Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 28 kwietnia 2025 08:23
  • Data zakończenia: 28 kwietnia 2025 08:27

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Atak typu hijacking na serwer internetowy charakteryzuje się

A. zbieraniem danych na temat atakowanej sieci oraz poszukiwaniem jej słabości
B. łamaniem zabezpieczeń, które chronią przed nieautoryzowanym dostępem do programów
C. przejęciem kontroli nad połączeniem pomiędzy komputerami, które się komunikują
D. przeciążeniem aplikacji, która udostępnia konkretne dane
Nieprawidłowe odpowiedzi sugerują różne podejścia do problematyki bezpieczeństwa sieciowego, które nie odpowiadają właściwej definicji ataku hijacking. Przeciążenie aplikacji, o którym mowa, odnosi się do ataków typu Denial of Service (DoS), gdzie celem jest zablokowanie dostępu do zasobów przez zalanie serwera ogromną ilością ruchu. Takie ataki nie polegają na przejęciu kontroli nad sesjami, lecz na wyczerpaniu zasobów systemowych. Łamanie zabezpieczeń przed niedozwolonym użytkowaniem programów natomiast dotyczy ataków, w których wykorzystywane są luki w oprogramowaniu do uzyskania nieautoryzowanego dostępu, ale nie jest związane z samym przejęciem połączeń między urządzeniami. Zbieranie informacji o sieci i szukanie luk jest etapem przygotowawczym w wielu atakach, jednak nie definiuje to samego ataku typu hijacking, który koncentruje się na manipulacji komunikacją. Warto zauważyć, że mylenie tych pojęć może prowadzić do nieefektywnych strategii obronnych, ponieważ różne typy ataków wymagają różnych podejść w zabezpieczaniu systemów. Zrozumienie specyfiki ataków sieciowych oraz ich klasyfikacja jest kluczowe dla odpowiednich działań prewencyjnych i reagowania na incydenty.

Pytanie 2

Jakim skrótem określa się połączenia typu punkt-punkt w ramach publicznej infrastruktury telekomunikacyjnej?

A. VPN
B. PAN
C. VLAN
D. WLAN
VPN, czyli Virtual Private Network, to technologia, która umożliwia utworzenie bezpiecznego połączenia przez publiczną infrastrukturę telekomunikacyjną, taką jak Internet. Dzięki zastosowaniu szyfrowania, VPN zapewnia poufność i integralność danych przesyłanych pomiędzy różnymi lokalizacjami. W praktyce, przedsiębiorstwa często używają VPN do zdalnego dostępu do zasobów sieciowych, co pozwala pracownikom na bezpieczną pracę z dowolnego miejsca. Ponadto, VPN jest wykorzystywany do ochrony prywatności użytkowników w Internecie, maskując ich adres IP i lokalizację. Standardy takie jak IPsec czy OpenVPN są powszechnie używane w implementacji rozwiązań VPN, dzięki czemu możliwe jest dostosowanie poziomu bezpieczeństwa do specyficznych potrzeb organizacji. W dobie rosnących zagrożeń cybernetycznych, stosowanie VPN stało się kluczowym elementem strategii bezpieczeństwa informacyjnego dla wielu firm.

Pytanie 3

Na ilustracji zaprezentowano porty, które są częścią karty

Ilustracja do pytania
A. telewizyjnej
B. dźwiękowej
C. sieciowej
D. faksmodemowej
Gniazda przedstawione na zdjęciu to typowe porty RJ-45, które są powszechnie stosowane w kartach sieciowych. Karty sieciowe (NIC - Network Interface Card) to urządzenia, które umożliwiają komputerowi komunikację z siecią komputerową, zarówno przewodową jak i bezprzewodową. Standardowe gniazdo RJ-45 jest używane do podłączania kabla Ethernet, który jest najczęściej używanym medium transmisyjnym w sieciach lokalnych (LAN). Dzięki temu połączeniu możemy uzyskać dostęp do internetu lub innych zasobów sieciowych, co jest kluczowe w wielu zastosowaniach, takich jak praca zdalna, dostęp do baz danych czy przesyłanie plików. W nowoczesnych kartach sieciowych, oprócz standardowego portu RJ-45, mogą być także dostępne diody LED informujące o statusie połączenia, co pozwala na szybkie zdiagnozowanie problemów z siecią. Karty sieciowe mogą obsługiwać różne prędkości transmisji, takie jak 100 Mbps, 1 Gbps, czy nawet 10 Gbps, co pozwala na dostosowanie się do wymagań użytkownika i infrastruktury sieciowej. Poprawne zrozumienie funkcji i zastosowania kart sieciowych jest kluczowe dla każdego specjalisty IT, ponieważ sieć jest fundamentem współczesnej komunikacji cyfrowej.

Pytanie 4

Wykonanie polecenia net localgroup w systemie Windows skutkuje

A. kompresowaniem wszystkich plików
B. defragmentowaniem plików
C. tworzeniem dowolnej grupy użytkowników
D. prezentowaniem lokalnych grup użytkowników zdefiniowanych w systemie
Odpowiedzi sugerujące skompresowanie plików, utworzenie dowolnej grupy użytkowników czy defragmentację plików odnoszą się do zupełnie innych funkcji i narzędzi w systemie Windows. Skompresowanie plików jest procesem redukcji rozmiaru plików, co odbywa się za pomocą różnych algorytmów kompresji, które nie mają nic wspólnego z zarządzaniem użytkownikami ani grupami. Z kolei utworzenie nowej grupy użytkowników jest możliwe przy pomocy polecenia 'net localgroup', jednak nie jest to funkcjonalność samego polecenia, które wyłącznie wyświetla istniejące grupy. Defragmentacja plików to proces reorganizacji danych na dysku twardym w celu poprawy efektywności dostępu do danych, co również nie ma związku z zarządzaniem grupami użytkowników. Błędne zrozumienie funkcji polecenia 'net localgroup' może prowadzić do nieefektywnego zarządzania dostępem i bezpieczeństwem w systemie, dlatego ważne jest, aby przed przystąpieniem do zarządzania użytkownikami dobrze poznać i zrozumieć zakres działania poszczególnych poleceń w systemie operacyjnym.

