Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 20 maja 2025 14:38
  • Data zakończenia: 20 maja 2025 15:30

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Dwa klawisze i trzy niezależne zaciski
B. Jeden klawisz i trzy niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Dwa klawisze i cztery niezależne zaciski
Wybierając inne odpowiedzi, można natknąć się na powszechne nieporozumienia dotyczące budowy i funkcji łączników świecznikowych. Na przykład, odpowiedzi sugerujące jeden klawisz i cztery zaciski mogą prowadzić do mylnego przekonania, że łącznik może obsługiwać więcej niż jedno źródło światła w niezależny sposób, co jest technicznie niemożliwe bez dodatkowych komponentów. Takie rozwiązanie nie tylko nie spełnia podstawowych założeń konstrukcyjnych, ale także może generować niebezpieczeństwo związane z przeciążeniem obwodu. Ponadto, odpowiedzi zawierające dwa klawisze i cztery zaciski wydają się logiczne na pierwszy rzut oka, jednak w rzeczywistości, w kontekście klasycznego pojedynczego łącznika, technologia wymaga tylko trzech zacisków dla właściwego podłączenia. W praktyce, mylenie liczby zacisków oraz klawiszy może skutkować błędnym doborem komponentów w instalacji elektrycznej, co może prowadzić do problemów z bezpieczeństwem oraz funkcjonalnością oświetlenia. Wiedza na temat standardowych rozwiązań w instalacjach elektrycznych jest kluczowa, aby uniknąć takich pułapek i zapewnić odpowiednią wydajność oraz bezpieczeństwo w użytkowaniu.

Pytanie 2

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. nałożyć warstwę cyny na końcówki przewodów
B. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
C. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
D. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
Wymienione odpowiedzi, które sugerują zastosowanie gniazda o większym prądzie znamionowym lub naniesienie warstwy cyny na końcówki przewodów, są nieprawidłowe i mogą prowadzić do poważnych błędów w instalacji elektrycznej. Użycie gniazda o większym prądzie znamionowym może wydawać się korzystne, jednak nie uwzględnia to możliwości przewodów oraz ich obciążalności prądowej. Każdy element instalacji elektrycznej powinien być dobrany zgodnie z jego przeznaczeniem oraz obciążeniem, do którego jest zaprojektowany. Zastosowanie gniazda o wyższej wartości niż przewody prowadzi do sytuacji, w której przewody mogą ulegać przegrzaniu, co w konsekwencji stwarza ryzyko pożaru. Co więcej, nanoszenie cyny na końcówki przewodów jest praktyką, która nie tylko może wprowadzać dodatkowe opory w połączeniu, ale także stwarza ryzyko korozji oraz osłabienia połączenia w dłuższym okresie użytkowania. W instalacjach elektrycznych kluczową rolę odgrywa jakość połączeń, które powinny być pewne i stabilne, aby uniknąć awarii. Niezależnie od tego, jak zaawansowane są technologie stosowane w instalacji, kluczowe jest przestrzeganie zasad dotyczących podłączania przewodów do właściwych zacisków oraz wykorzystanie odpowiednich materiałów i produktów w zgodzie z normami branżowymi, aby zapewnić bezpieczeństwo i funkcjonalność całej instalacji.

Pytanie 3

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia jednej fazy
D. zamiana miejscami dwóch faz
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 4

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
D. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 5

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. I
B. III
C. II
D. IV
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 6

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Woltomierza
B. Miernika z funkcją pomiaru pojemności
C. Miernika z funkcją pomiaru rezystancji
D. Amperomierza
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 7

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 13 szt.
B. 10 szt.
C. 6 szt.
D. 3 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 8

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48

A. 8,11 MΩ
B. 8,20 MΩ
C. 6,57 MΩ
D. 6,40 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 9

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Zmiana rodzaju użytych przewodów
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Instalacja dodatkowego gniazda elektrycznego
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 10

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Zwarcie międzyfazowe
B. Przepięcie
C. Przeciążenie
D. Upływ prądu
Wyłącznik różnicowoprądowy (RCD) ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami upływu prądu. Upływ prądu to sytuacja, w której część prądu roboczego nie wraca do źródła zasilania, lecz przepływa przez inne drogi, co może prowadzić do niebezpiecznych sytuacji. RCD działa na zasadzie monitorowania różnicy prądów pomiędzy przewodem fazowym a przewodem neutralnym. Gdy ta różnica przekroczy ustalony poziom (zazwyczaj 30 mA w instalacjach domowych), RCD natychmiast odłącza zasilanie. Praktycznym zastosowaniem RCD jest instalacja w łazienkach i kuchniach, gdzie istnieje wysokie ryzyko kontaktu z wodą. Warto również podkreślić, że zgodnie z normami PN-IEC 61008, stosowanie RCD jest obowiązkowe w miejscach narażonych na porażenie prądem, co podkreśla znaczenie ich montażu w nowoczesnych instalacjach elektrycznych.

