Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 21 maja 2025 19:32
  • Data zakończenia: 21 maja 2025 19:49

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przyczyną nadmiernego zużycia zewnętrznej części jednej z opon może być

A. zbyt niskie ciśnienie w oponie
B. zbyt wysokie ciśnienie w oponie
C. niewłaściwy kąt wyprzedzenia sworznia zwrotnicy
D. niewłaściwy kąt pochylenia koła
Niewłaściwy kąt pochylenia koła, znany również jako kąt nachylenia, ma kluczowe znaczenie dla równomiernego zużycia opon. Gdy kąt ten jest zbyt duży lub zbyt mały, powoduje to, że zewnętrzna lub wewnętrzna krawędź opony nie jest w pełni w kontakcie z nawierzchnią drogi. W rezultacie dochodzi do nadmiernego zużycia opony po jednej ze stron. W praktyce oznacza to, że pojazd może poruszać się w sposób niezgodny z zamierzonym, co nie tylko wpływa na komfort jazdy, ale przede wszystkim na bezpieczeństwo. Właściwe ustawienie kąta pochylenia koła można osiągnąć poprzez precyzyjne regulacje zawieszenia, co jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. Regularne sprawdzanie i dostosowywanie geometrii zawieszenia powinno być częścią rutynowej konserwacji pojazdu, aby zapewnić optymalne osiągi i wydłużyć żywotność opon.

Pytanie 2

Jakie czynności należy wykonać, aby oddzielić oponę od tarczy koła podczas demontażu?

A. w imadle
B. siłownikiem mechanicznym lub pneumatycznym
C. ściągaczem hydraulicznym
D. łyżką o długim ramieniu
Wykorzystanie łyżki z długim ramieniem, imadła czy ściągacza hydraulicznego do demontażu opon jest podejściem obarczonym poważnymi wadami. Łyżka z długim ramieniem, choć może być używana do różnych aplikacji, nie jest narzędziem przystosowanym do precyzyjnego demontażu opony. W przypadku jej użycia istnieje ryzyko uszkodzenia opony lub tarczy koła, gdyż siła nie jest rozkładana równomiernie, co może prowadzić do deformacji. Imadło, z drugiej strony, jest narzędziem mechanika, które służy do trzymania przedmiotów w stałej pozycji, a nie do ich demontażu. Użycie imadła do oddzielania opony od felgi mogłoby skutkować uszkodzeniem zarówno opony, jak i tarczy koła, a także zwiększa ryzyko rannych pracowników. Z kolei ściągacz hydrauliczny, mimo że w pewnych kontekstach może być użyteczny, nie jest dedykowanym narzędziem do pracy z oponami, co sprawia, że jego zastosowanie w tej sytuacji może okazać się nieefektywne i niebezpieczne. Kluczowym błędem myślowym w wyborze tych narzędzi jest brak zrozumienia fizycznych zasad działania i różnorodności narzędzi do odpowiednich zastosowań, co prowadzi do niewłaściwych decyzji. Właściwy dobór narzędzi jest kluczowy dla bezpieczeństwa i efektywności pracy w warsztatach, dlatego tak istotne jest stosowanie narzędzi przystosowanych do specyficznych zadań.

Pytanie 3

Przed przystąpieniem do pomiaru składu spalin w silniku ZI należy

A. odłączyć akumulator
B. usunąć nagar z układu wydechowego silnika
C. rozgrzać silnik pojazdu do osiągnięcia temperatury roboczej
D. skalibrować dymomierz
Rozgrzewanie silnika pojazdu do temperatury eksploatacyjnej przed rozpoczęciem pomiaru składu spalin jest kluczowym krokiem, który zapewnia wiarygodność i dokładność uzyskiwanych wyników. Silniki spalinowe, w tym silniki ZI (zapłon iskrowy), osiągają optymalną efektywność operacyjną oraz właściwe parametry spalania dopiero po osiągnięciu określonej temperatury. W niskich temperaturach, w których silnik nie jest w pełni rozgrzany, proces spalania może być nieefektywny, co prowadzi do zwiększonej emisji szkodliwych substancji, takich jak tlenki azotu (NOx) czy węglowodory niespalone (HC). Praktyczne zastosowanie tej wiedzy jest szczególnie istotne podczas diagnostyki, kontroli emisji spalin oraz przeglądów technicznych. Zgodnie z normami jakości powietrza i przepisami dotyczącymi emisji spalin, takie jak Euro 6, pomiar powinien być przeprowadzany w warunkach rzeczywistych, co obliguje do uwzględnienia pracy silnika w normalnej temperaturze eksploatacyjnej, aby uzyskać rzetelne dane do analizy i oceny stanu technicznego pojazdu.

Pytanie 4

Jak sprawdza się szczelność przestrzeni nadtłokowej cylindrów silnika spalinowego w pojeździe?

A. ciśnienie sprężania
B. średnicę cylindra
C. luzy w zaworach
D. płaszczyznę głowicy
Odpowiedź "ciśnienie sprężania" jest poprawna, ponieważ szczelność przestrzeni nadtłokowej cylindrów silnika spalinowego jest bezpośrednio związana z efektywnością procesu sprężania mieszanki paliwowo-powietrznej. Ciśnienie sprężania świadczy o tym, czy mieszanka jest odpowiednio sprężona przed zapłonem, co ma kluczowe znaczenie dla osiągów silnika. Wysokie ciśnienie sprężania może wskazywać na dobrą szczelność uszczelniaczy, pierścieni tłokowych oraz głowicy cylindrów. Regularne pomiary ciśnienia sprężania są standardem w diagnostyce silników spalinowych, często stosowanym przez mechaników podczas rutynowych przeglądów. Przykładowo, przy pomiarze ciśnienia sprężania, wartości poniżej normy mogą sugerować zużycie pierścieni tłokowych lub nieszczelności w głowicy cylindrów, co prowadzi do spadku mocy i zwiększonego zużycia paliwa. Dlatego też, analiza ciśnienia sprężania jest kluczowym elementem oceny stanu technicznego silnika, przyczyniającym się do zapewnienia jego niezawodności i efektywności.

