco, bagietkę, pompkę wodą, cylinder miarowy.
C. etopirynę, stężony kwas siarkowy, etanol, kolbę ssawkową lejek sitowy, pompkę wodną, eksykator, cylinder miarowy, moździerz.
D. aspirynę, moździerz, etanol, kolbę stożkową 100 ml, łaźnię wodną, lejek szklany, kolbę ssawkową, lejek sitowy, sączek karbowany.
Odpowiedź jest poprawna, ponieważ opisany proces eksperymentalny rzeczywiście wymaga użycia aspiryny, która jest substancją czyną w tym doświadczeniu. Kluczowym krokiem jest rozcieranie aspiryny w moździerzu, co pozwala na zwiększenie powierzchni kontaktu substancji z rozpuszczalnikiem, jakim jest etanol. Użycie kolby stożkowej o pojemności 100 ml jest zgodne z zasadami laboratoryjnymi, które zalecają stosowanie odpowiednich naczyń do reakcji chemicznych, aby zapewnić dokładność pomiarów. Ogrzewanie roztworu w łaźni wodnej to standardowa procedura, która pozwala na kontrolowanie temperatury, co jest niezbędne dla prawidłowego rozpuszczenia aspiryny. W procesie filtracji, obecność lejka szklanego, kolby ssawkowej, lejka sitowego oraz sączka karbowanego umożliwia skuteczne oddzielenie kryształów aspiryny od roztworu oraz ich osuszenie. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi, które kładą nacisk na precyzję i efektywność w przeprowadzaniu doświadczeń chemicznych.

Pytanie 29

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 584,1 g
B. 210,0 g
C. 390,5 g
D. 469,3 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 30

Z podanego wykazu wybierz sprzęt potrzebny do zmontowania zestawu do sączenia pod próżnią.

123456
pompka wodnalejek
z długą nóżką
kolba
okrągłodenna
kolba ssawkowalejek sitowychłodnica
powietrzna

A. 1,2,3
B. 1,2,4
C. 1,4,5
D. 4,5,6
Odpowiedzi 1, 4 i 5 są na pewno trafione. Do zmontowania zestawu do sączenia pod próżnią potrzebujemy trzech głównych elementów: pompy wodnej (1), kolby ssawkowej (4) i lejka sitowego (5). Pompa wodna robi tutaj robotę, bo to ona wytwarza próżnię, która jest kluczowa do filtracji. Kolba ssawkowa to takie naczynie, gdzie zbiera się filtrat, chroniąc nas przed różnymi zanieczyszczeniami. No i lejek sitowy, on pozwala na dodanie materiału filtracyjnego, co jest mega ważne, żeby cały proces działał sprawnie. W laboratoriach chemicznych używa się takich zestawów na porządku dziennym, bo precyzyjne oddzielanie substancji jest niezbędne, kiedy robimy analizy. Dlatego wybór tych elementów nie tylko sprawia, że to działa, ale też jest bezpieczne.

Pytanie 31

Korzystając z wykresu wskaż, w jakiej postaci występuje woda w temperaturze 10°C i pod ciśnieniem 100 barów.

Ilustracja do pytania
A. Lód.
B. Sublimat
C. Ciecz.
D. Gaz.
Wybór odpowiedzi "Ciecz" jest całkowicie poprawny, ponieważ woda w temperaturze 10°C i ciśnieniu 100 barów znajduje się w obszarze fazy ciekłej na wykresie fazowym. Woda przy tych parametrach spełnia warunki, które umożliwiają jej istnienie w stanie ciekłym. To zjawisko jest kluczowe w różnych zastosowaniach technologicznych, takich jak procesy przemysłowe, gdzie woda jako ciecz pełni funkcję chłodziwa czy medium transportującego ciepło. W praktyce, znajomość stanów skupienia wody i ich zależności od ciśnienia i temperatury jest istotna w inżynierii chemicznej, meteorologii oraz inżynierii środowiska. Dobrą praktyką jest regularne analizowanie wykresów fazowych, które mogą wskazywać na potencjalne zmiany stanu skupienia substancji, co jest kluczowe w projektowaniu i eksploatacji systemów, w których woda odgrywa fundamentalną rolę.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. zielony
B. żółty
C. niebieski
D. czerwony
Kolory oznaczeń przewodów w instalacjach rurowych mają kluczowe znaczenie dla zachowania bezpieczeństwa w laboratoriach oraz innych obiektach przemysłowych. Zastosowanie niewłaściwych barw prowadzi do potencjalnych niebezpieczeństw, które mogą wynikać z błędnego zrozumienia, jakie medium płynie w danej rurze. Odpowiedzi, takie jak "niebieski", "żółty" czy "czerwony", nie są zgodne z normą PN-70 N-01270/30, co może prowadzić do poważnych konsekwencji. Kolor niebieski zwykle stosuje się do oznaczania instalacji z wodą pitną, co może być mylące w kontekście wody technicznej czy roboczej. Z kolei kolor żółty często używany jest do oznaczania substancji toksycznych lub niebezpiecznych, co stwarza ryzyko nieprawidłowego rozpoznania instalacji. Kolor czerwony z kolei zazwyczaj kojarzy się z substancjami łatwopalnymi lub instalacjami związanymi z ogniem, co w kontekście wody byłoby skrajnie mylące. Warto zauważyć, że typowe błędy w interpretacji kolorów wynikają często z niedostatecznej znajomości standardów oraz norm, jak również z niewłaściwego podejścia do kwestii bezpieczeństwa w laboratoriach. Zrozumienie jakie kolory identyfikują konkretne substancje jest fundamentalne dla zachowania wysokich standardów bezpieczeństwa i minimalizacji ryzyka wypadków.