Pytanie 11

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
C. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.

Pytanie 12

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Zwarcie doziemne przewodu neutralnego
B. Uszkodzenie izolacji przewodu ochronnego
C. Przerwa w przewodzie neutralnym
D. Przerwa w przewodzie ochronnym
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 13

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Schodowego
B. Dzwonkowego
C. Hotelowego
D. Krzyżowego
Odpowiedź 'dzwonkowy' jest poprawna, ponieważ w systemach oświetlenia klatki schodowej zastosowanie automatu schodowego wymaga łącznika, który umożliwia sterowanie oświetleniem w sposób wygodny i funkcjonalny. Łącznik dzwonkowy, w przeciwieństwie do innych typów łączników, takich jak krzyżowy czy hotelowy, jest zaprojektowany do pracy w obwodach, gdzie nie tylko jedno źródło światła jest sterowane z jednego miejsca. Dzięki temu, można w prosty sposób włączać i wyłączać światło z różnych lokalizacji. Przykładowo, w przypadku klatki schodowej, można zainstalować łącznik dzwonkowy na każdym piętrze, co pozwala na wygodne sterowanie oświetleniem bez potrzeby schodzenia na dół. Dodatkowo, zgodnie z normami PN-EN 60669-1, stosowanie odpowiednich łączników w takich miejscach jest kluczowe dla zapewnienia bezpieczeństwa oraz komfortu użytkowania. W przypadku automatu schodowego, który automatycznie wyłącza światło po pewnym czasie, łącznik dzwonkowy zapewnia efektywne i oszczędne rozwiązanie, idealne do podświetlania klatek schodowych i innych korytarzy.

Pytanie 14

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do transformatorów
B. Do prądnic tachometrycznych
C. Do indukcyjnych sprzęgieł dwukierunkowych
D. Do wzmacniaczy maszynowych
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 15

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Generuje napięcie remanentu
B. Obniża rezystancję obwodu twornika
C. Wytwarza pole magnetyczne wzbudzenia
D. Eliminuje niekorzystne zjawiska oddziaływania wirnika
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 16

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aL
B. gG
C. gR
D. aM
Wkładki topikowe typu aM są zaprojektowane specjalnie do zabezpieczania silników elektrycznych, w tym jednofazowych silników indukcyjnych klatkowych, przed zwarciem. Ich konstrukcja pozwala na tolerowanie przeciążeń, które mogą wystąpić podczas rozruchu silnika, co czyni je idealnym wyborem w tego typu aplikacjach. Wkładki aM oferują wysoką zdolność przerywania prądu oraz szybkie działanie, co jest kluczowe w przypadku zwarć. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki są narażone na różne obciążenia, wkładki aM zapewniają nie tylko ochronę, ale również zwiększają niezawodność całego systemu. Dobrą praktyką jest stosowanie wkładek aM w połączeniu z odpowiednimi zabezpieczeniami przeciążeniowymi, aby zapewnić kompleksową ochronę silników. Tego rodzaju wkładki są zgodne z normami IEC 60269 oraz EN 60269, co potwierdza ich wysoką jakość i skuteczność.

Pytanie 17

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Synchroniczny
B. Szeregowy prądu stałego
C. Asynchroniczny klatkowy
D. Obcowzbudny prądu stałego
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 18

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, ściągacz izolacji
B. Nóż monterski, praskę, zestaw kluczy
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Lutownicę, zestaw wkrętaków, ściągacz izolacji
Odpowiedź, którą zaznaczyłeś, to 'Nóż monterski, praskę, komplet kluczy'. Nóż monterski jest super ważny do precyzyjnego cięcia kabli i ich przygotowania do podłączenia. Praska to kluczowe narzędzie, które pozwala na solidne łączenie przewodów elektrycznych z użyciem złączek. Przecież jakość tych połączeń jest mega istotna w instalacjach elektrycznych, bo ma bezpośredni wpływ na bezpieczeństwo i niezawodność systemu. No i kompletny zestaw kluczy też się przydaje, bo czasami trzeba dokręcić lub odkręcić śruby mocujące przy podłączaniu kabli do rozdzielnicy. Używanie odpowiednich narzędzi według branżowych norm, jak PN-IEC 60364, zapewnia, że prace montażowe są bezpieczne i efektywne. Kiedy korzystasz z tych narzędzi, monter ma możliwość szybkiego i dokładnego wykonania podłączeń, co jest ważne, zwłaszcza przy realizacji projektów budowlanych czy modernizacyjnych.