Pytanie 5

Element zmieniający niskie napięcie na wyższe w układzie zapłonowym to

A. aparat zapłonowy
B. rozdzielacz zapłonu
C. cewka zapłonowa
D. świeca zapłonowa
Cewka zapłonowa to jeden z najważniejszych elementów układu zapłonowego w silnikach spalinowych. Jej głównym zadaniem jest zamiana niskiego napięcia z akumulatora (około 12V) w to wysokie, które wywołuje iskrę w świecach zapłonowych. Robi to dzięki zasadzie indukcji elektromagnetycznej. W cewce mamy dwa uzwojenia – pierwotne i wtórne. Kiedy prąd przepływa przez uzwojenie pierwotne, tworzy pole magnetyczne, które z kolei indukuje napięcie w uzwojeniu wtórnym, sięgając nawet 20-40 kV! Taki skok napięcia to klucz do zapalenia mieszanki paliwowo-powietrznej w cylindrze. Jeśli cewka zapłonowa jest uszkodzona, można mieć problemy z uruchomieniem silnika, a także z jego równą pracą oraz większym zużyciem paliwa. Dlatego warto regularnie sprawdzać stan cewki podczas przeglądów technicznych. Takie podejście jest zgodne z obowiązującymi normami konserwacji i naprawy samochodów.

Pytanie 6

Symbol znajdujący się na oponie 145/50 wskazuje szerokość opony

A. w milimetrach oraz wskaźnik profilu w milimetrach
B. w milimetrach oraz wskaźnik profilu w %
C. w calach oraz wskaźnik profilu w milimetrach
D. w calach oraz wskaźnik profilu w %
Dobrze zauważyłeś, że symbol na oponie 145/50 mówi o szerokości opony w milimetrach i wskaźniku profilu w %, co jest naprawdę istotne. To znaczy, że szerokość opony to 145 mm, a ten 50 oznacza, że wysokość profilu to 50% z tej szerokości, czyli 72,5 mm. Zrozumienie tych oznaczeń jest ważne, bo odpowiednie opony mają ogromny wpływ na to, jak jeździmy - zarówno pod kątem bezpieczeństwa, jak i komfortu. Jak dobierasz nowe opony, warto wiedzieć, co oznaczają te liczby, żeby dobrze wybrać. Dzięki temu będziesz mieć lepszą przyczepność i krótszą drogę hamowania, co na pewno jest na plus na drodze.

Pytanie 7

Podejmując się głównej naprawy ciągnika siodłowego, na początku należy

A. poddać cały pojazd czyszczeniu
B. odprowadzić płyny eksploatacyjne
C. zdemontować ciągnik na poszczególne części
D. rozłączyć naczepę z ciągnikiem
Odłączenie naczepy od ciągnika siodłowego jest kluczowym krokiem przed przystąpieniem do naprawy głównej pojazdu. Właściwe procedury bezpieczeństwa nakładają obowiązek na mechaników, aby upewnili się, że pojazd jest stabilny i bezpieczny do pracy. Rozłączenie naczepy minimalizuje ryzyko przypadkowego przewrócenia się lub przesunięcia ciągnika podczas dokonywania napraw. Praktyka ta jest zgodna z ogólnymi standardami BHP w warsztatach mechanicznych, które podkreślają znaczenie zabezpieczenia pojazdu przed nieautoryzowanym ruchem. Dodatkowo, brak naczepy ułatwia dostęp do silnika oraz układów mechanicznych, co jest niezbędne do przeprowadzenia dokładnej inspekcji oraz wymiany podzespołów. Zgodnie z dobrą praktyką, przed rozpoczęciem jakiejkolwiek pracy, mechanik powinien również sprawdzić, czy pojazd jest odpowiednio zablokowany, co dodatkowo zwiększa bezpieczeństwo pracy. Znajomość procedur oraz stosowanie się do nich jest nie tylko zalecane, ale wręcz niezbędne dla zapewnienia efektywności oraz bezpieczeństwa w warsztacie.

Pytanie 8

W diagnostyce samochodów wykorzystuje się oprogramowanie komputerowe

A. Warsztat
B. Eurotax
C. AutoCAD
D. ESItronic
ESItronic to zaawansowane oprogramowanie diagnostyczne używane w warsztatach samochodowych do analizy i naprawy pojazdów. Program ten umożliwia diagnozowanie usterek oraz odczytywanie danych z różnych systemów elektronicznych w samochodach, co jest kluczowe w nowoczesnym serwisowaniu. ESItronic jest dostosowany do wielu marek i modeli pojazdów, co czyni go uniwersalnym narzędziem w diagnostyce. Dzięki zastosowaniu tego oprogramowania mechanicy mogą szybko zidentyfikować problemy, co znacząco przyspiesza proces naprawy i zwiększa efektywność pracy. Program oferuje również dostęp do informacji technicznych, schematów, a także najnowszych aktualizacji dotyczących procedur serwisowych, co jest zgodne z najlepszymi praktykami branżowymi w zakresie utrzymania pojazdów. Przykładem zastosowania ESItronic może być diagnoza problemu z systemem ABS, gdzie mechanik korzysta z aplikacji do odczytu kodów błędów i analizy danych w czasie rzeczywistym.

Pytanie 9

Po przeprowadzeniu analizy amortyzatorów tylnych pojazdu ustalono, że poziom tłumienia prawego wynosi 35%, a lewego 56%. Wyniki te sugerują, że

A. prawy amortyzator powinien zostać wymieniony
B. konieczna jest wymiana obu amortyzatorów
C. amortyzatory są całkowicie sprawne
D. należy zregenerować prawy amortyzator
Wybór, żeby regenerować prawy amortyzator, jest nietrafiony. Regeneracja ma sens, gdy amortyzator jeszcze działa, ale w tym przypadku jego tłumienie wynosi tylko 35%, co oznacza, że jest w złym stanie. Regeneracja może nie przynieść efektu, a dalsze korzystanie z takiego amortyzatora to ryzyko większych problemów. Też pomysł, że jeden wymieniamy, a drugi zostawiamy, to zła droga. Oba amortyzatory mają wpływ na to, jak auto się prowadzi i różnice w ich wydajności mogą prowadzić do niebezpiecznych sytuacji. Nawet jeśli lewy działa dobrze, to współpraca z tak słabym prawym to za mało. W praktyce mieszanie amortyzatorów z różnych klas to zły pomysł, bo to wprowadza niestabilność i stwarza ryzyko na drodze. Warto pamiętać, że producenci aut oraz przepisy ruchu drogowego mówią, jak ważna jest jednorodność elementów zawieszenia dla bezpieczeństwa i komfortu jazdy.

Pytanie 10

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Zmniejszenie zużycia paliwa
B. Poprawa wyglądu pojazdu
C. Zwiększenie mocy silnika
D. Zapewnienie stabilności prowadzenia pojazdu
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 11

Który z warsztatowych instrumentów pomiarowych nie jest wyposażony w tradycyjną skalę do odczytu zmierzonego wymiaru?

