Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 kwietnia 2025 15:53
  • Data zakończenia: 15 kwietnia 2025 16:05

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Wał napędowy stanowi komponent

A. różnicujący prędkości obrotowe kół jezdnych w zakrętach oraz na nierównych nawierzchniach
B. przenoszący moment obrotowy bezpośrednio z przekładni głównej na koła napędowe
C. wyrównujący prędkości pomiędzy poszczególnymi kołami
D. przenoszący moment obrotowy ze skrzyni biegów na przekładnię główną
Wał napędowy jest kluczowym komponentem w systemie przeniesienia napędu w pojazdach. Jego główną funkcją jest przenoszenie momentu obrotowego ze skrzyni biegów na przekładnię główną, co pozwala na napędzanie kół pojazdu. W kontekście konstrukcji pojazdów, wał napędowy jest zazwyczaj wykonany z materiałów odpornych na wysokie obciążenia mechaniczne, co zapewnia jego trwałość i niezawodność. Przykładem praktycznego zastosowania wału napędowego jest w samochodach osobowych oraz pojazdach terenowych, gdzie jego działanie jest kluczowe dla prawidłowego funkcjonowania całego układu napędowego. Warto również zauważyć, że w nowoczesnych pojazdach często stosuje się wały przegubowe, które minimalizują drgania i umożliwiają lepsze dopasowanie do ruchów zawieszenia. Dobre praktyki w projektowaniu wałów napędowych obejmują stosowanie odpowiednich materiałów, precyzyjne obliczenia obciążeń oraz regularne konserwacje, co pozwala na zwiększenie efektywności i bezpieczeństwa jazdy.

Pytanie 3

Przyczyną dźwięków pojawiających się w systemie napędowym pojazdu, które nasilają się podczas skrętów lub zawracania, jest uszkodzenie

A. przekładni kierowniczej
B. skrzyni biegów
C. sprzęgła
D. przegubu napędowego
Przegub napędowy jest kluczowym elementem układu napędowego pojazdu, który umożliwia przenoszenie momentu obrotowego z silnika na koła, zwłaszcza podczas skręcania. Stuki, które mogą występować podczas manewrów skrętnych, często są wynikiem uszkodzenia przegubów, które nie są w stanie skutecznie absorbować ruchów zawieszenia. W przypadku przegubów, ich uszkodzenie objawia się charakterystycznym dźwiękiem, który jest słyszalny podczas zmiany kierunku jazdy. Użytkownicy powinni być świadomi, że regularne sprawdzanie stanu przegubów napędowych oraz ich odpowiednia konserwacja mogą znacząco zmniejszyć ryzyko awarii. W dobrych praktykach branżowych zaleca się wymianę przegubów w momencie stwierdzenia ich zużycia lub pojawienia się jakichkolwiek niepokojących dźwięków, aby uniknąć kosztownych napraw związanych z uszkodzeniem innych komponentów układu napędowego. Pamiętajmy również, że przeguby napędowe podlegają różnym obciążeniom, co sprawia, że ich wytrzymałość i sprawność są kluczowe dla bezpieczeństwa i komfortu jazdy.

Pytanie 4

Współczynnik absorpcji światła to parametr, który wskazuje na stopień

A. węglowodorów
B. zadymienia spalin
C. poziomu tlenku węgla w spalinach
D. nadużycia tlenu
Współczynnik pochłaniania światła jest kluczowym parametrem w ocenie zadymienia spalin, co ma istotne znaczenie w kontekście ochrony środowiska oraz stosowania technologii kontrolujących emisję zanieczyszczeń. Zadymienie spalin odnosi się do obecności cząstek stałych i aerozoli, które mogą wpływać na jakość powietrza oraz zdrowie ludzi. Zgodnie z normami, takimi jak ISO 8178, współczynnik pochłaniania światła jest używany do oceny skuteczności systemów filtracji oraz redukcji dymu w silnikach spalinowych. Na przykład w silnikach diesla, wysoki współczynnik pochłaniania światła wskazuje na obecność dużej ilości cząstek stałych, co może wymagać działań naprawczych lub modernizacji układu wydechowego. Praktyczne zastosowanie tego wskaźnika pozwala na monitorowanie emisji oraz dostosowanie procesów technologicznych w celu spełnienia regulacji ochrony środowiska, co jest niezbędne w branżach takich jak energetyka, transport czy przemysł ciężki.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaką informację zawartą w dowodzie rejestracyjnym pojazdu powinien wykorzystać mechanik przy zamawianiu części zamiennych do naprawy pojazdu?

A. Numer identyfikacyjny pojazdu
B. Data ważności przeglądu technicznego
C. Numer rejestracyjny
D. Data pierwszej rejestracji w kraju
Numer identyfikacyjny pojazdu (VIN) jest kluczowym elementem przy zamawianiu części zamiennych, ponieważ stanowi unikalny identyfikator każdego pojazdu. VIN zawiera informacje dotyczące producenta, modelu, roku produkcji oraz specyfikacji technicznych pojazdu. Mechanik, korzystając z tego numeru, ma pewność, że zamawiane części będą dokładnie pasować do konkretnego pojazdu, co jest niezwykle istotne, aby uniknąć problemów z kompatybilnością. Na przykład, jeśli mechanik zamawia części do silnika, to różnice między modelami mogą być na tyle znaczące, że użycie niewłaściwego komponentu mogłoby doprowadzić do awarii lub obniżenia wydajności pojazdu. Korzystanie z VIN jest zgodne z najlepszymi praktykami w branży, ponieważ zapewnia także łatwy dostęp do historii serwisowej pojazdu, co może być pomocne w diagnozowaniu problemów oraz planowaniu przyszłych napraw. Znajomość i wykorzystanie VIN to zatem standard, który każdy profesjonalny mechanik powinien stosować w swojej pracy.