Pytanie 34

Podczas pipetowania menisk górny określa się dla roztworów

A. (CH3CO) 2Pb i KMnO4
B. I2 i KMnO4
C. I2 i (CH3COO)2Pb
D. K2CrO4 i Pb(NO3)2
Podczas pipetowania menisk górny dla roztworów ustala się w przypadku substancji takich jak I2 i KMnO4, ponieważ obie te substancje są dobrze rozpuszczalne w wodzie i tworzą odpowiednie meniskii, co jest kluczowe dla dokładności pipetowania. Menisk to zakrzywienie powierzchni cieczy, które powstaje w wyniku sił napięcia powierzchniowego oraz adhezji cieczy do ścianek naczynia. W przypadku I2 i KMnO4 menisk górny jest łatwy do odczytania i stabilny, co jest istotne dla precyzyjnych pomiarów objętości. Przykładem zastosowania tej wiedzy może być analizowanie stężenia jodu w roztworze, gdzie dokładne pipetowanie jest niezbędne dla uzyskania wiarygodnych wyników. Praktyki laboratoryjne zalecają także stosowanie pipet o odpowiedniej graduacji oraz technikę odczytu menisku na wysokości oczu, co pozwala na minimalizację błędów systematycznych. Użycie odpowiednich reagentów i technik w laboratoriach chemicznych jest zgodne z normami ISO oraz dobrymi praktykami laboratoryjnymi, co wpływa na rzetelność wyników."

Pytanie 35

Podczas rozkładu chloranu(V) potasu powstają chlorek potasu oraz tlen. Ile gramów tlenu zostanie wydzielonych w trakcie rozkładu 24,5 g chloranu(V) potasu, jeśli jednocześnie uzyskano 14,9 g chlorku potasu? Masy molowe pierwiastków: K = 39 g/mol, Cl = 35,5 g/mol, O=16 g/mol?

A. 9,6 g
B. 39,4 g
C. 14,5 g
D. 24,5 g
Jak chcesz obliczyć masę tlenu, który się wydziela podczas rozkładu chloranu(V) potasu, to najpierw musisz spisać równanie reakcji. Wytwarza się 2 KClO3, a potem 2 KCl i 3 O2. To z tego równania widać, że z dwóch moli chloranu dostajemy dwa mole chlorku potasu i trzy mole tlenu. Jeśli chodzi o masy molowe, to mamy KClO3 - 122,5 g/mol, KCl - 74,5 g/mol i O2 - 32 g/mol. Jeśli weźmiemy 24,5 g KClO3, to obliczamy, że mamy około 0,2 mola. Z równania wychodzi, że z 0,2 mola KClO3 dostaniemy 0,3 mola O2, więc po policzeniu masy tlenu wyjdzie nam 9,6 g. Fajnie jest wiedzieć, jak ważne są te obliczenia, szczególnie w laboratoriach, gdzie precyzja ma znaczenie.