A. Szczelinomierz
B. Kątomierz
C. Suwmiarka
D. Mikrometr
Szczelinomierz jest przyrządem pomiarowym, który nie posiada tradycyjnej podziałki służącej do odczytu mierzonego wymiaru. Jego konstrukcja opiera się na zestawie metalowych lub plastikowych blaszek o różnych grubościach. Użytkownik wybiera odpowiednią blachę, aby zmierzyć szczelinę, taką jak przestrzeń między częściami mechanizmu, co czyni go niezwykle pomocnym w diagnostyce i regulacji w przemyśle, na przykład w motoryzacji. Szczelinomierz jest kluczowym narzędziem w precyzyjnych pomiarach, umożliwiającym określenie tolerancji w montażu części, co jest zgodne z normami ISO 2768, które dotyczą tolerancji wymiarowych i geometrycznych. W praktyce, dzięki jego zastosowaniu, inżynierowie mogą zapewnić, że elementy mechaniczne będą działać poprawnie w zadanym zakresie tolerancji, co bezpośrednio wpływa na wydajność i niezawodność maszyn.

Pytanie 12

Łączny koszt naprawy (koszt wymienianego elementu i koszt wymiany) elementu, zgodnie ze specyfikacją zamieszczoną w tabeli, przy cenie 1 rbg. 50 zł i 10% rabacie na wykonanie naprawy, wynosi

Opis czynnościMiejsceRodzajRbgCena
Reflektor kpl.LWY1300

A. 330 zł
B. 350 zł
C. 315 zł
D. 250 zł
Obliczenie łącznego kosztu naprawy jest kluczowym aspektem zarządzania kosztami w każdej branży, w której prowadzone są naprawy. W tym przypadku, aby uzyskać poprawny wynik, musimy dodać koszt wymienianego elementu do kosztu wymiany, pamiętając o uwzględnieniu rabatu. Koszt wymienianego elementu wynosi 300 zł, co jest wartością standardową w branży. Koszt wymiany wynosi 50 zł, lecz po zastosowaniu 10% rabatu (5 zł), uzyskujemy finalny koszt wymiany równy 45 zł. Zsumowanie tych wartości daje nam 345 zł, co jest poprawnym wynikiem. Niemniej jednak, jeśli chodzi o przedstawione w pytaniu wartości, żadna odpowiedź nie zgadza się z obliczeniami. W praktyce, przy takich obliczeniach warto zwrócić uwagę na dokładność danych źródłowych oraz proces weryfikacji kosztów, co jest zgodne z najlepszymi praktykami zarządzania kosztami w projektach. Uważne podejście pozwala na lepsze planowanie finansowe oraz unikanie nieprawidłowości w prognozowaniu wydatków.

Pytanie 13

W zamieszczonej tabeli wpisuje się informacje dotyczące pomiaru

Rodzaj czopówNumer kolejny czopaPomiaryabcStożkowość (baryłkowość)
Główne1*A
B
owalność
Korbowodowe1*A
B
owalność
*Powtórz rubrykę tyle razy, ile jest czopów.

A. wału korbowego.
B. cylindrów silnika.
C. wałka rozrządu.
D. korbowodu.
Odpowiedź 'wał korbowego' jest jak najbardziej na miejscu. W tabeli, którą analizowałeś, są kolumny związane z pomiarami i właściwościami wału, jak 'Rodzaj czopów', 'Numer czopa', 'Pomiary', a także 'owalność' i 'stożkowość'. Wał korbowy jest super ważny w silniku, bo zamienia ruch tłoków w ruch obrotowy. Musisz pamiętać, że owalność i stożkowość tych czopów muszą być w odpowiednich granicach, żeby silnik działał prawidłowo. Jeśli te parametry są poza normą, to mogą się dziać różne nieprzyjemności, jak drgania czy uszkodzenia silnika. W praktyce te pomiary robi się podczas serwisowania silników, żeby sprawdzić, czy wał jest w dobrym stanie. Używa się do tego mikrometrów czy suwmierek, co jest zgodne z normami branżowymi, jak np. ISO. Trzymanie się tych standardów jest mega ważne, jeśli chcesz, żeby silnik działał długo i bezawaryjnie.

Pytanie 14

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
B. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
C. wzmocnienie struktury cylindra, który jest chłodzony cieczą
D. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 15

Pojawiające się w zbiorniczku wyrównawczym systemu chłodzenia pęcherzyki powietrza mogą być efektem uszkodzenia

A. głowicy silnika
B. pompy wody
C. nagrzewnicy
D. termostatu
Odpowiedzi dotyczące nagrzewnicy, termostatu oraz pompy wody jako potencjalnych źródeł pęcherzyków powietrza w układzie chłodzenia są nieprawidłowe z kilku powodów. Nagrzewnica, pomimo że jest istotnym elementem układu chłodzenia, działa jako wymiennik ciepła, który nie jest bezpośrednio odpowiedzialny za wprowadzanie powietrza do obiegu. Jej uszkodzenie może prowadzić do wycieków płynu chłodzącego, ale nie generuje pęcherzyków powietrza z powodu nieszczelności. Z kolei termostat, który reguluje przepływ płynu chłodzącego w układzie, również nie jest bezpośrednio związany z pojawianiem się pęcherzyków powietrza. Jego uszkodzenie może prowadzić do nieprawidłowego działania układu chłodzenia, jednak nie wprowadza powietrza do obiegu. Pompa wody, na której zadaniem jest cyrkulacja płynu chłodzącego, może powodować problemy w przypadku awarii, ale pęcherzyki powietrza nie są jej typowym symptomem. Typowym błędem myślowym jest utożsamianie problemów z układem chłodzenia z niesprawnością wszystkich jego elementów, podczas gdy kluczowe jest zrozumienie, że każdy z tych komponentów ma specyficzne funkcje i usterki, które nie zawsze są ze sobą powiązane. Aby skutecznie diagnozować problemy związane z układem chłodzenia, ważne jest przeprowadzenie szczegółowej analizy stanu technicznego poszczególnych elementów, zaczynając od najczęstszych przyczyn, jak właśnie uszkodzenia głowicy silnika.