Pytanie 8

Niski wynik uzyskany w pomiarze przeprowadzonym metodą Eusama wskazuje na potrzebę wymiany

A. sprężyny śrubowe zawieszenia
B. amortyzatory
C. hamulce tarczowe
D. stabilizatory
Amortyzatory to naprawdę ważny element w zawieszeniu każdego auta. Dobrze działają, kiedy kontrolują ruchy sprężyn i redukują drgania. Jak masz niski wynik z metody Eusama, to znaczy, że twoje amortyzatory mogą nie działać jak powinny, a to może wpłynąć na całe zawieszenie. W branży zwraca się uwagę na to, żeby regularnie sprawdzać i serwisować amortyzatory, bo to podstawa dla bezpieczeństwa i komfortu jazdy. Jeżeli wynik jest niziutki, to warto pomyśleć o ich wymianie. Dzięki temu poprawisz stabilność auta i skrócisz drogę hamowania. Ignorowanie stanu amortyzatorów może prowadzić do jakichś poważniejszych problemów, a nawet wypadków. Dlatego dobrze, żeby mechanicy na bieżąco kontrolowali ich stan, zwłaszcza że to jedna z najlepszych praktyk w tej branży.

Pytanie 9

Pierwszym krokiem przed przeprowadzeniem badania okresowego w Stacji Kontroli Pojazdów jest

A. sprawdzenie indeksu tłumienia amortyzatorów osi przedniej
B. sprawdzenie oraz regulacja ciśnienia w oponach do wartości nominalnych
C. pobranie informacji o badanym pojeździe z Centralnej Ewidencji Pojazdów
D. pomiar zadymienia spalin silnika ZI
Prawidłowa odpowiedź to pobranie danych badanego pojazdu z Centralnej Ewidencji Pojazdów (CEP). Jest to kluczowy krok w procesie przeprowadzania badania okresowego, ponieważ pozwala na weryfikację tożsamości pojazdu oraz jego historii. Centralna Ewidencja Pojazdów zawiera dane dotyczące właścicieli, zarejestrowanych pojazdów, a także informacje o ich stanie technicznym oraz ewentualnych stłuczkach czy wypadkach. Praktyczne zastosowanie tego kroku polega na unikaniu nieporozumień związanych z identyfikacją pojazdu, co jest nie tylko zgodne z przepisami prawa, ale również zwiększa bezpieczeństwo podczas przeprowadzania badań. Zgodnie z dobrą praktyką branżową, każda stacja kontroli pojazdów powinna mieć dostęp do CEP, aby móc sprawdzić, czy pojazd spełnia wymogi stawiane przez prawo. Dodatkowo, pozyskanie danych z CEP pozwala na ocenę, czy pojazd został poddany wcześniejszym badaniom, co może wskazywać na jego stan techniczny oraz potrzebne naprawy.

Pytanie 10

Jak wykonuje się pomiar wysokości krzywki wałka rozrządu?

A. szczelinomierzem
B. mikromierzem do pomiarów wewnętrznych
C. suwmiarką noniuszową
D. głębokościomierzem
Mikromierz do pomiarów wewnętrznych, głębokościomierz i szczelinomierz to narzędzia, które posiadają różne zastosowania, ale nie są one idealnymi rozwiązaniami do pomiaru wysokości krzywki wałka rozrządu. Mikromierz, choć precyzyjny, jest przeznaczony głównie do pomiarów średnic wewnętrznych lub zewnętrznych, a nie do wysokości. Jego konstrukcja nie pozwala na łatwe i bezbłędne zmierzenie wysokości krzywki, gdyż wymaga on odpowiedniego punktu wsparcia, co może prowadzić do błędów pomiarowych. Głębokościomierz natomiast, jak sama nazwa wskazuje, służy do pomiarów głębokości otworów czy rowków, co nie ma zastosowania w przypadku pomiaru wysokości krzywki. Użycie głębokościomierza do tego celu może skutkować nieprecyzyjnymi wynikami, ponieważ nie jest on dostosowany do pomiarów na płaszczyznach poziomych, a jedynie pionowych. Szczelinomierz, z kolei, służy do pomiaru szczelin i to jest jego główne zastosowanie. Używanie go do pomiaru wysokości krzywek prowadzi do błędnego wnioskowania, ponieważ szczelinomierz nie jest narzędziem do pomiarów wymiarów zewnętrznych i nie daje możliwości uzyskania precyzyjnych odczytów wysokości. Prawidłowe pomiary w inżynierii mechanicznej wymagają odpowiednich narzędzi dostosowanych do specyficznych zadań, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w pracy.

Pytanie 11

Podczas holowania uszkodzonego samochodu z automatyczną skrzynią biegów należy

A. odłączyć system sterowania skrzynią biegów
B. unosić oś napędzaną pojazdu
C. ustawić dźwignię zmiany biegów w pozycji D (jazda)
D. spuścić olej ze skrzyni biegów
Podczas holowania uszkodzonego pojazdu wyposażonego w automatyczną skrzynię biegów kluczowe jest uniesienie osi napędzanej, co zapobiega uszkodzeniu skrzyni biegów. Automatyczne skrzynie biegów są zaprojektowane do pracy w ruchu i ich elementy, takie jak pompa olejowa, wymagają ruchu, aby prawidłowo smarować wewnętrzne części. Jeśli pojazd jest holowany w sposób, który nie unosi osi napędzanej, istnieje ryzyko, że olej smarujący nie będzie krążył, co może prowadzić do przegrzania lub uszkodzenia skrzyni biegów. Przykładem prawidłowego postępowania jest użycie platformy holowniczej, która unosi cały przód lub tył pojazdu, co zapewnia, że skrzynia biegów pozostaje w bezpiecznej i odpowiedniej pozycji. W branży motoryzacyjnej standardowym podejściem jest unikanie holowania pojazdów z automatycznymi skrzyniami biegów na kołach napędzanych, co może być zgodne z wytycznymi producentów pojazdów. Warto także zapoznać się z instrukcją obsługi pojazdu, gdzie często znajdziemy informacje dotyczące holowania.