Pytanie 19

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. III
B. 0
C. I
D. II
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 20

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 2,5 mm2
B. 6 mm2
C. 4 mm2
D. 1,5 mm2
Wybór niewłaściwego przekroju żyły może wynikać z kilku błędnych założeń dotyczących obciążalności przewodów. Odpowiedzi takie jak 4 mm², 1,5 mm² lub 6 mm² mogą wydawać się atrakcyjne, ale każda z nich ma swoje mankamenty. W przypadku 4 mm², chociaż teoretycznie jest to wystarczający przekrój, to w praktyce jest to zbyt duża wartość w odniesieniu do obliczonego minimum, co prowadzi do zbędnych kosztów materiałowych. Z kolei przekrój 1,5 mm² jest niewystarczający, ponieważ jego maksymalna obciążalność nie osiąga wymaganego poziomu, co stwarza ryzyko przegrzewania się przewodów oraz potencjalnych awarii w przypadku przeciążenia. Odpowiedź 6 mm² zaś, choć jest zgodna z wytycznymi dotyczącymi bezpieczeństwa, również przekracza wymagania, co powoduje dodatkowe wydatki i nieefektywne wykorzystanie zasobów. Często błędne wnioski wynikają z nieznajomości norm obciążalności przewodów lub ignorowania praktycznych aspektów takich jak długotrwałe obciążenia czy warunki montażu. Ważne jest również, aby pamiętać, że odpowiedni dobór przekroju przewodów nie tylko wpływa na bezpieczeństwo instalacji, ale także na jej efektywność energetyczną oraz koszty eksploatacji. Działania w tej dziedzinie powinny być zawsze wspierane przez aktualne normy oraz praktyki branżowe, aby zapewnić niezawodność i bezpieczeństwo całego systemu zasilania.

Pytanie 21

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA

A. Wyłącznik 1.
B. Wyłącznik 4.
C. Wyłącznik 3.
D. Wyłącznik 2.
Wybierając inne odpowiedzi niż wyłącznik 2, istnieje ryzyko zrozumienia, które nie uwzględnia rzeczywistych parametrów zadziałania wyłączników różnicowoprądowych. W przypadku wyłączników, kluczowe jest zrozumienie, że ich działanie opiera się na prawidłowym wykrywaniu różnic prądowych. Wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów zadziałania, zazwyczaj między 15 mA a 30 mA. Wybór wyłącznika 1, 3 lub 4 może wynikać z błędnego założenia, że wszystkie wymienione urządzenia działają poprawnie, co jest sprzeczne z zasadami bezpieczeństwa. Często popełnianym błędem jest ignorowanie wyników pomiarów, które wskazują na rzeczywisty prąd zadziałania. W praktyce, błędna interpretacja danych pomiarowych może prowadzić do sytuacji, w których wyłącznik nie zadziała w przypadku wystąpienia awarii, co stwarza poważne zagrożenie. Aby uniknąć takich problemów, zaleca się regularne testowanie wyłączników różnicowoprądowych oraz ich wymianę w przypadku stwierdzenia niesprawności. Warto również zaznajomić się z normami i parametrami technicznymi, które regulują działanie wyłączników, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 22

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Neonowym wskaźnikiem napięcia
B. Nożem monterskim
C. Kluczem płaskim
D. Wkrętakiem
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 23

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Klasę ochronności przed porażeniem energią elektryczną
B. Najwyższą temperaturę otoczenia podczas eksploatacji
C. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
D. Minimalny przekrój przewodów podłączonych do zacisków
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 24