Pytanie 16

Symbol 16V wskazuje na

A. silnik widlasty z szesnastoma cylindrami
B. silnik Wankla
C. silnik rzędowy z szesnastoma cylindrami
D. silnik szesnastozaworowy
Oznaczenie silnika 16V odnosi się do liczby zaworów w każdej głowicy cylindrów silnika, co w przypadku silników czterocylindrowych oznacza, że każdy cylinder ma po cztery zawory: dwa ssące i dwa wydechowe. Takie rozwiązanie pozwala na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną oraz efektywniejsze odprowadzanie spalin, co przekłada się na wyższą moc silnika oraz lepszą ekonomikę spalania. Silniki 16V są powszechnie stosowane w nowoczesnych pojazdach, co czyni je standardem w przemyśle motoryzacyjnym. Przykładem mogą być popularne jednostki napędowe w pojazdach marki Volkswagen czy Honda, które charakteryzują się dużą wydajnością i oszczędnością paliwa. Zastosowanie technologii 16V jest zgodne z dobrymi praktykami konstrukcyjnymi, które dążą do optymalizacji parametrów silnika. Warto również dodać, że silniki z większą liczbą zaworów mogą osiągać lepsze osiągi przy wyższych prędkościach obrotowych, co jest istotne w kontekście sportowego charakteru niektórych pojazdów.

Pytanie 17

Masa własna pojazdu obejmuje

A. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
B. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
C. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
D. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 18

Jednym z powodów, dla których nie następuje ładowanie (włączona czerwona lampka kontrolna ładowania akumulatora) przy pracującym silniku, może być

A. spalona żarówka świateł mijania
B. kompletnie naładowany akumulator
C. zwarcie w obwodzie sygnałowym akustycznym
D. zacięta szczotka w szczotkotrzymaczu alternatora
Zawieszona szczotka w szczotkotrzymaczu alternatora to jedna z najczęstszych przyczyn problemów z ładowaniem akumulatora. Te szczotki mają za zadanie przesyłać prąd do wirnika, więc muszą działać poprawnie, żeby alternator mógł generować energię. Jak szczotka jest zablokowana, to nie ma pełnego kontaktu z wirnikiem, przez co energia się nie wytwarza jak powinna. Zwykle objawia się to tym, że kontrolka ładowania akumulatora świeci na czerwono, co wskazuje na kłopoty z ładowaniem. Żeby to sprawdzić, zazwyczaj trzeba zajrzeć do alternatora i zmierzyć napięcie wyjściowe. W branży mówi się, że dobrze jest regularnie kontrolować stan szczotek, szczególnie w starszych autach, które mogą mieć spore zużycie. No i jak zauważysz jakiekolwiek problemy z ładowaniem, lepiej działać szybko, bo inaczej możesz uszkodzić akumulator lub inne elektryczne części w samochodzie.

Pytanie 19

Instalacja "suchej" tulei cylindrowej powinna odbywać się z użyciem

A. młotka gumowego
B. prasy hydraulicznej
C. młotka ślusarskiego
D. ściągacza do łożysk
Montaż 'suchej' tulei cylindrowej przy użyciu prasy hydraulicznej jest zalecany ze względu na precyzję oraz kontrolę siły, którą można zastosować podczas tego procesu. Prasa hydrauliczna pozwala na równomierne rozłożenie sił na powierzchni tulei, co minimalizuje ryzyko jej odkształcenia lub uszkodzenia. W praktyce, użycie prasy hydraulicznej zapewnia, że tuleja zostanie wprowadzona do gniazda z odpowiednią siłą, co jest szczególnie ważne w przypadku komponentów silnikowych, gdzie tolerancje wymiarowe są krytyczne. Dobrą praktyką jest przeprowadzenie montażu w kontrolowanych warunkach, co można osiągnąć, stosując odpowiednie narzędzia. Istotne jest również, aby przed montażem sprawdzić stan tulei oraz gniazda, co pozwala na uniknięcie problemów związanych z niewłaściwym dopasowaniem. W przemyśle motoryzacyjnym i maszynowym, użycie prasy hydraulicznej jest standardem, aby zapewnić długoterminową niezawodność oraz poprawne działanie silników i innych mechanizmów.

Pytanie 20

Stetoskop prętowy to urządzenie diagnostyczne używane do

A. oceny ciśnienia sprężania w silniku
B. wykrywania nieszczelności w płaszczu wodnym silnika
C. oceny dymienia silnika
D. wykrywania stuków silnika
Stetoskop prętowy to naprawdę fajne narzędzie, które pomaga mechanikom w diagnozowaniu silników. Działa na zasadzie przenoszenia drgań akustycznych z różnych części silnika, co pozwala zauważyć nieprawidłowości, takie jak na przykład luzowanie czy problemy z łożyskami. To szczególnie ważne, bo szybka diagnoza może uratować silnik przed poważniejszymi uszkodzeniami. Używa się go często podczas przeglądów i to nie tylko w warsztatach, ale też w sytuacjach kryzysowych. Standardy branżowe podkreślają, jak istotne jest korzystanie z tego narzędzia w diagnostyce. Co ciekawe, stetoskop prętowy pozwala na słuchanie dźwięków z bliska, co naprawdę zwiększa dokładność diagnozy. Gdy już wiesz, jak go używać, to może to znacząco poprawić jakość napraw i bezpieczeństwo pojazdów. W skrócie, to narzędzie ma swoje zasługi w szybkiej i skutecznej diagnozie usterek.

Pytanie 21

Koszt zakupu zestawu okładzin ciernych na oś przednią wynosi 120 zł, cena jednej tarczy hamulcowej to 125 zł, czas potrzebny na wymianę to 1,5 h, a stawka za roboczogodzinę wynosi 100 zł. Jaki będzie całkowity koszt wymiany tarcz oraz okładzin ciernych?

A. 345 zł
B. 520 zł
C. 470 zł
D. 395 zł
Aby obliczyć całkowity koszt wymiany tarcz i okładzin ciernych, musimy wziąć pod uwagę trzy kluczowe składniki: cenę kompletu okładzin ciernych, cenę tarcz hamulcowych oraz koszt robocizny. Cena kompletu okładzin ciernych wynosi 120 zł. Dwie tarcze hamulcowe kosztują 2 * 125 zł, co daje 250 zł. Czas wymiany wynosi 1,5 godziny, a cena jednej roboczogodziny to 100 zł, co daje 1,5 * 100 zł = 150 zł za robociznę. Łącząc te wartości, otrzymujemy: 120 zł (okładziny) + 250 zł (tarcze) + 150 zł (robocizna) = 520 zł. Taki koszt wymiany można uznać za standardowy w branży, a jego znajomość jest kluczowa dla właścicieli pojazdów oraz serwisów, aby móc prawidłowo planować wydatki na konserwację i naprawy pojazdów.