Pytanie 12

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Zgodnie z instrukcjami producenta silnika
B. Kolejno, zaczynając od strony rozrządu
C. W dowolnej sekwencji
D. Od lewej do prawej
Dokręcanie śrub w dowolnej kolejności lub według intuicji może prowadzić do poważnych problemów mechanicznych i uszkodzenia silnika. Każdy silnik jest projektem inżynieryjnym, który wymaga precyzyjnego podejścia do montażu. Dokręcanie od prawej do lewej lub po kolei, zaczynając od strony rozrządu, może wydawać się logiczne, jednak te metody nie uwzględniają specyfiki konstrukcji i materiałów użytych w danym silniku. Śruby są projektowane z myślą o określonym rozkładzie naprężeń, który można osiągnąć jedynie stosując odpowiednią sekwencję dokręcania, jaką zaleca producent. Dodatkowo, niespełnienie wymogów dotyczących momentu obrotowego może prowadzić do poluzowania się śrub w trakcie eksploatacji lub wręcz ich pęknięcia. Przy dokręcaniu śrub głowicy silnika, na każdym etapie należy zachować ostrożność oraz skrupulatnie przestrzegać zaleceń producenta, co jest kluczowe dla długowieczności i niezawodności silnika. Ostatecznie, podejście oparte na intuicji może prowadzić do kosztownych napraw i skrócenia żywotności jednostki napędowej.

Pytanie 13

Masa własna pojazdu obejmuje

A. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
B. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
C. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
D. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 14

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Średnicy sworznia tłokowego
B. Objętości cylindra
C. Średnicy tłoka
D. Grubości pierścienia
Objętości cylindra nie można zmierzyć metodą pomiaru bezpośredniego, ponieważ wymaga ona zastosowania bardziej skomplikowanych technik obliczeniowych. Objętość cylindryczna zależy od jego wymiarów, takich jak średnica i wysokość, ale sama w sobie nie jest wymiarem, który można bezpośrednio zmierzyć. W praktyce pomiar objętości często przeprowadza się za pomocą metod pośrednich, takich jak wypełnienie cylindra cieczą czy gazem, a następnie obliczenie objętości na podstawie zmierzonych wartości. W branży inżynieryjnej i mechanicznej standardem jest stosowanie równań matematycznych, takich jak V = πr²h, gdzie V to objętość, r to promień podstawy, a h to wysokość. Przykłady zastosowań obejmują projektowanie silników spalinowych, gdzie precyzyjne obliczenia objętości cylindrów są kluczowe dla efektywności silnika oraz jego wydajności.

Pytanie 15

Jaką liczbę znaków zawiera numer VIN?

A. składa się z 10 znaków
B. składa się z 17 znaków
C. składa się z 12 znaków
D. składa się z 15 znaków
Numer VIN (Vehicle Identification Number) składa się z 17 znaków, co jest wynikiem standaryzacji wprowadzonej przez Międzynarodową Organizację Normalizacyjną (ISO) i przyjętej przez wiele krajów. VIN zawiera informacje o pojeździe, takie jak producent, model, typ nadwozia, rok produkcji, a także unikalny numer seryjny. Przykładowo, pierwsze trzy znaki VIN, znane jako WMI (World Manufacturer Identifier), identyfikują producenta pojazdu. Kolejne znaki dostarczają szczegółowych informacji na temat modelu, silnika oraz miejsca produkcji. Dzięki temu systemowi, każdy pojazd na świecie ma unikalny identyfikator, co jest niezbędne do rejestracji, ubezpieczenia oraz identyfikacji w przypadku kradzieży. Zrozumienie struktury i znaczenia numeru VIN jest kluczowe dla osób pracujących w branży motoryzacyjnej, a także dla właścicieli pojazdów, którzy chcą zadbać o swoje mienie.

Pytanie 16

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h

A. 4,0 h
B. 5,0 h
C. 3,5 h
D. 4,5 h
Odpowiedź 4,5 h jest poprawna, ponieważ czas wymiany uszczelnień tłoczków hamulcowych w samochodzie Polonez 1500 został dokładnie określony w taryfikatorze czasochłonności napraw. Wymiana uszczelnień tłoczków hamulcowych z przodu zajmuje 1,5 h, a z tyłu 2 h, co razem daje 3,5 h. Dodatkowo, odpowietrzenie układu hamulcowego to kolejny proces, który wymaga dodatkowej godziny. Sumując te czasy, otrzymujemy całkowity czas naprawy wynoszący 4,5 h. W praktyce, właściwe oszacowanie czasu naprawy jest kluczowe dla efektywności pracy warsztatu, umożliwiając lepsze planowanie zadań oraz obliczanie kosztów usług. Zrozumienie taryfikatorów oraz umiejętność ich stosowania w codziennej praktyce jest niezbędne dla mechaników, by móc świadczyć usługi zgodnie z przyjętymi standardami branżowymi.

Pytanie 17

Po wymianie końcówek drążka kierowniczego należy koniecznie zweryfikować oraz w razie potrzeby przeprowadzić regulację

A. wyważenia kół
B. zbieżności kół przednich
C. zbieżności kół tylnych
D. ustawienia świateł
Po wymianie końcówek drążka kierowniczego kluczowe jest sprawdzenie i regulacja zbieżności kół przednich, ponieważ niewłaściwa zbieżność może prowadzić do nierównomiernego zużycia opon, pogorszenia stabilności pojazdu oraz negatywnego wpływu na jego właściwości jezdne. Zbieżność odnosi się do ustawienia kół w stosunku do siebie oraz do linii środkowej pojazdu. Utrzymanie prawidłowej zbieżności jest niezbędne, aby zapewnić optymalne prowadzenie i komfort jazdy. Przykładowo, jeśli kółka są zbieżne zbyt mocno do wewnątrz lub na zewnątrz, może to prowadzić do trudności w manewrowaniu oraz zwiększonego oporu toczenia. W praktyce, po wymianie końcówek drążka, mechanicy często korzystają z profesjonalnych urządzeń do pomiaru zbieżności, aby precyzyjnie ustawić kąty pracy kół. Zgodnie z zaleceniami branżowymi, regulację zbieżności powinno się przeprowadzać co najmniej raz w roku lub po każdej większej interwencji w układ kierowniczy, aby zapewnić długoterminowe bezpieczeństwo i efektywność pojazdu.