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Zaizolować uszkodzoną część izolacji przewodu taśmą
B. Wymienić wszystkie przewody na nowe o większej średnicy
C. Wymienić uszkodzony przewód na nowy o identycznej średnicy
D. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
Wybór wymiany uszkodzonego przewodu na nowy o takim samym przekroju jest najlepszym rozwiązaniem w tej sytuacji. Uszkodzenia izolacji przewodów mogą prowadzić do poważnych konsekwencji, takich jak zwarcia, przegrzewanie się lub nawet pożary. Przewody elektryczne muszą być w pełni sprawne, aby zapewnić bezpieczeństwo i prawidłowe działanie instalacji. Wymiana na przewód o takim samym przekroju gwarantuje, że nie dojdzie do przeciążenia obwodu, co mogłoby wystąpić w przypadku zastosowania przewodu o większym przekroju. Zgodnie z normami PN-IEC 60364, przewody powinny być dobrane do obciążenia, a ich izolacja musi być nienaruszona. Praktyka wymiany przewodów na nowe jest zgodna z dobrymi praktykami branżowymi, które zalecają stosowanie materiałów wysokiej jakości oraz przestrzeganie zasad BHP podczas pracy z instalacjami elektrycznymi.

Pytanie 25

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. odcinek kabla oraz zgrzewarka
B. odcinek kabla zakończony głowicami
C. mufa rozgałęźna oraz odcinek kabla
D. dwie mufy kablowe i odcinek kabla
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 26

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Płaskim.
C. Imbusowym.
D. Nasadowym.
Wybór klucza oczkowego, nasadowego lub płaskiego na pewno wydaje się logiczny, jednak ze względu na specyfikę śrub, klucz imbusowy jest jedynym, który jest nieodpowiedni w tej sytuacji. Klucz oczkowy, używany do dokręcania śrub zewnętrznych, oferuje dużą powierzchnię kontaktu, co przekłada się na lepszą siłę dokręcania i mniejsze ryzyko uszkodzenia główki śruby. Klucz nasadowy, z kolei, jest bardziej uniwersalny i pozwala na łatwe odkręcanie i zakręcanie różnych typów śrub, a także umożliwia pracę w trudno dostępnych miejscach. Klucz płaski natomiast sprawdza się w sytuacjach, gdy potrzebna jest bezpośrednia siła na śrubę, szczególnie w ciasnych przestrzeniach. Niezrozumienie różnic między tymi narzędziami i ich zastosowaniem prowadzi do nieprawidłowych wyborów, co może skutkować uszkodzeniami materiałów lub narzędzi. Klucz imbusowy jest przeznaczony do śrub, które mają gniazda wewnętrzne, co czyni go nieodpowiednim narzędziem w sytuacji, gdy mamy do czynienia z główkami zewnętrznymi. Takie podstawowe błędy w doborze narzędzi mogą wpływać na efektywność pracy oraz bezpieczeństwo, dlatego warto inwestować czas w naukę i zrozumienie odpowiednich zastosowań narzędzi w kontekście praktycznym.

Pytanie 27

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Wiertarka z zestawem wierteł, młotek, piła
B. Osadzak gazowy, wkrętak, obcinaczki
C. Wiertarka z zestawem wierteł, szczypce płaskie, piła
D. Osadzak gazowy, młotek, obcinaczki
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 28

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Zgodnie z instrukcją obsługi danego odbiornika
B. Przed każdym uruchomieniem urządzenia
C. Każdorazowo podczas badań okresowych instalacji
D. Co najmniej raz na dwa lata
Odpowiedź 'Zgodnie z instrukcją obsługi danego odbiornika' jest prawidłowa, ponieważ każda instalacja elektryczna oraz jej komponenty, takie jak odbiorniki, mają specyficzne wymagania dotyczące konserwacji określone przez producenta. Instrukcje obsługi zawierają zalecenia dotyczące częstotliwości przeglądów, które są dostosowane do charakterystyki danego urządzenia, jego zastosowania oraz warunków eksploatacyjnych. Na przykład, urządzenia używane w warunkach dużej wilgotności, jak np. piece elektryczne w łazienkach, mogą wymagać częstszych przeglądów. Regularna konserwacja pozwala na wczesne wykrywanie ewentualnych usterek, co wpływa na bezpieczeństwo użytkowania i niezawodność działania odbiorników. Ponadto, stosowanie się do zaleceń producenta związanych z konserwacją jest również zgodne z przepisami prawa, co może być istotne w przypadku inspekcji technicznych. Warto przy tym pamiętać, że w razie braku dostępu do instrukcji, należy zwrócić się o pomoc do specjalistów, którzy mogą ocenić stan techniczny urządzeń oraz zalecić odpowiednie działania.