Pytanie 5

Na stabilność wyświetlanego obrazu w monitorach CRT istotny wpływ ma

A. Częstotliwość odświeżania
B. Wieloczęstotliwość
C. Czas reakcji
D. Odwzorowanie barw
Wiedza o tym, jak różne parametry wpływają na obraz w monitorach CRT, jest ważna, ale odpowiedzi o odwzorowaniu kolorów, wieloczęstotliwości i czasie reakcji są trochę na bok. Odwzorowanie kolorów dotyczy tego, jak monitor pokazuje barwy, a nie tego, jak często ekran jest odświeżany. Chociaż ładne kolory poprawiają jakość obrazu, to nie mają wpływu na migotanie. Wieloczęstotliwość raczej pokazuje, że monitor może sobie radzić z różnymi rozdzielczościami, ale to nie wpływa na stabilność obrazu. Czas reakcji to inna sprawa, bo ważny jest, gdy obrazy się poruszają, ale znowu, to nie dotyczy stabilności obrazu jako takiej. Jak monitor nie reaguje wystarczająco szybko, to może być problem z smużeniem, ale to nie to samo, co migotanie spowodowane częstotliwością odświeżania. Zrozumienie tych rzeczy jest kluczowe, żeby nie mylić działania monitorów CRT.

Pytanie 6

Dokumentacja końcowa dla planowanej sieci LAN powinna między innymi zawierać

A. kosztorys prac instalacyjnych
B. raport pomiarowy torów transmisyjnych
C. wykaz rysunków wykonawczych
D. założenia projektowe sieci lokalnej
Wielu profesjonalistów w dziedzinie IT może błędnie interpretować znaczenie dokumentacji powykonawczej sieci LAN, co prowadzi do pominięcia kluczowych elementów. Na przykład, założenia projektowe sieci lokalnej mogą być istotnym dokumentem, jednak nie odzwierciedlają one powykonawczego aspektu instalacji. Zdefiniowanie założeń projektowych jest etapem wstępnym, zajmującym się planowaniem i nie dostarcza informacji o rzeczywistym stanie zrealizowanej infrastruktury. Podobnie, spis rysunków wykonawczych może być przydatny, jednak nie zastępuje rzeczywistych wyników pomiarowych, które są kluczowe dla potwierdzenia, że sieć działa zgodnie z wymaganiami. Kosztorys robót instalatorskich także nie jest dokumentem kluczowym w kontekście powykonawczym, ponieważ koncentruje się na aspektach finansowych projektu, a nie na jego realizacji. Właściwe podejście do dokumentacji powykonawczej powinno skupiać się na wynikach pomiarowych, które potwierdzają funkcjonalność oraz jakość instalacji, co jest zgodne z najlepszymi praktykami branżowymi. Bez dokładnych raportów pomiarowych, ryzykujemy wystąpienie problemów z wydajnością sieci, co może prowadzić do kosztownych przestojów i frustracji użytkowników końcowych.

Pytanie 7

Sprzęt, który umożliwia konfigurację sieci VLAN, to

A. switch
B. regenerator (repeater)
C. firewall
D. most przezroczysty (transparent bridge)
Most przezroczysty, regenerator oraz firewall to urządzenia, które pełnią różne role w sieciach komputerowych, jednak żadne z nich nie jest odpowiednie do konfiguracji VLAN-ów. Most przezroczysty działa na warstwie 2 modelu OSI i ma za zadanie łączyć różne segmenty sieci, niekoniecznie z funkcjonalnością VLAN. Jego głównym celem jest minimalizacja kolizji w sieci, nie zaś zarządzanie ruchem w kontekście VLAN-ów. Regenerator, pełniący rolę wzmacniacza sygnału, jest używany do przedłużania zasięgu sieci, ale nie oferuje funkcji zarządzania danymi ani ich segregacji według VLAN. Z kolei firewall, mimo że jest kluczowym elementem ochrony sieci, koncentruje się na monitorowaniu i kontrolowaniu ruchu między różnymi strefami bezpieczeństwa, a nie na tworzeniu i zarządzaniu VLAN-ami. Typowe błędy myślowe w tym kontekście polegają na myleniu funkcji segmentacji sieci z jej zabezpieczaniem, a także na niezrozumieniu specyficznych ról, jakie pełnią różne urządzenia w architekturze sieci. Zrozumienie, że VLAN-y są ściśle związane z funkcją przełącznika, a nie innych urządzeń, jest kluczowe dla efektywnego projektowania i zarządzania nowoczesnymi sieciami komputerowymi.

Pytanie 8

Poprzez polecenie dxdiag uruchomione w wierszu poleceń Windows można

A. zeskanować dysk twardy pod kątem błędów
B. sprawdzić parametry karty graficznej
C. sprawdzić prędkość zapisu i odczytu napędów DVD
D. przeprowadzić pełną diagnozę karty sieciowej
Analizując inne odpowiedzi, dostrzegamy, że wiele z nich opiera się na mylnych założeniach dotyczących funkcji narzędzi diagnostycznych w systemie Windows. Chociaż diagnostyka karty sieciowej jest istotnym aspektem zarządzania sprzętem, dxdiag nie jest narzędziem służącym do jej przeprowadzania. Do tego celu można wykorzystać takie narzędzia jak 'ipconfig' czy 'ping', które pozwalają na ocenę stanu połączenia sieciowego, ale nie dxdiag. Ponadto, przeskanowanie dysku twardego w poszukiwaniu błędów to funkcjonalność, którą zapewnia narzędzie 'chkdsk', a nie dxdiag. Skany dysków twardych wymagają innego podejścia, które koncentruje się na analizie systemu plików, a nie na parametrach sprzętowych. Jeżeli chodzi o weryfikację prędkości zapisu i odczytu napędów DVD, to również nie jest zadaniem dxdiag. Optymalne testy wydajności nośników optycznych przeprowadza się przy użyciu specjalistycznych programów, takich jak CrystalDiskMark. Właściwe zrozumienie funkcji narzędzi diagnostycznych i ich zastosowań w systemie Windows jest kluczowe dla efektywnego rozwiązywania problemów i prawidłowej konfiguracji sprzętu.