Pytanie 18

Zrealizowanie zasady Ackermana skutkuje

A. utrata przyczepności kół osi kierowanej podczas pokonywania łuku
B. identyczne kąty skrętu kół osi kierowanej w trakcie jazdy po łuku
C. tylko układ kierowniczy z przekładnią zębatkową
D. mechanizm zwrotniczy w kształcie trapezu
Wybór odpowiedzi dotyczący utraty przyczepności kół osi kierowanej w czasie jazdy po łuku jest mylący, ponieważ zasada Ackermana ma na celu właśnie zapobieganie takiej sytuacji. Utrata przyczepności jest wynikiem niewłaściwego skrętu kół, co prowadzi do nieprawidłowego kontaktu z nawierzchnią. W przypadku równego kąta skrętu kół osi kierowanej, co sugeruje jedna z odpowiedzi, pojazd może napotkać problemy z równomiernym zużyciem opon oraz mniejszą stabilnością. Samochody nie są projektowane do jazdy z równymi kątami skrętu, ponieważ każdy z kół przemieszcza się po innym promieniu, co jest fundamentalnym aspektem w inżynierii układów kierowniczych. Odpowiedź sugerująca jedynie układ kierowniczy z zębatkową przekładnią kierowniczą ignoruje inne, kluczowe elementy systemu kierowniczego, takie jak mechanizmy zwrotnicze, które odgrywają istotną rolę w manewrowości pojazdu. Zrozumienie działania trapezowego mechanizmu zwrotniczego powinno być kluczowe dla każdego inżyniera lub technika zajmującego się motoryzacją. W kontekście lepszej przyczepności, zasada Ackermana jest fundamentalnym aspektem, który pozwala na bezpieczne i efektywne zarządzanie kierowaniem pojazdem, a pominięcie jej wymagań w projektowaniu układów kierowniczych może prowadzić do niebezpiecznych sytuacji na drodze.

Pytanie 19

Który z elementów układu kierowniczego jest najbardziej podatny na zużycie?

A. Sworzeń kulisty
B. Kolumna kierownicza
C. Drążek kierowniczy
D. Przekładnia kierownicza
Wybór drążka kierowniczego, przekładni kierowniczej lub kolumny kierowniczej jako elementów narażonych na największe zużycie może wynikać z niepełnego zrozumienia funkcji oraz obciążeń, którym podlegają te komponenty. Drążek kierowniczy, chociaż również ważny, ma na celu tylko przekazywanie ruchu z przekładni kierowniczej do sworzni kulistych. Narażony na zużycie jest, ale w mniejszym stopniu niż sworzeń kulisty, ponieważ nie wykonuje ruchów w tak szerokim zakresie. Przekładnia kierownicza, z kolei, jest odpowiedzialna za przekształcanie ruchu obrotowego kierownicy na ruch liniowy drążków kierowniczych, ale jej zużycie jest w praktyce rzadziej zauważalne i następuje w dłuższym okresie użytkowania. Kolumna kierownicza, będąca ramą dla całego układu, nie ulega tak szybkiemu zużyciu, ponieważ nie jest bezpośrednio narażona na dynamiczne zmiany obciążenia podczas jazdy. Zrozumienie różnic w funkcjonowaniu tych elementów układu kierowniczego jest kluczowe dla prawidłowej oceny ich stanu. Typowym błędem jest mylenie funkcjonalności i obciążeń poszczególnych części układu, co prowadzi do niewłaściwych wniosków o ich trwałości. Dlatego istotne jest, aby kierowcy i mechanicy regularnie przeprowadzali przeglądy, skupiając się na elementach najbardziej narażonych na zużycie, takich jak sworzeń kulisty, a nie na mniej krytycznych komponentach.

Pytanie 20

W głównej przekładni mostu napędowego najczęściej wykorzystuje się przekładnie

A. hipoidalną.
B. walcową.
C. cierną.
D. ślimakową.
Przekładnie hipoidalne są najczęściej stosowane w przekładniach głównych mostów napędowych ze względu na ich unikalne właściwości. Ich konstrukcja pozwala na efektywne przenoszenie momentu obrotowego przy jednoczesnym zapewnieniu kompaktowych rozmiarów. Przekładnie te charakteryzują się zębatkami, które są ustawione pod kątem, co umożliwia większy kąt zębatki w porównaniu do przekładni walcowych. Dzięki temu, hipoidalne przekładnie oferują lepsze właściwości w zakresie redukcji hałasu oraz zmniejszenia wibracji. W praktyce, wykorzystywane są w pojazdach osobowych, ciężarowych oraz w maszynach przemysłowych, gdzie wymagana jest wysoka wydajność przeniesienia mocy. Te przekładnie są zgodne z normami branżowymi, co zapewnia ich niezawodność i trwałość. Dodatkowo, ich projektowanie opiera się na doskonałych praktykach inżynieryjnych, które pozwalają na optymalizację osiągów i ekonomii eksploatacji.

Pytanie 21

Aby rozmontować końcówkę drążka kierowniczego z ramienia zwrotnicy, jaki sprzęt powinno się zastosować?

A. młotka bezwładnościowego
B. szczypiec uniwersalnych
C. ściągacza do przegubów kulowych
D. prasy hydraulicznej
Ściągacz do przegubów kulowych to naprawdę przydatne narzędzie, które stworzone jest z myślą o demontażu połączeń kulowych, jak końcówki drążków kierowniczych. Dzięki niemu siła rozkłada się równomiernie, co zmniejsza ryzyko uszkodzenia elementów w układzie kierowniczym oraz samego przegubu. Użycie ściągacza może naprawdę zwiększyć bezpieczeństwo pracy i zaoszczędzić czas, bo pozwala na szybkie rozłączenie części. Z mojego doświadczenia, kiedy pojawia się problem z korozją lub użytkowaniem, to ściągacz jest często jedynym sensownym rozwiązaniem, które pozwala na skuteczne zdjęcie końcówki bez uszkodzenia. Pamiętaj, że przestrzeganie norm BHP jest mega ważne - korzystając ze ściągacza, masz większą kontrolę nad procesem i mniejsze ryzyko kontuzji, w porównaniu do innych metod, jak młotek.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Aby wyciągnąć i zainstalować tłoki w silniku ZI o czterech cylindrach w układzie rzędowym bez demontażu całego silnika, należy zdemontować