Pytanie 29

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 3,9 kW
B. 5,9 kW
C. 6,9 kW
D. 9,6 kW
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia zasad dotyczących obliczania mocy w układach trójfazowych oraz niewłaściwego zastosowania wzorów. Wiele osób może błędnie obliczać moc, stosując tylko wartości napięcia jednofazowego lub nie uwzględniając współczynnika √3, który jest kluczowy w obliczeniach dla układów trójfazowych. Przykładowo, odpowiedzi 5,9 kW i 3,9 kW mogą pochodzić z pomyłek związanych z przyjęciem zbyt niskiego prądu lub napięcia. W obwodach trójfazowych moc jest zawsze większa niż w jednofazowych przy tych samych parametrach prądu. Ponadto, niektóre odpowiedzi mogą wynikać z nieprawidłowego zrozumienia charakterystyki wyłączników nadprądowych, które są zaprojektowane tak, aby chronić obwody przed przeciążeniem, a ich dobór powinien być uzależniony od planowanego obciążenia. W praktyce, dla instalacji klimatyzacyjnych, stosowanie wyłączników o odpowiednich parametrach staje się kluczowe, aby zapewnić nie tylko sprawność układu, ale także jego bezpieczeństwo. Błędne podejście do wyliczeń może prowadzić do katastrofalnych skutków, w tym do pożaru instalacji lub uszkodzenia urządzeń.

Pytanie 30

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, poziomnica, przymiar taśmowy
B. Kątownik, młotek, punktak
C. Ołówek traserski, przymiar kreskowy, rysik
D. Kątownik, ołówek traserski, sznurek traserski
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 31

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≥ UL
B. RA ∙ IΔn > UL
C. RA ∙ IΔn < UL
D. RA ∙ IΔn ≤ UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 32

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
B. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
C. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
D. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 33

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
C. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 34

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. GU10
B. E27
C. G9
D. MR11
Wybierając inne odpowiedzi, można wpaść w pułapki związane z trzonkami żarówek. Na przykład, GU10 to dość inna sprawa – to do oświetlenia punktowego i ma dwa piny. Myślenie, że wszystkie nowoczesne źródła są podobne, to pułapka, bo różnice w mocowaniach są ważne. MR11, który jest mniejszy od MR16, też ma swoją budowę i nie pasuje do E27. A z G9 bywa podobnie – ludzie myślą, że małe źródła światła są lepsze, a tak naprawdę E27 często oferuje większą wydajność. Ignorując różnice w konstrukcji trzonków, można trafić na kłopoty z dopasowaniem, a czasem trzeba dokupić coś dodatkowego. Dlatego warto znać standardy i specyfikacje, żeby dobrze dobrać żarówki i osprzęt, co się przekłada na oszczędność energii i komfort użytkowania.

Pytanie 35

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. cyfrowy watomierz
C. analogowy omomierz
D. amperomierz oraz woltomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 36

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Weryfikacja symetrii napięcia zasilającego
B. Mierzenie temperatury stojana
C. Mierzenie prędkości obrotowej
D. Sprawdzenie kierunku obrotów wału silnika
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 37

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. działa prawidłowo.
B. jest uszkodzone.
C. izolacja jest uszkodzona.
D. występuje zwarcie między zwojami.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 38

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. układu tablic informacyjnych i ostrzegawczych
B. doboru oraz oznaczenia przewodów
C. doboru zabezpieczeń i urządzeń
D. wartości natężenia oświetlenia w miejscach pracy
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 39

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 16 mm2
C. 6 mm2
D. 10 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 40

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA

A. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
B. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
C. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
D. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
Wyłącznik różnicowoprądowy, zwany także wyłącznikiem RCD, jest kluczowym elementem ochrony w instalacjach elektrycznych. Jego podstawowym zadaniem jest wykrywanie prądów różnicowych, które mogą wskazywać na nieprawidłowości w obwodzie, takie jak zwarcia doziemne. Zgodnie z normą PN-EN 61008-1, wyłącznik powinien zadziałać przy prądzie różnicowym wynoszącym 50% jego wartości nominalnej, co dla wyłącznika nr III wynosi 15 mA (50% z 30 mA). Zmierzona wartość zadziałania tego wyłącznika wynosząca 12 mA jest poniżej wspomnianego progu, co oznacza, że nie zadziałał on w sytuacji, gdy powinien. W praktyce, użycie wyłącznika, który nie spełnia tych norm, stwarza zagrożenie dla użytkowników, ponieważ nie zapewnia on odpowiedniej ochrony przed porażeniem prądem elektrycznym. Dlatego wyłącznik nr III nie nadaje się do dalszej eksploatacji i powinien być wymieniony na nowy, aby zagwarantować bezpieczeństwo instalacji elektrycznej.