Pytanie 22

Klasyczny mechanizm różnicowy pozwala na

A. płynne dostosowywanie prędkości pojazdu.
B. przeniesienie momentu obrotowego z skrzyni biegów na wał.
C. aktywowanie napędu na cztery koła.
D. prowadzenie samochodu z różnymi prędkościami obrotowymi kół napędowych.
Klasyczny mechanizm różnicowy jest kluczowym elementem układu napędowego pojazdów, który umożliwia jazdę z różnymi prędkościami obrotowymi kół napędzanych. Jego podstawowym zadaniem jest kompensowanie różnic w prędkości obrotowej kół, co jest szczególnie istotne podczas pokonywania zakrętów. W momencie, gdy pojazd skręca, zewnętrzne koło pokonuje dłuższą drogę niż wewnętrzne, co prowadzi do różnicy w prędkości obrotowej. Mechanizm różnicowy pozwala na swobodne obracanie się kół w zależności od ich potrzeb, co zwiększa stabilność i komfort jazdy. Przykładem zastosowania mechanizmu różnicowego są samochody osobowe, które wykorzystują go do poprawy trakcji i manewrowości. Działanie to jest zgodne z najlepszymi praktykami inżynieryjnymi, które postulują efektywne wykorzystanie mocy silnika oraz zmniejszenie zużycia paliwa, a także zwiększenie bezpieczeństwa jazdy.

Pytanie 23

Aby ustalić przyczynę braku maksymalnych wydajności silnika przy całkowicie otwartej przepustnicy, gdy nie stwierdza się innych symptomów, należy w pierwszej kolejności przeprowadzić pomiar

A. ciśnienia smarowania
B. ciśnienia paliwa
C. napięcia ładowania
D. ciśnienia sprężania
Pomiar ciśnienia paliwa jest kluczowym krokiem w diagnostyce problemów z osiągami silnika, szczególnie w sytuacjach, gdy silnik nie osiąga maksymalnych obrotów przy pełnym otwarciu przepustnicy. Niewłaściwe ciśnienie paliwa może prowadzić do niedostatecznego podawania paliwa do silnika, co z kolei wpływa na jego wydajność. W praktyce, ciśnienie paliwa powinno mieścić się w określonym zakresie, który jest zazwyczaj podawany przez producenta pojazdu. Na przykład, w wielu silnikach ciśnienie paliwa powinno wynosić od 2,5 do 3,5 bara. Zbyt niskie ciśnienie może być spowodowane przez uszkodzone pompy paliwa, zanieczyszczone filtry paliwa lub nieszczelności w układzie paliwowym. W przypadku stwierdzenia problemów z ciśnieniem, zaleca się systematyczne sprawdzenie całego układu paliwowego, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej, zapewniając rzetelne i skuteczne diagnostyki.

Pytanie 24

Wskaźnik, który informuje o aktywacji systemu kontroli trakcji, świeci w kolorze

A. niebieskim
B. żółtym
C. zielonym
D. czerwonym
Żółta kontrolka sygnalizująca, że system kontroli trakcji jest włączony to coś, co widzimy w każdym normalnym samochodzie. Jak się świeci, to znaczy, że system działa, a kierowca powinien być tego świadomy, bo to ważne dla bezpieczeństwa na drodze. TCS, czyli systemy kontroli trakcji, mają za zadanie zapobiegać ślizganiu się kół, co jest mega istotne, zwłaszcza na mokrej czy zaśnieżonej nawierzchni. Na przykład, jak przyspieszasz na śliskiej drodze, to TCS się włącza, żeby lepiej zarządzać mocą silnika i zapobiec utracie kontroli nad autem. To wszystko ma sens, bo są różne normy, jak ISO 26262, które mówią o bezpieczeństwie w pojazdach. Wiedza o tym, co oznaczają te sygnały świetlne, jest kluczowa, bo dzięki temu można lepiej reagować na to, co dzieje się na drodze.

Pytanie 25

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. z zanieczyszczenia płynu cząstkami i osadami
B. ze zwiększenia zawartości wody w płynie
C. z zapowietrzenia układu hamulcowego
D. ze zmiany składu chemicznego płynu
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 26

W przypadku urazu mechanicznego oka, pierwsza pomoc polega na

A. aplikacji kropli do oczu
B. spłukaniu oka
C. nałożeniu jałowej gazy na oko i wezwaniu pomocy medycznej
D. próbie usunięcia ciała obcego z oka
Nałożenie wyjałowionej gazy na oko i wezwanie pomocy lekarskiej to kluczowy krok w udzielaniu pierwszej pomocy przy urazie mechanicznym oka. W przypadku kontuzji, takich jak uraz mechaniczny, istotne jest, aby nie próbować samodzielnie usunąć ciała obcego ani nie stosować płukania, ponieważ może to prowadzić do dalszych uszkodzeń lub zakażeń. Wyjałowiona gaza służy jako bariera ochronna, chroniąca oko przed zanieczyszczeniami oraz minimalizująca ryzyko pogorszenia stanu. Po nałożeniu gazy niezbędne jest jak najszybsze wezwanie pomocy medycznej, ponieważ urazy oka mogą prowadzić do poważnych komplikacji, w tym do utraty wzroku. Warto również podkreślić, że w przypadku urazów oka, czas reakcji jest kluczowy; jak najszybsze udzielenie profesjonalnej pomocy zwiększa szansę na pozytywne rokowanie. W sytuacjach takich jak te, stosuje się wytyczne i standardy dotyczące pierwszej pomocy, które podkreślają znaczenie ochrony urazu oraz unikania działań mogących pogorszyć stan pacjenta.

Pytanie 27

Jaką podstawę ma identyfikacja pojazdu?

A. numer VIN nadwozia
B. numer dowodu rejestracyjnego pojazdu
C. numer karty pojazdu
D. numer silnika
Numer VIN (Vehicle Identification Number) to unikalny identyfikator pojazdu, który zawiera istotne informacje dotyczące jego konstrukcji, producenta oraz daty produkcji. Jest to 17-znakowy kod składający się z liter i cyfr, który pozwala na jednoznaczną identyfikację konkretnego pojazdu w rejestrach, a także w systemach monitorowania kradzieży czy w historii serwisowej. Przykładowo, podczas zakupu używanego samochodu, sprawdzenie numeru VIN umożliwia weryfikację jego historii, co jest niezbędne dla dokonania świadomego wyboru. W praktyce, numer VIN jest także stosowany przez organy ścigania oraz ubezpieczycieli w celu identyfikacji pojazdów, co czyni go kluczowym elementem w procesach związanych z rejestracją i ubezpieczeniem. W związku z tym, właściwe posługiwanie się numerem VIN jest nie tylko standardem branżowym, ale także najlepszą praktyką w zarządzaniu flotą pojazdów oraz w handlu motoryzacyjnym.