A. głowicę i pokrywy korbowodów
B. pokrywy korbowodów
C. głowicę, pokrywy korbowodów oraz wał korbowy
D. pokrywy korbowodów oraz wał korbowy
Wybór odpowiedzi dotyczącej demontażu jedynie pokryw korbowodów lub dodatkowo wału korbowego pokazuje niepełne zrozumienie budowy silnika i jego komponentów. Pokrywy korbowodów mają na celu zabezpieczanie układu korbowego, ale same w sobie nie wystarczą do uzyskania dostępu do tłoków. Wał korbowy, będąc centralnym elementem przekształcającym ruch posuwisto-zwrotny tłoków na ruch obrotowy, nie powinien być demontowany, gdyż jego usunięcie wiąże się z wieloma dodatkowymi komplikacjami, w tym koniecznością demontażu innych kluczowych komponentów silnika. W przypadku odpowiedzi sugerującej demontaż głowicy i pokryw korbowodów oraz wału korbowego, stwierdzenie to jest zbyteczne, gdyż dostęp do tłoków można uzyskać bez potrzeby demontowania wału, co zwiększa ryzyko błędów w montażu. Typowym błędem myślowym jest założenie, że wszystkie elementy silnika muszą być usunięte do uzyskania dostępu do tłoków. Wiedza o tym, które elementy można zdemontować, a które nie, jest kluczowa w praktyce serwisowej, a niewłaściwe podejście może prowadzić do niepotrzebnych kosztów i czasochłonnych napraw.

Pytanie 24

Sprzęt do wyważania kół w pojazdach jest uzupełnieniem wyposażenia stacji do

A. demontażu i montażu opon
B. analizy układu hamulcowego pojazdu
C. weryfikacji zawieszenia pojazdu
D. sprawdzania ustawienia kół oraz osi w samochodzie
Urządzenie do wyważania kół samochodowych jest niezbędne w procesie demontażu i montażu ogumienia, ponieważ zapewnia, że opony są właściwie wyważone przed ich zamontowaniem na pojeździe. Niewłaściwe wyważenie kół może prowadzić do drgań, co z kolei wpływa na komfort jazdy, zużycie opon oraz komponentów zawieszenia. Wyważanie kół polega na rozłożeniu masy opony i felgi w sposób równomierny, co jest kluczowe dla stabilności pojazdu. W profesjonalnych warsztatach mechanicznych stosuje się nowoczesne urządzenia, które są w stanie wykrywać nawet niewielkie nierówności. Dobrą praktyką jest także wykonywanie wyważania kół po każdym demontażu opon, co jest zgodne z normami branżowymi. Tego typu procedury są powszechnie stosowane w serwisach samochodowych, aby zapewnić bezpieczeństwo i wydajność pojazdów, a także przedłużyć żywotność opon.

Pytanie 25

Czym jest liczba cetanowa?

A. wartością opałową paliwa
B. zdolnością paliwa do samozapłonu
C. odpornością paliwa na samozapłon
D. odpornością paliwa na niskie temperatury
Wszystkie pozostałe odpowiedzi dotyczą różnych aspektów paliw, ale nie są związane z główną funkcją liczby cetanowej. Odporność paliwa na niskie temperatury to zupełnie inny parametr, który zwykle określa się poprzez badania związane z temperaturą krzepnięcia czy temperaturą zapłonu. Te właściwości są ważne, ale nie odnoszą się do zdolności do samozapłonu. Wartości opałowa paliwa natomiast odnosi się do energii, jaką paliwo może wydzielać podczas spalania, co jest ważne dla efektywności energetycznej, lecz nie wpływa na to, jak szybko paliwo zapali się w silniku. Z kolei odporność paliwa na samozapłon mogłaby sugerować, że paliwo wykazuje trudności w zapłonie, co jest całkowicie sprzeczne z pojęciem liczby cetanowej. Typowym błędem myślowym w tej kwestii jest mylenie parametrów dotyczących wydajności paliwa z jego zdolnością do samozapłonu. Wybierając paliwo, istotne jest zrozumienie, że liczba cetanowa jest bezpośrednio związana z procesem wtrysku i spalania, a nie z innymi właściwościami fizyko-chemicznymi, które mogą tylko pośrednio wpływać na efektywność silnika.

Pytanie 26

Odczuwane wibracje podczas startu pojazdu mogą świadczyć o

A. uszkodzeniu tarczy sprzęgłowej
B. deformacji tarczy hamulcowej
C. zablokowaniu systemu chłodzenia
D. niewyważeniu kół
Kiedy tarcza sprzęgłowa jest uszkodzona, możesz odczuwać nieprzyjemne drgania, jak ruszasz pojazdem. To ta część, która łączy silnik z skrzynią biegów, więc jest dość ważna. Jak tarcza się zużyje albo przegrzeje, to moc jest przenoszona nierównomiernie i to właśnie te drgania możesz odczuwać w kabinie. Przykłady? Kiedy wciśniesz pedał sprzęgła i czujesz stuk lub wibracje, to może znaczy, że czas na wymianę tarczy. W motoryzacji dobrze jest regularnie sprawdzać sprzęgło, szczególnie w autach, które jeżdżą sporo albo mają duży przebieg. Wymiana uszkodzonej tarczy jest mega istotna, żeby jazda była bezpieczna i komfortowa, a cały układ dobrze działał.

Pytanie 27

Kosztorys realizacji usługi serwisowej jest przygotowywany m.in. na podstawie

A. liczby części wymienionych w ramach usługi
B. czasochłonności naprawy
C. szacunkowego poziomu zużycia pojazdu
D. wartości rynkowej pojazdu
Odpowiedź dotycząca ilości czasu potrzebnej do naprawy jest kluczowym elementem w procesie tworzenia kosztorysu usługi serwisowej. W praktyce, szacowanie czasu naprawy opiera się na przemyślanej analizie zleceń oraz doświadczeniu technika. Czas naprawy jest bezpośrednio związany z kosztem robocizny, który stanowi znaczącą część całkowitego kosztu usługi. Standardy branżowe, takie jak normy czasowe określone przez producentów pojazdów, umożliwiają technikom dokładne oszacowanie, ile czasu zajmie im wykonanie danej naprawy. Na przykład, serwisanci często korzystają z tzw. 'czasów referencyjnych', które pomagają określić przeciętny czas potrzebny na wykonanie różnych rodzajów napraw. Dodatkowo, umiejętność dokładnego oszacowania czasu naprawy pozwala na lepsze zarządzanie zasobami w warsztacie oraz na zadowolenie klientów poprzez rzetelne informowanie ich o czasie realizacji usługi. Taka praktyka przyczynia się do zwiększenia efektywności operacyjnej serwisu oraz do budowy pozytywnego wizerunku w oczach klientów.