Pytanie 9

Na zdjęciu ukazano złącze zasilające

Ilustracja do pytania
A. dysków wewnętrznych SATA
B. Molex do dysków twardych
C. ATX12V zasilania procesora
D. stacji dyskietek
Złącze zasilania stacji dyskietek jest obecnie rzadko spotykane w nowoczesnych systemach komputerowych z uwagi na zanik użycia stacji dyskietek. Takie złącza były mniejsze i obsługiwały niższe napięcia co czyniło je nieodpowiednimi do zasilania nowoczesnych komponentów komputerowych takich jak procesory które wymagają znacznie większej mocy. W przypadku złączy SATA te nowoczesne złącza służą do zasilania dysków twardych oraz napędów optycznych i zostały zaprojektowane w celu zapewnienia wyższej przepustowości danych oraz większej wydajności energetycznej. Złącza SATA są płaskie i szerokie co jest odmienną konstrukcją od złącza ATX12V które jest węższe i głębsze z wyraźnie innym układem pinów. Z kolei złącza Molex były używane do zasilania starszych dysków twardych oraz napędów optycznych jednak ich konstrukcja i zapotrzebowanie na moc znacznie różnią się od wymagań współczesnych procesorów. Złącza Molex dostarczają napięcia 5V i 12V ale brakowało im specjalizacji i dodatkowego uziemienia które oferują nowoczesne złącza ATX12V. Typowy błąd to stosowanie nieodpowiednich złączy do zasilania komponentów co może prowadzić do niestabilności systemu lub nawet uszkodzenia sprzętu. Wybór odpowiedniego złącza jest kluczowy w procesie montażu i konserwacji sprzętu komputerowego gdyż zapewnia stabilność i wydajność systemu co jest szczególnie ważne w kontekście pracy z wymagającymi aplikacjami i w środowiskach produkcyjnych.

Pytanie 10

Proces aktualizacji systemów operacyjnych ma na celu przede wszystkim

A. dodawanie nowych aplikacji dla użytkowników.
B. usunięcie luk w systemie, które obniżają poziom bezpieczeństwa.
C. zaniżenie ochrony danych użytkownika.
D. redukcję fragmentacji danych.
Wielu użytkowników mylnie uważa, że aktualizacje systemów operacyjnych mają na celu obniżenie bezpieczeństwa danych użytkownika lub są związane wyłącznie z instalacją nowych aplikacji użytkowych. W rzeczywistości, jedna z głównych funkcji aktualizacji to eliminacja znanych luk bezpieczeństwa, które mogą być wykorzystywane przez cyberprzestępców. Odpowiedzi sugerujące, że aktualizacje obniżają bezpieczeństwo, są wynikiem nieporozumienia dotyczącego ich funkcji. Z kolei instalacja nowych aplikacji użytkowych zazwyczaj nie jest celem aktualizacji systemowych, lecz oddzielnym procesem, który może być realizowany niezależnie. Ponadto, fragmentacja danych jest problemem bardziej związanym z zarządzaniem pamięcią i systemem plików niż z samymi aktualizacjami. Fragmentacja występuje, gdy pliki są rozproszone w różnych miejscach na dysku twardym, co może spowalniać działanie systemu, ale nie jest to bezpośrednio związane z działaniami aktualizacyjnymi. Praktyka aktualizacji oprogramowania powinna być traktowana jako część holistycznego podejścia do bezpieczeństwa IT, gdzie regularne aktualizacje przyczyniają się do minimalizacji ryzyk związanych z cyberatakami. Użytkownicy powinni być świadomi, że nieaktualizowanie systemu zwiększa ich podatność na zagrożenia, co może prowadzić do poważnych konsekwencji, takich jak kradzież danych czy zainfekowanie urządzenia złośliwym oprogramowaniem.

Pytanie 11

Typ profilu użytkownika w systemie Windows Serwer, który nie zapisuje zmian wprowadzonych na bieżącym pulpicie ani na serwerze, ani na stacji roboczej po wylogowaniu, to profil

A. lokalny
B. mobilny
C. zaufany
D. tymczasowy
Lokalny profil użytkownika to taki, który jest przypisany do konkretnego komputera. Oznacza to, że zmiany, jakie robisz, zostaną zapisane na tym urządzeniu. Jak ktoś używa lokalnych profili, to może być pewien, że jego ustawienia będą dostępne za każdym razem, gdy się zaloguje na tym samym komputerze. Dlatego takie profile często stosuje się w miejscach, gdzie nie trzeba się dzielić komputerami i użytkownicy potrzebują stałego dostępu do swoich ustawień. A mobilny profil pozwala na synchronizację ustawień na różnych komputerach, co jest super dla osób, które często zmieniają miejsce pracy. Profil zaufany w ogóle jest inny, bo ma specjalne uprawnienia i zabezpieczenia, więc nie pasuje do tej sytuacji. Czasem ludzie mylą profile lokalne czy mobilne z tymczasowymi, co prowadzi do pomyłek. Ważne jest, aby zrozumieć, że profile tymczasowe nie są do przechowywania ustawień, co jest kluczową różnicą w porównaniu do lokalnych i mobilnych. Umiejętność rozróżniania tych profili to podstawa, żeby dobrze zarządzać systemami operacyjnymi i zapewnić odpowiednie bezpieczeństwo w organizacji.