Pytanie 36

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. środki opatrunkowe
B. leki przeciwbólowe
C. spirytus salicylowy
D. leki nasercowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 37

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 20°C
B. 30°C
C. 313 K
D. 340 K
Odpowiedzi 30°C, 313 K i 20°C są nieprawidłowe, ponieważ nie zapewniają odpowiednich warunków do skutecznego rozpuszczenia 25 g CuSO4 w 50 g wody. Przy 30°C, która odpowiada 303 K, rozpuszczalność siarczanu miedzi jest znacznie niższa niż przy 340 K. Zmniejszenie temperatury prowadzi do obniżenia energii kinetycznej cząsteczek, co spowalnia proces rozpuszczania. W przypadku 313 K, co odpowiada 40°C, chociaż temperatura ta jest wyższa, może być niewystarczająca do uzyskania pełnej rozpuszczalności dla podanej ilości soli. Natomiast 20°C, czyli 293 K, to zbyt niska temperatura, aby skutecznie rozpuścić taką ilość siarczanu miedzi. Często w takich sytuacjach pojawia się mylne przekonanie, że niższe temperatury mogą sprzyjać lepszemu rozpuszczaniu, co jest nieprawidłowe. Kluczowym elementem jest zrozumienie, że rozpuszczalność substancji w cieczy, jaką jest woda, rośnie wraz z temperaturą w przypadku wielu soli. Ignorowanie tego aspektu prowadzi do typowych błędów myślowych, takich jak zakładanie, że wszystkie substancje zachowują się jednakowo w różnych warunkach termicznych. Dlatego w praktyce laboratoryjnej i przemysłowej zawsze należy stosować odpowiednie temperatury zgodnie z danymi dotyczącymi rozpuszczalności dla danej substancji.

Pytanie 38

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
B. AgNO3 + KBr —> AgBr↓ + KNO3
C. Fe + S —> FeS
D. 2HgO —> 2Hg + O2
Analizując pozostałe równania, można zauważyć, że żadna z nich nie ilustruje wydzielania produktów gazowych. Równanie Fe(CN)2 + 4KCN —> K4[Fe(CN)6 przedstawia reakcję kompleksacji, w której powstaje sól kompleksowa, a nie gaz. Tego typu reakcje często są stosowane w analizie chemicznej, na przykład w syntezach kompleksów metalowych, które nie generują gazów. Z kolei reakcja Fe + S —> FeS to reakcja syntezy, w której żelazo reaguje z siarką, tworząc stały związek siarczku żelaza, co również nie prowadzi do wydzielenia gazów. Ponadto, odpowiedź AgNO3 + KBr —> AgBr↓ + KNO3 opisuje reakcję wymiany, gdzie powstaje osad bromku srebra, co wskazuje na zmiany fazowe, ale nie na tworzenie gazu. Typowe błędy myślowe w tym kontekście mogą wynikać z nieprecyzyjnego rozumienia reakcji chemicznych oraz ich produktivności. Warto zwrócić uwagę na znaczenie analizowania produktów reakcji, co jest kluczowe w praktyce laboratoryjnej oraz przemysłowej. Zrozumienie, które reakcje prowadzą do wydzielenia gazów, jest istotne dla bezpiecznego prowadzenia eksperymentów, a także dla zastosowania w różnych branżach, takich jak przemysł chemiczny czy ochrony środowiska.

Pytanie 39

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. może wystąpić niebezpieczeństwo zgaszenia płomienia
B. może to zwiększyć jej toksyczność
C. wzrost ciśnienia może spowodować wybuch
D. istnieje ryzyko zalania palnika
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 40

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,0500 mol/dm3
B. 0,0005 mol/dm3
C. 0,0125 mol/dm3
D. 0,1250 mol/dm3
Nieprawidłowe odpowiedzi mogą wynikać z kilku typowych błędów obliczeniowych i nieporozumień dotyczących zasad rozcieńczania roztworów. Na przykład, wybór stężenia 0,0005 mol/dm³ może być konsekwencją błędnego przeliczenia objętości lub liczby moli, gdzie użytkownik mógł zaniżyć wyniki przez omyłkowe zastosowanie niewłaściwych jednostek. Odpowiedź 0,0500 mol/dm³ sugeruje, że osoba myślała o stężeniu przed rozcieńczeniem, nie uwzględniając faktu, że dodanie wody do roztworu zmienia całkowitą objętość. W przypadku stężenia 0,1250 mol/dm³, błąd może wynikać z mylenia stężenia początkowego z końcowym, co jest częstym błędem w obliczeniach chemicznych. Tego rodzaju nieprawidłowości mogą prowadzić do poważnych konsekwencji w praktycznych zastosowaniach chemicznych, takich jak niepoprawne przygotowanie odczynników do doświadczeń czy analiz, które mogą skutkować błędnymi wynikami. Dlatego w laboratoriach niezwykle istotne jest stosowanie odpowiednich procedur obliczeniowych oraz dokładne sprawdzanie wszystkich obliczeń, aby uniknąć takich pomyłek, które mogą wpłynąć na jakość i dokładność prowadzonych badań.