Pytanie 28

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. wydatku pompy
B. ciśnienia tłoczenia
C. ciśnienia wtrysku
D. podciśnienia ssania
Pompa paliwowa jest kluczowym elementem systemu zasilania silnika, a podczas jej diagnostyki istotne jest zrozumienie, jakie parametry są monitorowane. Pomiar ciśnienia wtrysku nie jest standardowym pomiarem przeprowadzanym podczas diagnostyki samej pompy paliwowej. Ciśnienie wtrysku odnosi się do ciśnienia, z jakim paliwo wtryskiwane jest do komory spalania przez wtryskiwacze i jest odzwierciedleniem działania układu wtryskowego, a nie samej pompy. Z drugiej strony, ciśnienie tłoczenia i wydatek pompy są kluczowymi parametrami, które określają efektywność działania pompy paliwowej. W praktyce, podczas diagnostyki należy skupić się na pomiarach, które bezpośrednio odnoszą się do wydajności pompy, takich jak ciśnienie tłoczenia oraz wydatek, aby zapewnić poprawne funkcjonowanie systemu zasilania. Dobrą praktyką jest także regularne kontrolowanie tych parametrów, aby upewnić się, że pompa działa w optymalnym zakresie, co ma kluczowe znaczenie dla wydajności i niezawodności silnika.

Pytanie 29

Po dokonaniu wymiany klocków hamulcowych na jednej stronie pojazdu konieczne jest

A. wymiana klocków hamulcowych na drugiej stronie pojazdu
B. odpowietrzenie układu hamulcowego
C. sprawdzenie poziomu płynu hamulcowego
D. zweryfikowanie siły hamowania na stanowisku diagnostycznym
Odpowiedź sugerująca odpowietrzenie układu hamulcowego jest nieadekwatna w kontekście wymiany klocków hamulcowych na jednej osi. Odpowietrzanie układu hamulcowego jest konieczne w sytuacji, gdy w układzie dostanie się powietrze, co najczęściej ma miejsce przy wymianie płynu hamulcowego lub naprawach związanych z układem hydrauliki hamulcowej. Wymiana klocków nie powinna wpływać na ciśnienie ani na szczelność układu, o ile nie doszło do jego uszkodzenia podczas prac. Ponadto, przeprowadzając odpowietrzanie, można przypadkowo wprowadzić powietrze do układu, co może prowadzić do obniżenia skuteczności hamowania, co jest groźne. Kolejna odpowiedź, dotycząca sprawdzenia siły hamowania na linii diagnostycznej, jest nadmiarowa w kontekście rutynowej wymiany klocków. Siła hamowania jest ważnym parametrem, ale jej sprawdzanie powinno mieć miejsce podczas kompleksowych przeglądów pojazdu, a nie bezpośrednio po wymianie klocków. Wreszcie, wymiana klocków hamulcowych na drugiej osi nie jest wymagana natychmiast po wymianie na jednej osi, chociaż zaleca się, aby klocki na obu osiach były w podobnym stanie. Zestawienie klocków na jednej osi z nowymi klockami na drugiej może prowadzić do nierównomiernego zużycia i zmniejszenia efektywności hamowania. W kontekście dobrych praktyk branżowych, kluczowe jest zachowanie równowagi w układzie hamulcowym, dlatego należy monitorować stan klocków na obu osiach.

Pytanie 30

Termostat aktywuje przepływ płynu chłodzącego do dużego obiegu

A. po uruchomieniu ogrzewania wnętrza
B. gdy temperatura płynu chłodzącego jest niska
C. gdy temperatura płynu chłodzącego jest wysoka
D. tuż po uruchomieniu silnika
Termostat pełni kluczową rolę w zarządzaniu obiegiem cieczy chłodzącej w silniku. Otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy osiąga odpowiedni, wysoki poziom. Wysoka temperatura jest wskaźnikiem, że silnik osiągnął optymalną temperaturę pracy, co zapobiega jego przegrzewaniu. Dzięki temu, gdy temperatura cieczy chłodzącej wzrasta, termostat pozwala na cyrkulację cieczy przez chłodnicę, co skutkuje efektywnym odprowadzaniem ciepła. Przykładem zastosowania tego mechanizmu jest samochód osobowy, w którym termostat otwiera się przy około 90-95°C, co jest zgodne z normami branżowymi dla większości silników spalinowych. Umożliwia to utrzymanie temperatury roboczej silnika na stałym poziomie, co jest istotne dla jego wydajności i żywotności. Zrozumienie tego procesu jest kluczowe dla każdego, kto zajmuje się diagnostyką i naprawą systemów chłodzenia w pojazdach.

Pytanie 31

Common rail to system zasilania silnika o zapłonie

A. iskrowym z wtryskiem jednopunktowym
B. iskrowym
C. samoczynnym
D. iskrowym z wtryskiem wielopunktowym
System common rail to nowoczesny układ zasilania silników diesla, który pozwala na precyzyjne dawkowanie paliwa i optymalizację procesu spalania. W przeciwieństwie do tradycyjnych systemów wtryskowych, common rail umożliwia wielokrotne wtryski paliwa w trakcie jednego cyklu pracy silnika, co prowadzi do większej efektywności oraz redukcji emisji szkodliwych substancji. W silnikach z zapłonem samoczynnym, takich jak silniki diesla, paliwo jest wtryskiwane pod wysokim ciśnieniem do komory spalania, gdzie samoczynnie zapala się w wyniku wysokiej temperatury. Ten system jest szczególnie korzystny w kontekście spełniania norm emisji spalin, takich jak Euro 6, ponieważ pozwala na lepsze wymieszanie paliwa z powietrzem, co prowadzi do bardziej kompletnych procesów spalania. Przykładem zastosowania systemu common rail są nowoczesne samochody osobowe i ciężarowe, które zyskują na wydajności i ekonomice paliwowej.