Pytanie 12

Do weryfikacji integralności systemu plików w środowisku Linux trzeba zastosować polecenie

A. mkfs
B. fsck
C. man
D. fstab
Polecenie 'fsck' (File System Consistency Check) jest kluczowym narzędziem w systemie Linux, używanym do sprawdzania i naprawy błędów w systemie plików. W kontekście zarządzania danymi, utrzymanie integralności systemu plików jest niezwykle istotne, ponieważ może zapobiec utracie danych oraz zapewnić stabilność systemu operacyjnego. Przykładowe zastosowanie polecenia 'fsck' polega na uruchomieniu go na zamontowanej partycji, co pozwala na identyfikację i, jeśli to konieczne, automatyczne naprawienie błędów. Użytkownik może również skorzystać z opcji '-y', aby automatycznie akceptować wszystkie sugerowane poprawki. Warto podkreślić, że przed użyciem 'fsck' zalecane jest odmontowanie systemu plików, aby uniknąć dodatkowych problemów. Dobrą praktyką jest regularne sprawdzanie systemu plików, zwłaszcza po nieprawidłowym wyłączeniu systemu lub awarii sprzętu, co może prowadzić do uszkodzenia danych. W kontekście standardów branżowych, 'fsck' jest zgodne z podstawowymi zasadami zarządzania systemem plików i utrzymania wysokiej dostępności danych.

Pytanie 13

Jaki typ macierzy dyskowych zapewnia tak zwany mirroring dysków?

A. RAID-5
B. RAID-3
C. RAID-1
D. RAID-0
RAID-1, znany jako mirroring, to technologia macierzy dyskowych, która zapewnia wysoką dostępność danych poprzez duplikację informacji na dwóch lub więcej dyskach. W przypadku jednego z dysków awarii, system może kontynuować pracę, korzystając z kopii zapasowej na drugim dysku, co znacząco podnosi bezpieczeństwo przechowywanych danych. Przykładem zastosowania RAID-1 może być środowisko przedsiębiorcze, gdzie krytyczne dane muszą być dostępne bez przerwy. Dzięki tej technologii, administratorzy mogą minimalizować ryzyko utraty danych oraz zapewnić ciągłość działania systemów informatycznych. Standardowe praktyki zalecają stosowanie RAID-1 w serwerach plików oraz w systemach, gdzie bezpieczeństwo danych jest kluczowe, takich jak bazy danych. Dodatkowo, RAID-1 może być wykorzystywany w połączeniu z innymi poziomami RAID, aby uzyskać dalsze korzyści, jak na przykład RAID-10, który łączy mirroring z podziałem na dyski, oferując jeszcze wyższą wydajność i niezawodność.

Pytanie 14

W systemie Linux do wyświetlania treści pliku tekstowego służy polecenie

A. more
B. type
C. cat
D. list
Polecenie 'cat', będące skrótem od 'concatenate', jest podstawowym narzędziem w systemie Linux służącym do wyświetlania zawartości plików tekstowych. Dzięki niemu użytkownik może szybko przeglądać zawartość pliku w terminalu. Jest to szczególnie przydatne w sytuacjach, gdy chcemy zobaczyć zawartość małych plików bez konieczności ich edytowania. Dodatkowo, polecenie 'cat' może być używane do łączenia kilku plików w jeden, co czyni je bardzo wszechstronnym narzędziem. Na przykład, używając komendy 'cat plik1.txt plik2.txt > połączony.txt', możemy stworzyć nowy plik o nazwie 'połączony.txt', który zawiera zarówno zawartość 'plik1.txt', jak i 'plik2.txt'. 'cat' jest uznawane za jedno z podstawowych narzędzi w codziennym użytkowaniu systemu Linux i znane wśród administratorów systemu oraz programistów. Zrozumienie i umiejętność wykorzystywania tego polecenia jest kluczowe w każdej pracy związanej z administracją systemami operacyjnymi Linux.

Pytanie 15

Aby serwerowa płyta główna mogła działać poprawnie, potrzebuje pamięci z rejestrem. Który z poniższych modułów pamięci będzie z nią zgodny?

A. Kingston 4GB 1600 MHz DDR3 ECC CL11 DIMM 1,5V
B. Kingston 8GB 1333 MHz DDR3 ECC Reg CL9 DIMM 2Rx8
C. Kingston Hynix B 8GB 1600 MHz DDR3L CL11 ECC SODIMM 1,35V
D. Kingston 4GB 1333 MHz DDR3 Non-ECC CL9 DIMM
Wybór pamięci niezgodnej z wymaganiami serwera,bądź serwerowej płyty głównej prowadzi do problemów z kompatybilnością, co może skutkować niemożnością uruchomienia systemu lub niestabilnością działania. W przypadku pamięci Kingston 4GB 1600 MHz DDR3 ECC CL11 DIMM 1,5V, mimo że jest to pamięć ECC, brakuje jej rejestru, co czyni ją nieodpowiednią dla serwerów, które wymagają pamięci Registered. Druga opcja, Kingston 4GB 1333 MHz DDR3 Non-ECC CL9 DIMM, jest całkowicie nieodpowiednia, ponieważ nie obsługuje korekcji błędów, co jest kluczowe w aplikacjach serwerowych. Pamięci Non-ECC mogą prowadzić do błędów danych, co w środowisku krytycznym może mieć katastrofalne skutki. Z kolei Kingston Hynix B 8GB 1600 MHz DDR3L CL11 ECC SODIMM 1,35V, choć posiada funkcję ECC, jest modułem SODIMM, co oznacza, że jest przeznaczony do laptopów i nie pasuje do standardowych slotów DIMM w serwerach. Użycie niewłaściwej pamięci może prowadzić do nieoptymalnej pracy systemów operacyjnych i aplikacji, co zwiększa ryzyko awarii. W praktyce, przy wyborze pamięci do serwerów, należy kierować się specyfikacjami producenta płyty głównej i stosować tylko takie moduły, które są zgodne z wymaganiami technicznymi oraz standardami branżowymi.

Pytanie 16

Podaj standard interfejsu wykorzystywanego do przewodowego łączenia dwóch urządzeń.