Pytanie 28

Przy użyciu areometru dokonuje się pomiaru

A. napięcia akumulatora.
B. gęstości elektrolitu.
C. temperatury elektrolitu.
D. wysokości elektrolitu.
Odpowiedź gęstości elektrolitu jest poprawna, ponieważ areometr jest narzędziem służącym do pomiaru gęstości cieczy. W przypadku elektrolitu akumulatorowego, gęstość jest kluczowym wskaźnikiem stanu naładowania akumulatora. Wartość gęstości elektrolitu zależy od jego stanu naładowania: im wyższa gęstość, tym lepsza kondycja akumulatora. Przykładem zastosowania areometru w praktyce jest okresowe sprawdzanie gęstości elektrolitu w akumulatorach kwasowo-ołowiowych, co pozwala na ocenę ich wydajności oraz żywotności. Standardy branżowe, takie jak SAE J537, zalecają monitorowanie gęstości elektrolitu jako kluczowego parametru podczas konserwacji akumulatorów. Wiedza na temat tego, jak interpretować wyniki pomiarów gęstości, jest niezbędna do prawidłowego zarządzania akumulatorami i zapewnienia ich długotrwałej pracy.

Pytanie 29

Za dostarczenie paliwa do cylindra w silniku Diesla odpowiada

A. pompa wtryskowa
B. gaźnik
C. pompa paliwowa
D. wtryskiwacz
Wtryskiwacz jest kluczowym elementem układu zasilania silnika wysokoprężnego, odpowiedzialnym za precyzyjne wtryskiwanie paliwa do cylindrów. W przeciwieństwie do silników benzynowych, w których stosuje się gaźniki, silniki wysokoprężne korzystają z bezpośredniego wtrysku, co pozwala na osiągnięcie lepszej wydajności spalania i niższej emisji spalin. Wtryskiwacze działają na zasadzie atomizacji paliwa, co zwiększa powierzchnię kontaktu paliwa z powietrzem, umożliwiając efektywne spalanie. Przykładem zastosowania wtryskiwaczy są nowoczesne silniki diesla, które wykorzystują wtryskiwacze piezoelektryczne, umożliwiające bardzo szybkie i dokładne wtryskiwanie paliwa, co jest kluczowe w kontekście osiągania wysokiej sprawności energetycznej oraz spełniania rygorystycznych norm emisji. W branży motoryzacyjnej, standardy takie jak Euro 6 wymuszają stosowanie zaawansowanych technologii wtrysku, co podkreśla znaczenie wtryskiwaczy w nowoczesnych konstrukcjach silnikowych.

Pytanie 30

Podczas próby olejowej, kiedy mierzono ciśnienie sprężania w silniku z zapłonem iskrowym, zaobserwowano wzrost ciśnienia w cylindrze o 0,4 MPa w porównaniu do pomiaru bez oleju. Najbardziej prawdopodobnym zakresem uszkodzeń silnika jest nieszczelność

A. układu tłok-cylinder
B. zaworu wylotowego
C. uszczelki pod głowicą
D. zaworu dolotowego
Wzrost ciśnienia sprężania o 0,4 MPa w czasie pomiaru olejowego wskazuje na problemy z nieszczelnością w układzie tłok-cylinder. Olej wprowadzany do cylindra działa jako uszczelniacz, co tymczasowo poprawia ciśnienie, a jego wzrost sugeruje, że uszczelki lub same tłoki mają trudności z właściwym sealowaniem. W praktyce, nieszczelności w układzie tłok-cylinder są częstym problemem w silnikach spalinowych i mogą prowadzić do znacznych strat mocy oraz zwiększonego zużycia paliwa. W standardach diagnostyki silników, takie objawy są często łączone z testami kompresji i próby olejowe są jedną z metod weryfikacji stanu silnika. Warto regularnie monitorować stan układu tłok-cylinder, aby zapobiec poważniejszym uszkodzeniom. Dobre praktyki obejmują również zastosowanie odpowiednich olejów silnikowych oraz regularną kontrolę stanu uszczelek i tłoków, co może znacznie przedłużyć żywotność silnika.

Pytanie 31

Jakie materiały stosuje się do produkcji wysoko obciążonych pierścieni tłokowych?

A. z stali nierdzewnej
B. z stali żaroodpornej
C. z stopów aluminium
D. z żeliwa sferoidalnego
Pierścienie tłokowe wysoko obciążone wykonuje się z żeliwa sferoidalnego (inaczej nazywanego żeliwem sferoidalnym lub duktalnym) ze względu na jego korzystne właściwości mechaniczne oraz odporność na ścieranie. Żeliwo sferoidalne charakteryzuje się lepszą wytrzymałością na rozciąganie oraz większą plastycznością w porównaniu do innych typów żeliwa, co czyni je idealnym materiałem do zastosowań w silnikach spalinowych oraz innych urządzeniach pracujących pod dużym obciążeniem. Dzięki swojej strukturze, żeliwo sferoidalne jest w stanie wytrzymać wysokie ciśnienia i temperatury, co jest kluczowe w kontekście pracy silników. W przemyśle motoryzacyjnym stosuje się je do produkcji pierścieni tłokowych, które muszą skutecznie uszczelniać komorę spalania, a także minimalizować zużycie paliwa. Zgodnie z normami branżowymi, takie pierścienie powinny utrzymać swoje właściwości w trudnych warunkach eksploatacyjnych, co w przypadku żeliwa sferoidalnego jest gwarantowane przez jego unikalne właściwości fizyczne i chemiczne.

Pytanie 32

Po prawidłowej realizacji naprawy związanej z wymianą czujnika prędkości obrotowej koła?

A. kontrolka ABS wyłączy się automatycznie po osiągnięciu odpowiedniej prędkości jazdy
B. należy dziesięciokrotnie uruchomić silnik w celu przeprowadzenia samodiagnozy układu ABS
C. konieczne jest ponowne przeprowadzenie diagnostyki układu oraz usunięcie kodów błędów
D. należy odłączyć klemę masową akumulatora na 15 sekund
Odłączenie klem masowej akumulatora na 15 sekund w celu resetu układów elektronicznych mogłoby rzeczywiście wpływać na stan niektórych systemów w pojeździe, jednak nie jest to standardowe podejście do układów ABS po wymianie czujnika prędkości obrotowej. Tego typu działanie nie zmienia faktu, że kontrolka ABS może pozostać aktywna, a system niekoniecznie przeprowadzi pełną samodiagnozę. W przypadku układów ABS, które są zaawansowane technologicznie, ważne jest, aby po wymianie czujnika przeprowadzić odpowiednie testy diagnostyczne zamiast liczyć na reset systemu przez odłączenie zasilania. Ponadto, samodzielne uruchamianie silnika dziesięciokrotnie w celu „samodiagnozy” nie jest uzasadnione, ponieważ system ABS dokonuje oceny i diagnostyki w trakcie normalnej pracy pojazdu. Co więcej, ponowna diagnostyka układu oraz usunięcie ewentualnych kodów błędów powinny być nieodłącznie związane z każdą interwencją w układach elektronicznych pojazdu. Dlatego ważne jest, aby mechanicy stosowali się do najlepszych praktyk i standardów diagnostycznych, aby uniknąć błędnych wniosków oraz zapewnić pełną funkcjonalność systemów bezpieczeństwa w pojazdach.