Pytanie 32

Jakie paliwo generuje najniższe wydobycie gazów cieplarnianych?

A. Wodór
B. Benzyna
C. Propan-butan
D. Olej napędowy
Wodór jest uważany za paliwo o najmniejszej emisji gazów cieplarnianych, ponieważ podczas jego spalania powstaje jedynie para wodna, co oznacza, że nie generuje on dwutlenku węgla ani innych szkodliwych substancji. To czyni go bardzo atrakcyjnym rozwiązaniem w kontekście dekarbonizacji transportu i przemysłu. Wodór może być wykorzystywany w ogniwach paliwowych, które przekształcają energię chemiczną bezpośrednio w energię elektryczną, z wysoką efektywnością. Przykłady zastosowania wodoru obejmują transport publiczny w postaci autobusów na ogniwa paliwowe oraz samochody, takie jak Toyota Mirai, które są już dostępne na rynku. W kontekście standardów branżowych, rozwijają się nowe wytyczne dotyczące produkcji i wykorzystania wodoru, takie jak normy ISO 14687 dotyczące czystości wodoru, co jest kluczowe dla zapewnienia jego skutecznego wykorzystania w różnych aplikacjach. W miarę postępu technologii, wodór może odegrać kluczową rolę w przejściu na zrównoważone źródła energii, przyczyniając się do ograniczenia globalnych emisji gazów cieplarnianych.

Pytanie 33

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt nachylenia osi sworznia zwrotnicy są powiązane z systemem

A. hamulcowym
B. napędowym
C. jezdnym
D. kierowniczym
Odpowiedzi dotyczące układu napędowego, jezdnego czy hamulcowego są po prostu nieprawidłowe, bo skupiają się na zupełnie innych rzeczach w budowie i działaniu pojazdu. Układ napędowy to ten, który przenosi moc z silnika na koła, więc jego elementy, jak skrzynia biegów czy wały napędowe, nie mają nic wspólnego z kątami, o których mówisz. Kąt wyprzedzenia i kąt pochylenia nie wpływają na to, jak samochód przyspiesza. Z drugiej strony, układ jezdny dotyczy zawieszenia i kontaktu auta z nawierzchnią. Choć kąt pochylenia osi sworznia w jakiś sposób może wpływać na zawieszenie, to jednak nie jest to kluczowy parametr dla całego układu. A układ hamulcowy, który zatrzymuje auto, również nie ma z tym związku, bo te kąty bardziej dotyczą sterowności i stabilności. Mylenie tych układów i ich roli to częsty błąd, który może prowadzić do błędnych wniosków o tym, jak one działają i jak je ustawić.

Pytanie 34

Gdzie znajduje zastosowanie sprzęgło wielotarczowe typu Haldex?

A. w tylnym zblokowanym układzie napędowym
B. w przednim zblokowanym układzie napędowym
C. w układzie napędowym z napędem na cztery koła
D. w klasycznym układzie napędowym
Sprzęgło wielotarczowe typu Haldex jest kluczowym elementem w układach napędowych z napędem na cztery koła (4WD), które pozwala na dynamiczne zarządzanie momentem obrotowym między osiami. Jego działanie opiera się na hydraulice oraz elektronicznej kontroli, co umożliwia włączanie napędu na tylne koła w odpowiedzi na zmieniające się warunki drogowe i obciążenie. Przykładem zastosowania sprzęgła Haldex są pojazdy marki Audi, Volkswagen i Seat, gdzie zapewnia ono optymalną trakcję w różnych warunkach, takich jak jazda po śniegu czy błocie. Dzięki technologii Haldex, pojazdy mogą efektywniej rozdzielać moc silnika, co prowadzi do lepszej stabilności oraz bezpieczeństwa. Ponadto, sprzęgło to jest zgodne z najlepszymi praktykami branżowymi, które kładą nacisk na komfort jazdy oraz wydajność energetyczną, a jego konstrukcja umożliwia szybką reakcję na pojawiające się sytuacje, co znacząco zwiększa kontrolę nad pojazdem. W związku z tym, sprzegło Haldex stanowi doskonały przykład innowacji w dziedzinie motoryzacji, łącząc zaawansowaną technologię z praktycznymi rozwiązaniami.

Pytanie 35

Jakiego rodzaju parametr opisuje zapis 100A (Amper)?

A. Natężenia prądu
B. Napięcia prądu
C. Temperatury cieczy
D. Lepkości cieczy
Zrozumienie pojęć związanych z prądem elektrycznym jest kluczowe dla właściwego projektowania i użytkowania systemów elektrycznych. Odpowiedzi, które odnoszą się do napięcia prądu, lepkości cieczy czy temperatury cieczy, są błędne z kilku powodów. Napięcie prądu, mierzone w woltach (V), jest jednym z podstawowych parametrów elektrycznych, ale nie jest tym samym co natężenie prądu. Napięcie jest siłą, która 'wypycha' ładunki elektryczne przez obwód, natomiast natężenie odnosi się do rzeczywistego przepływu tych ładunków. Lepkość cieczy to zupełnie inny parametr, dotyczący oporu, jaki ciecz stawia podczas przepływu, co nie ma bezpośredniego związku z pojęciem natężenia prądu elektrycznego. Temperatura cieczy natomiast odnosi się do stopnia ciepłoty, co również jest nieadekwatne w kontekście analizowania parametrów elektrycznych. Często błędne wnioski w takich przypadkach wynikają z mylenia podstawowych pojęć oraz braku zrozumienia ich wzajemnych relacji. Dobre praktyki inżynieryjne wymagają precyzyjnego stosowania terminologii oraz znajomości właściwych definicji, co jest niezbędne dla bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 36

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. sprawdzania komponentów silnika
B. instalacji części synchronizatorów
C. pielęgnacji karoserii
D. zajmowania się działającym silnikiem
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 37