A. WiMAX
B. IrDA
C. IEEE 1394
D. IEEE 802.15.1
Wybór odpowiedzi innych niż IEEE 1394 świadczy o nieporozumieniu dotyczącym standardów komunikacji przewodowej. IrDA to interfejs oparty na technologii podczerwonej, który służy głównie do krótkozasięgowej komunikacji bezprzewodowej, a nie przewodowej. Chociaż jest użyteczny w niektórych zastosowaniach, takich jak przesyłanie danych między urządzeniami mobilnymi, nie jest on odpowiedni do łączenia urządzeń poprzez przewody. WiMAX, z kolei, jest technologią przeznaczoną do bezprzewodowej komunikacji szerokopasmowej na dużą odległość, co również wyklucza jego zastosowanie w kontekście połączeń przewodowych. Może być używany do dostarczania szerokopasmowego internetu, ale nie jest standardem interfejsu wykorzystywanym do podłączania urządzeń bezpośrednio. IEEE 802.15.1, znany jako Bluetooth, to standard przeznaczony do komunikacji bezprzewodowej na krótkie odległości, co również czyni go nieadekwatnym w kontekście przewodowych połączeń. Rozumienie, jakie zastosowanie mają poszczególne standardy, jest kluczowe w ich odpowiednim wykorzystaniu. Niepoprawny wybór może wynikać z powszechnej mylnej opinii, że każdy z tych standardów może być stosowany zamiennie, co jest niezgodne z ich specyfikacją i przeznaczeniem.

Pytanie 17

Symbol graficzny przedstawiony na rysunku wskazuje na opakowanie

Ilustracja do pytania
A. odpowiednie do recyklingu
B. do ponownego użycia
C. wykonane z materiałów wtórnych
D. zgodne z normą TCO
Symbol przedstawiony na rysunku to klasyczne oznaczenie wskazujące na możliwość recyklingu opakowania W kontekście ochrony środowiska i zrównoważonego rozwoju recykling jest kluczowym procesem w którym materiały są przetwarzane i ponownie używane zmniejszając tym samym zapotrzebowanie na surowce pierwotne oraz ograniczając ilość odpadów trafiających na wysypiska W Europie i na świecie coraz więcej krajów wprowadza regulacje prawne które wymagają od producentów umieszczania tego typu oznaczeń na opakowaniach co ułatwia konsumentom właściwą segregację odpadów Przykładowo w Unii Europejskiej obowiązują dyrektywy dotyczące gospodarki o obiegu zamkniętym które promują recykling jako jedną z podstawowych strategii zarządzania odpadami Umieszczanie symbolu recyklingu na opakowaniach informuje konsumentów że po użyciu produkt można oddać do recyklingu co wspiera działania proekologiczne oraz edukuje społeczeństwo w zakresie zrównoważonego zarządzania zasobami

Pytanie 18

Na ilustracji ukazany jest tylny panel stacji roboczej. Strzałką wskazano port

Ilustracja do pytania
A. HDMI
B. USB 3.0
C. eSATA
D. DisplayPort
Oznaczony port na rysunku to DisplayPort który jest szeroko stosowanym złączem cyfrowym w nowoczesnych komputerach i urządzeniach multimedialnych. DisplayPort został zaprojektowany przez VESA (Video Electronics Standards Association) jako standard do przesyłania sygnałów audio i wideo z komputera do monitora. Wyróżnia się wysoką przepustowością co umożliwia przesyłanie obrazu w rozdzielczościach 4K i wyższych oraz obsługę technologii HDR. DisplayPort wspiera również przesyłanie wielokanałowego dźwięku cyfrowego co czyni go idealnym rozwiązaniem dla zaawansowanych zastosowań multimedialnych. W kontekście praktycznym DisplayPort umożliwia podłączenie wielu monitorów do jednego źródła wideo dzięki technologii Daisy Chain co jest korzystne w środowiskach pracy wymagających rozszerzonego pulpitu. Dodatkowo złącze to jest kompatybilne z innymi interfejsami takimi jak HDMI dzięki adapterom co zwiększa jego uniwersalność. Warto zauważyć że w porównaniu z innymi portami wideo DisplayPort oferuje bardziej niezawodną blokadę mechaniczną zapobiegającą przypadkowemu odłączeniu kabla co jest szczególnie ważne w środowiskach korporacyjnych. Zrozumienie funkcjonalności i zastosowań DisplayPort jest kluczowe dla specjalistów IT i inżynierów systemowych którzy muszą zapewnić optymalną jakość obrazu i dźwięku w swoich projektach.

Pytanie 19

W przypadku drukarki igłowej, jaki materiał eksploatacyjny jest używany?

A. taśma barwiąca
B. pigment
C. atrament
D. toner
Drukarka igłowa wykorzystuje taśmę barwiącą jako materiał eksploatacyjny, co jest kluczowe dla procesu drukowania. Taśma barwiąca składa się z materiału, który w trakcie pracy drukarki styka się z papierem, a igły drukujące przenoszą farbę na powierzchnię papieru, tworząc obraz lub tekst. Ten typ drukarki jest często wykorzystywany w zastosowaniach, gdzie wymagana jest trwałość druku, na przykład w fakturach, dokumentach i etykietach. Przykładem są drukarki igłowe, które znajdują zastosowanie w biurach do drukowania dokumentów księgowych lub w systemach punktów sprzedaży, gdzie szybkość i niezawodność są kluczowe. Warto zaznaczyć, że taśmy barwiące charakteryzują się różnorodną kolorystyką oraz długością życia, co sprawia, że ich dobór powinien być dostosowany do specyficznych potrzeb użytkownika. Ponadto, w kontekście standardów branżowych, zastosowanie taśmy barwiącej jest zgodne z wymogami jakości druku i efektywności kosztowej.