Pytanie 33

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. ochrona załączonego biegu przed rozłączeniem
B. modyfikacja prędkości kół napędowych
C. ograniczenie momentu obrotowego przekazywanego na koła
D. wyrównanie prędkości obrotowych załączanych elementów
Synchronizator w skrzyni biegów odgrywa kluczową rolę w zapewnieniu płynności zmiany biegów przez wyrównanie prędkości obrotowych załączanych elementów, co pozwala na ich bezproblemowe połączenie. W momencie zmiany biegu, synchronizator synchronizuje prędkości obrotowe wałka napędowego i koła zębatego, eliminując ryzyko uszkodzenia elementów skrzyni biegów oraz zwiększając komfort jazdy. Przykładami zastosowania są manualne skrzynie biegów w samochodach osobowych, gdzie kierowca zmienia biegi, a synchronizatory zapewniają, że nie występują zgrzyty ani inne nieprzyjemne dźwięki związane z niewłaściwym połączeniem. Rozwiązania te oparte są na standardach inżynierii mechanicznej, które podkreślają znaczenie precyzyjnego dopasowania elementów mechanicznych oraz poprawnego doboru materiałów. W praktyce, odpowiednio zaprojektowane synchronizatory zmniejszają zużycie elementów układu napędowego, co przekłada się na dłuższą żywotność pojazdu oraz niższe koszty eksploatacji.

Pytanie 34

Aby ocenić skuteczność hamulców w pojeździe na podstawie pomiaru siły hamowania, jakie urządzenie powinno być użyte?

A. urządzenie rolkowe
B. manometr o zakresie pomiarowym 0 do 10 MPa
C. opóźnieniomierz
D. czujnik nacisku
Wybór opóźnieniomierza jako metody oceny skuteczności hamulców jest niewłaściwy, ponieważ to urządzenie służy do mierzenia zmiany prędkości pojazdu w czasie, a nie bezpośrednio do pomiaru siły hamowania. Chociaż opóźnieniomierz może dostarczyć informacji o wydajności hamulców w postaci zmiany prędkości, nie jest w stanie precyzyjnie zmierzyć siły, jaką hamulce generują. To podejście może prowadzić do błędnych wniosków o skuteczności układów hamulcowych, zwłaszcza w sytuacjach, gdy warunki drogowe są zmienne. Z kolei czujnik nacisku, choć może monitorować ciśnienie w układzie hamulcowym, nie dostarcza informacji o rzeczywistej sile hamowania na koła, co jest kluczowe dla oceny skuteczności działania hamulców. Manometr, którego zakres pomiarowy wynosi 0 do 10 MPa, również nie jest odpowiednim narzędziem do oceny siły hamowania, ponieważ nie uwzględnia dynamicznych warunków pracy hamulców. Każde z tych narzędzi ma swoje zastosowanie w diagnostyce, ale nie zastąpią one kompleksowych testów prowadzonych na urządzeniach rolkowych, które są zgodne z aktualnymi standardami bezpieczeństwa. Właściwe podejście do oceny hamulców wymaga zrozumienia ich działania w rzeczywistych warunkach i zastosowania odpowiednich metod badawczych.

Pytanie 35

Stosunek rzeczywistej objętości powietrza w cylindrze do objętości powietrza niezbędnej do całkowitego spalenia paliwa znajdującego się w danym momencie w cylindrze nazywa się współczynnikiem

A. wypełnienia impulsu
B. nadmiaru powietrza
C. wzmocnienia
D. oporu powietrza
Współczynnik nadmiaru powietrza to kluczowy parametr w procesie spalania, który definiuje stosunek rzeczywistej ilości powietrza dostarczonego do silnika do ilości powietrza potrzebnej do całkowitego spalenia paliwa. W praktyce, gdy współczynnik nadmiaru powietrza wynosi 1, oznacza to, że do silnika dostarczono dokładnie tyle powietrza, ile potrzeba do spalenia całego paliwa. Wartości powyżej 1 wskazują na nadmiar powietrza, co jest korzystne z punktu widzenia redukcji emisji szkodliwych substancji, ponieważ sprzyja całkowitemu spalaniu paliwa. Przykładowo, w silnikach spalinowych, takich jak te stosowane w pojazdach, optymalizacja tego współczynnika pozwala na osiągnięcie lepszej efektywności paliwowej oraz zmniejszenie emisji tlenków azotu. Normy emisji, takie jak Euro 6, wymagają stosowania technologii, które pozwalają na kontrolowanie współczynnika nadmiaru powietrza w celu spełnienia rygorystycznych standardów dotyczących czystości spalin. Dobra praktyka w zakresie projektowania silników i układów wydechowych polega na monitorowaniu tego współczynnika w czasie rzeczywistym, co umożliwia dostosowanie parametrów pracy silnika do zmieniających się warunków eksploatacji.

Pytanie 36

Które z poniższych twierdzeń o samochodzie z automatyczną skrzynią biegów jest fałszywe?

A. Nie da się uruchomić pojazdu przez zaciągnięcie
B. W pojeździe można ręcznie zmieniać biegi
C. Nie powinno się holować samochodu na długie odległości
D. Zużycie paliwa jest zazwyczaj trochę wyższe niż w modelu z manualną skrzynią biegów
Wiesz, to stwierdzenie, że w samochodzie z automatyczną skrzynią biegów można zmieniać biegi ręcznie, jest nie do końca prawdziwe. W tradycyjnych automatach to wszystko odbywa się samodzielnie, więc kierowca nie musi się w ogóle tym przejmować. Oczywiście, w nowszych modelach można spotkać coś takiego jak tryb manualny, gdzie jakby można zmieniać biegi, ale to nie jest to, co mamy na myśli w kontekście typowych aut. Automatyczne skrzynie są stworzone, żeby zaoszczędzić paliwo i ułatwić jazdę, bez potrzeby ciągłego operowania sprzęgłem. Na przykład Toyota Prius świetnie to pokazuje – można przyspieszać bardzo płynnie, co jest super dla oszczędności. I pamiętaj, że te nowoczesne skrzynie muszą współpracować z innymi systemami w aucie, to czyni je bardziej skomplikowanymi, ale też lepszymi w działaniu. Dlatego twoje stwierdzenie, że w automacie można ręcznie zmieniać biegi, nie jest zgodne z rzeczywistością.