Aby nawiązać łączność pomiędzy samochodem a komputerem diagnostycznym, konieczne jest, aby pojazd był wyposażony w gniazdo

A. EGR
B. EDB
C. ADB
D. EOBD
Odpowiedź EOBD (European On-Board Diagnostics) jest poprawna, ponieważ standard ten definiuje systemy diagnostyczne stosowane w pojazdach. EOBD umożliwia komunikację między pojazdem a komputerem diagnostycznym, co pozwala na monitorowanie stanu technicznego silnika oraz innych istotnych układów. Dzięki gniazdu EOBD, mechanicy mogą odczytywać kody błędów, analizować dane w czasie rzeczywistym oraz przeprowadzać diagnostykę układów emisji spalin. W praktyce, EOBD jest standardem obowiązującym w większości nowoczesnych pojazdów sprzedanych w Europie od 2001 roku (dla samochodów osobowych) oraz od 2004 roku (dla samochodów ciężarowych). Umożliwia to nie tylko szybką identyfikację problemów, ale również przyczynia się do przestrzegania norm emisji, co ma kluczowe znaczenie w kontekście ochrony środowiska. Prawidłowe korzystanie z gniazda EOBD jest więc istotne zarówno dla diagnostyki, jak i dla spełniania wymogów prawnych związanych z emisją spalin.

Pytanie 38

Po wykonaniu próby olejowej i ponownym zmierzeniu ciśnienia sprężania zauważono, że ciśnienie w jednym z cylindrów pozostało bez zmian. Co najprawdopodobniej jest uszkodzone w tym cylindrze?

A. Gładź cylindra.
B. Gniazdo zaworowe.
C. Uszczelka głowicy.
D. Pierścień tłokowy.
Gniazdo zaworowe jest kluczowym elementem silnika, który odpowiada za prawidłowe zamykanie i otwieranie zaworów. W sytuacji, gdy po przeprowadzeniu próby olejowej nie odnotowano zmiany ciśnienia w cylindrze, może to sugerować, że gniazdo zaworowe nie zapewnia właściwego uszczelnienia. To zjawisko prowadzi do tzw. „przecieków ciśnienia”, gdzie sprężone powietrze lub mieszanina paliwowo-powietrzna uchodzi przez nieszczelności w gniazdach zaworowych. Praktyka pokazuje, że uszkodzenia gniazd zaworowych są powszechne w silnikach, które przeszły długotrwałe eksploatacje bez odpowiedniej konserwacji. W celu diagnozy problemu można zastosować metody testowania ciśnienia w cylindrze, a także analizę dymu spalinowego, która może ujawnić nadmierne wydobywanie się spalin. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne przeprowadzanie przeglądów technicznych oraz kontrola stanu gniazd zaworowych mogą zapobiegać poważniejszym uszkodzeniom silnika i zapewniają jego długotrwałą żywotność.

Pytanie 39

Aby przeprowadzić naprawę otworu na sworzeń tłokowy w tłoku metodą na wymiar naprawczy, należy wykorzystać

A. frez czołowy
B. wiertło spiralne
C. rozwiertarkę
D. gwintownik
Wykorzystanie wiertła krętego do naprawy otworu na sworzeń tłokowy jest niewłaściwe z kilku powodów. Wiertła kręte, choć powszechnie stosowane do wstępnego wiercenia otworów, nie są przeznaczone do precyzyjnego rozwiercania otworów, co jest kluczowe w kontekście naprawy tłoków. Wiertła tego typu mogą prowadzić do nadmiernego luzu w otworze, co w efekcie może skutkować niewłaściwym osadzeniem sworznia i jego przyspieszonym zużyciem. Rozwiertanie wymaga narzędzi, które zapewniają nie tylko odpowiednią średnicę, ale również wysoką jakość wykończenia, co jest istotne dla dalszego funkcjonowania silnika. Zastosowanie gwintownika w tej sytuacji jest także nietrafione, ponieważ gwintownik służy do tworzenia gwintów wewnętrznych, a nie do obróbki otworów do montażu sworzni. Freza czołowa, z kolei, jest narzędziem przeznaczonym do obróbki płaskich powierzchni i nie nadaje się do rozwiercania otworów. W procesach naprawczych istotne jest stosowanie narzędzi zgodnych z wymaganiami technicznymi, co pozwala uniknąć niepotrzebnych uszkodzeń i zapewnia długotrwałą jakość naprawy. Pamiętaj, że dobór narzędzi powinien być przemyślany i zgodny ze standardami inżynieryjnymi, aby zapewnić skuteczność oraz bezpieczeństwo operacji naprawczych.

Pytanie 40

Siłą hamowania hamulca zasadniczego określamy

A. suma sił hamowania w jednej sekcji
B. różnicę siły hamowania pomiędzy kołami tylnej osi
C. suma sił hamowania wszystkich kół pojazdu względem jego masy dopuszczalnej
D. różnicę siły hamowania pomiędzy kołami przedniej osi
Współczynnik siły hamowania hamulca zasadniczego to kluczowy parametr w ocenie skuteczności systemu hamulcowego pojazdu. Oznacza on stosunek sumy sił hamowania wszystkich kół do masy dopuszczalnej pojazdu. Taki współczynnik jest istotny dla zapewnienia bezpieczeństwa na drodze, ponieważ pozwala na określenie, czy pojazd jest w stanie zatrzymać się w odpowiednim czasie. W praktyce, im wyższy współczynnik, tym lepsza skuteczność hamulców. Na przykład, w pojazdach osobowych standardowy współczynnik siły hamowania wynosi zazwyczaj od 0,5 do 0,7, co oznacza, że pojazd może zatrzymać się w znacznie krótszym czasie niż wynosi jego długość. Przykładowo, jeżeli masa pojazdu wynosi 1500 kg, a suma sił hamowania wynosi 9000 N, to współczynnik siły hamowania wynosi 6, co sugeruje bardzo dobrą efektywność. Dobrze zrozumiany i obliczony współczynnik siły hamowania jest niezbędny w procesie projektowania hamulców oraz oceny ich wydajności zgodnie z normami branżowymi, takimi jak ECE R13 czy FMVSS 105, które regulują wymagania dotyczące systemów hamulcowych.