Pytanie 20

Liczba 100110011 zapisana w systemie ósemkowym wynosi

A. 383
B. 333
C. 346
D. 463
Wybór niepoprawnych odpowiedzi często wynika z nieporozumień dotyczących konwersji między systemami liczbowymi. Na przykład, odpowiedź 383, która sugeruje, że liczba binarna została błędnie zinterpretowana, może wynikać z pominięcia kroku grupowania bitów lub błędnego dodania wartości, co prowadzi do nieprawidłowego wyniku. Inna nieprawidłowa odpowiedź, 346, może sugerować, że podczas konwersji zamiast trzech bitów w grupie zinterpretowano tylko dwa, co jest klasycznym błędem. Odpowiedź 333 sugeruje, że bity zostały całkowicie źle zgrupowane, ignorując zasady przekształcania liczby z systemu binarnego na ósemkowy. Kluczowe w tym procesie jest zrozumienie, że każdy trójbitowy segment odpowiada jednemu cyfrom w systemie ósemkowym, a błędne grupowanie powoduje, że wartość jest zaniżona. Takie błędy mogą prowadzić do poważnych problemów w programowaniu, gdzie precyzyjne obliczenia są kluczowe. Użytkownicy powinni zatem zwracać uwagę na metodykę konwersji oraz stosować dobre praktyki, takie jak wizualizacja procesu, aby uniknąć takich pomyłek.

Pytanie 21

Zgodnie z zamieszczonym fragmentem testu w systemie komputerowym zainstalowane są

Ilustracja do pytania
A. pamięć fizyczna 0,49 GB i plik wymiany 1,22 GB
B. pamięć fizyczna 0,70 GB i plik wymiany 1,22 GB
C. pamięć fizyczna 0,49 GB i plik wymiany 1,20 GB
D. pamięć fizyczna 0,50 GB i plik wymiany 1,00 GB
Niepoprawne odpowiedzi dotyczą różnic w interpretacji i odczycie wartości pamięci fizycznej oraz pliku wymiany. Napotykane błędy wynikają często z błędnego rozumienia jednostek miary oraz mechanizmów zarządzania pamięcią przez systemy operacyjne. Pamięć fizyczna odnosi się do zainstalowanego RAM, podczas gdy plik wymiany to logiczna przestrzeń na dysku twardym, której system operacyjny używa jako wirtualnego rozszerzenia pamięci RAM. Niepoprawne odczytanie tych wartości może wynikać z pomylenia jednostek miary takich jak MB i GB, co jest powszechnym problemem w interpretacji danych systemowych. Niezrozumienie tego, jak system wykorzystuje pamięć fizyczną i wirtualną, prowadzi do błędnych wniosków dotyczących wydajności komputera. Użytkownicy często nie uwzględniają różnic między pamięcią używaną a dostępną, co jest kluczowe, by odpowiednio zarządzać zasobami systemowymi. W kontekście zawodowym takie nieporozumienia mogą prowadzić do niewłaściwych decyzji związanych z zakupem czy konfiguracją sprzętu komputerowego. Dlatego tak ważne jest, aby regularnie poszerzać swoją wiedzę na temat zarządzania pamięcią w systemach komputerowych oraz umiejętnie interpretować dane związane z jej użyciem i alokacją w celu optymalizacji wydajności systemu.

Pytanie 22

Jak określić długość prefiksu adresu sieci w adresie IPv4?

A. liczbę bitów o wartości 1 w części hosta adresu IPv4
B. liczbę początkowych bitów mających wartość 1 w masce adresu IPv4
C. liczbę bitów o wartości 0 w dwóch pierwszych oktetach adresu IPv4
D. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
Wybierając odpowiedzi, które wskazują na liczbę bitów mających wartość 0 w oktetach adresu IPv4 lub na bity w części hosta, można wpaść w pułapki błędnego myślenia. Istotne jest, aby zrozumieć, że adres IPv4 składa się z czterech oktetów, z których każdy ma 8 bitów, co daje łącznie 32 bity. Próbując określić długość prefiksu poprzez liczenie bitów o wartości 0, można dojść do błędnych wniosków, ponieważ to właśnie bity o wartości 1 w masce podsieci definiują, jaka część adresu dotyczy sieci. Zrozumienie znaczenia maski sieciowej jest kluczowe; maska ta dzieli adres IP na część sieciową i hostową. Nieprawidłowe podejście do analizy bitów w częściach hosta prowadzi do pomyłek w ocenie, jakie adresy IP mogą być przydzielane w danej podsieci oraz jakie są możliwości jej rozbudowy. Kluczowym błędem jest zatem pomieszanie pojęcia adresu sieci i hosta, co może prowadzić do nieefektywnego zarządzania zasobami adresowymi. Podstawowe zasady projektowania sieci oraz najlepsze praktyki, takie jak te zawarte w standardach IETF, jednoznacznie wskazują na konieczność właściwego zrozumienia maski podsieci i operacji na bitach, aby uniknąć poważnych problemów w zarządzaniu i konfiguracji sieci.

Pytanie 23

Interfejs SLI (ang. Scalable Link Interface) jest wykorzystywany do łączenia

A. karty graficznej z odbiornikiem TV
B. napędu Blu-ray z kartą dźwiękową
C. dwóch kart graficznych
D. czytnika kart z płytą główną
Wydaje się, że w niektórych odpowiedziach jest zamieszanie na temat tego, co robi SLI. Po pierwsze, łączenie czytnika kart z płytą główną to zupełnie inna sprawa, bo nie chodzi o synchronizację grafiki, tylko o przesyłanie danych. Podobnie napęd Blu-ray z kartą dźwiękową to coś całkiem innego niż SLI, bo te części mają różne funkcje w systemie. Łączenie karty graficznej z telewizorem też nie dotyczy SLI, gdyż telewizor nie przetwarza grafiki, tylko wyświetla obraz. Ważne jest, żeby zrozumieć, że SLI działa tylko z kartami graficznymi i ich współpracą, co pozwala na lepszą wydajność. Często błędnie myli się pojęcia przesyłu danych z obliczeniami, co prowadzi do tych niepoprawnych odpowiedzi. Wydaje mi się, że lepiej to zrozumiesz, jak jeszcze raz przeanalizujesz tę technologię.