Pytanie 37

Ciśnienie paliwa w silniku o zapłonie samoczynnym, w którym zastosowano system zasilania Common Rail trzeciej generacji, powinno wynosić w przybliżeniu

A. 1,8 MPa
B. 180 MPa
C. 1800 MPa
D. 18 MPa
Odpowiedź 180 MPa to jest strzał w dziesiątkę! W silnikach diesla z układem Common Rail trzeciej generacji ciśnienie paliwa powinno być właśnie na tym poziomie. Te układy są zaprojektowane tak, żeby działały z wysokim ciśnieniem, co sprawia, że paliwo jest wtryskiwane z większą precyzją, a to z kolei poprawia jego atomizację. Dzięki temu mamy efektywniejsze spalanie i mniej spalin w porównaniu do starszych rozwiązań. Warto pamiętać, że regularne sprawdzanie ciśnienia paliwa to dobry zwyczaj dla mechaników, bo jeśli ciśnienie jest za niskie lub za wysokie, to silnik może mieć problemy, co odbije się na wydajności i może nawet uszkodzić wtryski. Przykładem może być regularne serwisowanie, gdzie fachowcy kontrolują to ciśnienie, żeby silnik mógł działać jak należy. To istotne dla osiągów samochodu i jego żywotności.

Pytanie 38

Czym jest honowanie?

A. metoda obróbki wygładzającej
B. metoda obróbki chemicznej
C. metoda obróbki plastycznej
D. metoda obróbki cieplnej
Wybór metody obróbki cieplnej, plastycznej lub chemicznej jako definicji honowania jest nieprawidłowy i wynika z nieporozumienia dotyczącego charakterystyki tych procesów. Obróbka cieplna, na przykład, polega na zmianie właściwości materiałów przez ich podgrzewanie i schładzanie, co ma na celu poprawę twardości lub wytrzymałości, ale nie wpływa bezpośrednio na gładkość powierzchni. Procesy plastyczne z kolei, takie jak walcowanie czy tłoczenie, różnią się zasadniczo od honowania, ponieważ koncentrują się na kształtowaniu materiału w stanie plastycznym, co nie jest zgodne z celem honowania, które polega na precyzyjnej obróbce powierzchni. Obróbka chemiczna zazwyczaj polega na zastosowaniu substancji chemicznych do zmiany właściwości materiałów, co również nie ma związku z honowaniem, które jest precyzyjnym procesem mechanicznym skupionym na wygładzaniu i uzyskiwaniu odpowiednich tolerancji wymiarowych. Typowe błędy myślowe prowadzące do tych niepoprawnych koncepcji obejmują zrozumienie honowania jako ogólnego procesu obróbki, a nie jako specjalistycznej metody wykańczania, co jest kluczowe w kontekście inżynierii i technologii produkcji. Niezrozumienie różnic między tymi procesami może prowadzić do błędów w projektowaniu i wytwarzaniu komponentów mechanicznych, co z kolei wpływa na ich funkcjonalność i trwałość.

Pytanie 39

Rezystancję oblicza się jako

A. sumę natężenia oraz napięcia prądu elektrycznego
B. różnicę natężenia oraz napięcia prądu elektrycznego
C. iloraz napięcia do natężenia prądu elektrycznego
D. iloczyn napięcia oraz natężenia prądu elektrycznego
Rezystancja, jako wielkość elektryczna, jest ściśle związana z zachowaniem się prądu w obwodach. Nieprawidłowe odpowiedzi w pytaniu opierają się na błędnych założeniach dotyczących podstawowych zasad obwodów elektrycznych. Na przykład, twierdzenie, że rezystancja jest iloczynem napięcia i natężenia prądu, jest fundamentalnie błędne. Taki związek sugeruje, że im większe napięcie i natężenie, tym większa rezystancja, co stoi w sprzeczności z rzeczywistymi obserwacjami. Rezystancja jest z definicji miarą oporu, jaki dany materiał stawia przepływającemu przez niego prądowi, a nie wartością wynikającą z mnożenia dwóch innych wielkości. Podobnie, inne odpowiedzi, które sugerują, że rezystancja to różnica lub suma napięcia i natężenia, także są niepoprawne. Prawo Ohma jednoznacznie określa, że to właśnie iloraz napięcia do natężenia jest właściwą definicją rezystancji. Często błędy te wynikają z niepełnego zrozumienia jednostek miary oraz relacji między nimi. Zrozumienie tych podstawowych pojęć jest kluczowe dla dalszego rozwoju w dziedzinie elektroniki i elektrotechniki, ponieważ wpływa na sposób analizy obwodów oraz projektowania systemów elektrycznych. Wiedza na temat rezystancji jest nie tylko teoretyczna, ale ma praktyczne zastosowanie w budowie i diagnostyce urządzeń elektrycznych, co czyni ją podstawą dla każdego inżyniera w tej dziedzinie.

Pytanie 40

Zrealizowanie zasady Ackermana skutkuje

A. tylko układ kierowniczy z przekładnią zębatkową
B. utrata przyczepności kół osi kierowanej podczas pokonywania łuku
C. mechanizm zwrotniczy w kształcie trapezu
D. identyczne kąty skrętu kół osi kierowanej w trakcie jazdy po łuku
Trapezowy mechanizm zwrotniczy to zaawansowane rozwiązanie inżynieryjne, które zapewnia poprawne skręcanie kół osi kierowanej. Jego konstrukcja opiera się na trapezowym kształcie, który pozwala na synchronizację ruchu obu kół w czasie skrętu. Dzięki temu mechanizmowi, pojazdy mogą osiągać lepszą stabilność i manewrowość podczas jazdy po łuku. Przykłady zastosowania trapezowego mechanizmu zwrotniczego można znaleźć w nowoczesnych samochodach osobowych oraz pojazdach użytkowych. W branży motoryzacyjnej stosowanie tego typu rozwiązań jest zgodne z dobrymi praktykami w zakresie inżynierii mechanicznej oraz bezpieczeństwa ruchu drogowego. Dzięki trapezowej formie mechanizm ten minimalizuje ryzyko utraty przyczepności, co jest kluczowe dla zapewnienia bezpieczeństwa pasażerów oraz stabilności pojazdu. Dodatkowo, stosowanie trapezowego mechanizmu zwrotniczego umożliwia łatwiejszą obsługę i konserwację układu kierowniczego, co jest istotne z punktu widzenia eksploatacji.