Pytanie 24

Na urządzeniu znajduje się symbol, który stanowi certyfikat potwierdzający zgodność sprzętu w zakresie emisji promieniowania, ergonomii, efektywności energetycznej oraz ekologii, co przedstawiono na rysunku

Ilustracja do pytania
A. rysunek C
B. rysunek B
C. rysunek D
D. rysunek A
Wybranie niewłaściwego symbolu może wynikać z mylnego rozumienia zakresu certyfikacji i znaczenia symboli. Symbol CE choć często spotykany na urządzeniach elektronicznych nie jest związany z emisją promieniowania ergonomią czy ekologią. Jest to oznaczenie wskazujące że produkt spełnia wymagania dyrektyw Unii Europejskiej dotyczące bezpieczeństwa zdrowia i ochrony środowiska. Nie obejmuje jednak szczegółowych standardów dotyczących ergonomii czy energooszczędności tak jak TCO. Symbol B jest mniej znanym oznaczeniem które nie odnosi się do emisji promieniowania czy ekologii. Często może być związany z oznaczeniami jakości w specyficznych krajach ale nie spełnia szerokiego spektrum wymagań tak jak TCO. Symbol TÜV SÜD reprezentuje akredytację od niemieckiej firmy zajmującej się testowaniem i certyfikacją produktów. Chociaż TÜV SÜD może obejmować testy dotyczące bezpieczeństwa i jakości to nie skupia się głównie na aspektach ergonomii czy energooszczędności określanych przez TCO. Błędne zrozumienie tych symboli może wynikać z niewystarczającej wiedzy na temat zakresu certyfikacji i wymagań jakie muszą spełniać urządzenia do uzyskania konkretnych certyfikatów. Uważna analiza zakresu działania każdej certyfikacji pomaga w zrozumieniu dlaczego symbol TCO jest właściwym wyborem w kontekście wymagań dotyczących promieniowania ergonomii energooszczędności i ekologii co jest kluczowe dla zrównoważonego rozwoju i komfortu użytkowania technologii w miejscu pracy.

Pytanie 25

Najłatwiej zidentyfikować błędy systemu operacyjnego Windows wynikające z konfliktów sprzętowych, takich jak przydzielanie pamięci, przerwań IRQ oraz kanałów DMA, przy użyciu narzędzia

A. edytor rejestru
B. chkdsk
C. menedżer urządzeń
D. przystawka Sprawdź dysk
Wybór narzędzi takich jak chkdsk, edytor rejestru czy przystawka Sprawdź dysk do diagnozowania konfliktów zasobów sprzętowych w systemie Windows jest nieodpowiedni z kilku powodów. Narzędzie chkdsk jest dedykowane do sprawdzania integralności systemu plików oraz naprawy błędów na dysku twardym. Chociaż ważne dla stabilności systemu, nie rozwiązuje problemów związanych z przydziałem pamięci czy konfliktami IRQ. Edytor rejestru, mimo że pozwala na manualne zmiany w systemie, jest narzędziem zaawansowanym, które wymaga dobrej znajomości struktury rejestru i może prowadzić do poważnych problemów, jeśli zmiany są nieprawidłowe. Użycie edytora rejestru do diagnostyki sprzętowej jest zatem niebezpieczne i nieefektywne. Przystawka Sprawdź dysk (disk check tool) ma na celu analizowanie i naprawianie błędów na dyskach, co również nie odnosi się bezpośrednio do konfliktów sprzętowych. Zrozumienie różnicy między tymi narzędziami jest kluczowe dla skutecznego zarządzania systemem operacyjnym oraz jego zasobami. Użytkownicy często popełniają błąd, sądząc, że każde z tych narzędzi może rozwiązać wszelkie problemy ze sprzętem, co prowadzi do frustracji i marnotrawienia czasu. Dlatego istotne jest, aby korzystać z odpowiednich narzędzi w zależności od konkretnego problemu, aby efektywnie zarządzać systemem i jego zasobami.

Pytanie 26

Zaprezentowany diagram ilustruje zasadę funkcjonowania

Ilustracja do pytania
A. cyfrowego aparatu fotograficznego
B. myszy optycznej
C. skanera płaskiego
D. drukarki termosublimacyjnej
Mysz optyczna korzysta z zaawansowanej technologii optycznej bazującej na diodach LED i czujnikach obrazowych takich jak matryce CMOS lub CCD aby precyzyjnie śledzić ruch. Podstawową zasadą działania myszy optycznej jest emitowanie światła przez diodę LED które odbija się od powierzchni i wraca przez soczewki do sensora optycznego. Sensor przetwarza odbite światło na obraz który następnie jest analizowany przez układ DSP w celu określenia kierunku i prędkości ruchu myszy. Cały proces odbywa się w czasie rzeczywistym co zapewnia płynność i precyzję działania. Praktyczne zastosowanie tej technologii można zaobserwować w szerokim wachlarzu urządzeń od komputerów osobistych po specjalistyczne zastosowania w grach komputerowych gdzie precyzja i szybkość reakcji są kluczowe. Standardowe praktyki branżowe obejmują stosowanie matryc o wyższej rozdzielczości aby zwiększyć precyzję śledzenia oraz wykorzystywanie bardziej zaawansowanych algorytmów do poprawy dokładności działania co jest szczególnie ważne na powierzchniach o niskiej jakości optycznej. Dzięki temu mysz optyczna jest niezawodnym narzędziem w codziennej pracy i rozrywce.

Pytanie 27

Który z symboli wskazuje na zastrzeżenie praw autorskich?

Ilustracja do pytania
A. D
B. B
C. A
D. C
Prawa autorskie są naprawdę ważne, żeby chronić intelektualną własność, bo ich ignorowanie może prowadzić do kłopotów prawnych i kasy w plecy. Symbol © jest potrzebny, żeby formalnie pokazać, że coś jest chronione prawem autorskim. Inne znaki mogą wprowadzać w błąd co do statusu prawnego utworu. Na przykład, R w kółku to znak towarowy i ma zupełnie inne znaczenie, bo dotyczy marki, a nie samego dzieła. Litery T czy G w okręgu nie mają uznawanych znaczeń prawnych w kontekście praw autorskich. Zdarza się, że ludzie mylą prawa autorskie z patentami czy znakami towarowymi, co może prowadzić do błędnego zarządzania tymi sprawami i problemów prawnych. Dlatego trzeba umieć rozróżniać te pojęcia i stosować odpowiednie oznaczenia, co pomoże w dobrej ochronie i egzekwowaniu praw w międzynarodowym kontekście. Dla firm działających na globalnym rynku, zrozumienie różnych systemów ochrony to nie tylko kwestia przestrzegania prawa, ale też istotny element zdobywania przewagi konkurencyjnej. Dobrze zarządzając tymi sprawami, można zyskać więcej pewności, że nasze pomysły są chronione i mają wyższą wartość na rynku. Dlatego też edukacja w temacie praw autorskich i ich oznaczania jest kluczowa dla każdej działalności twórczej.

Pytanie 28

Jaką konfigurację sieciową powinien mieć komputer, który jest częścią tej samej sieci LAN co komputer z adresem 10.8.1.10/24?

A. 10.8.1.101 i 255.255.0.0
B. 10.8.0.101 i 255.255.0.0
C. 10.8.0.101 i 255.255.255.0
D. 10.8.1.101 i 255.255.255.0
Podane odpowiedzi, które nie zawierają poprawnej konfiguracji dla zdefiniowanej sieci, wskazują na typowe nieporozumienia związane z zasadami adresacji IP i maskami podsieci. Na przykład, odpowiedź z adresem 10.8.0.101 i maską 255.255.0.0 jest niepoprawna, ponieważ maska ta pozwala na dużo szerszy zakres adresów, obejmując zarówno 10.8.0.0, jak i 10.8.1.0, co oznacza, że urządzenie z tym adresem IP może nie być w stanie bezpośrednio komunikować się z 10.8.1.10. Podobnie, adres 10.8.1.101 z maską 255.255.0.0 również wykracza poza granice definiowane przez maskę /24, co skutkuje trudnościami w komunikacji w tej samej sieci LAN. Kluczowa różnica między tymi maskami polega na tym, że maska 255.255.0.0 (czyli /16) rozdziela sieć na znacznie większe segmenty, co może prowadzić do problemów z kolizjami i wydajnością, a także do trudności w zarządzaniu. W sieciach, gdzie pożądane jest ograniczenie ruchu do określonych podgrup urządzeń, zaleca się stosowanie węższych masek, takich jak 255.255.255.0. Zrozumienie tych zasad jest fundamentem efektywnego projektowania i zarządzania sieciami komputerowymi, co wpływa na ich stabilność i wydajność.

Pytanie 29

Na rysunku widoczny jest symbol graficzny

Ilustracja do pytania
A. punktu dostępowego
B. przełącznika
C. mostu
D. rutera
Symbol graficzny przedstawiony na rysunku jest typowym oznaczeniem dla przełącznika sieciowego znanego również jako switch. Przełączniki są kluczowymi elementami infrastruktury sieciowej umożliwiającymi efektywne przesyłanie danych pomiędzy różnymi urządzeniami w sieci lokalnej LAN. Działają na warstwie 2 modelu OSI co oznacza że zarządzają przesyłaniem ramek danych na podstawie adresów MAC. W przeciwieństwie do koncentratorów które przesyłają ruch do wszystkich portów przełączniki kierują dane tylko do docelowego portu co znacznie zwiększa wydajność i bezpieczeństwo sieci. Nowoczesne przełączniki oferują funkcje takie jak VLAN-y Quality of Service czy agregacja łączy co pozwala na lepsze zarządzanie ruchem sieciowym i dostosowanie infrastruktury do potrzeb użytkowników. W praktyce przełączniki pozwalają na budowę skalowalnych i elastycznych sieci gdzie przepustowość i niezawodność są kluczowe. Ich zastosowanie jest powszechne nie tylko w środowiskach biurowych ale również w centrach danych gdzie są podstawą dla zaawansowanych architektur sieciowych.

Pytanie 30

Jaką wartość dziesiętną ma liczba FF w systemie szesnastkowym?

A. 250
B. 254
C. 255
D. 248
Podczas próby przeliczenia liczby FF na system dziesiętny, niektóre odpowiedzi mogą wynikać z nieporozumienia w zasadach konwersji między systemami liczbowymi. Na przykład, liczby takie jak 248, 250, czy 254 mogą wydawać się sensowne, jednak ich wartość nie odpowiada prawidłowej konwersji liczby FF. Typowym błędem jest pomijanie odpowiednich wag cyfr w systemie szesnastkowym, co prowadzi do mylnego przeliczenia. Każda cyfra w systemie szesnastkowym ma inną wagę, co jest kluczowe dla prawidłowego przeliczenia. Zrozumienie, że F to 15, a następnie poprawne zastosowanie wzoru przeliczeniowego, jest istotne. Często osoby mylą się, traktując cyfry szesnastkowe jako bezpośrednie liczby dziesiętne, co jest błędne, ponieważ każda cyfra szesnastkowa ma swoją specyfikę i wagę. Niezrozumienie tego może prowadzić do poważnych błędów w programowaniu oraz w obliczeniach w informatyce. W praktyce wiele osób napotyka trudności w konwersji między systemami liczbowymi, co podkreśla znaczenie solidnej wiedzy na ten temat, aby uniknąć pułapek myślowych oraz błędnych interpretacji liczb.

Pytanie 31

Jaka jest maska podsieci dla adresu IP 217.152.128.100/25?

A. 255.255.255.192
B. 255.255.255.224
C. 255.255.255.0
D. 255.255.255.128
Wybrane odpowiedzi, takie jak 255.255.255.0, 255.255.255.192 oraz 255.255.255.224, nie są poprawne, ponieważ nie odpowiadają masce podsieci dla adresu IP 217.152.128.100 z zapisem CIDR /25. Maska 255.255.255.0, czyli /24, oznacza, że 24 bity są przeznaczone dla adresu sieci, co pozwala na 256 adresów w tej podsieci, obejmujących zakres od 217.152.128.0 do 217.152.128.255. Ta maska byłaby stosowna, gdybyśmy chcieli mieć większą podsieć, ale w przypadku /25 mamy do czynienia tylko z 128 adresami. Z kolei 255.255.255.192, czyli /26, dzieli podsieć na mniejsze segmenty, co zmniejsza liczbę dostępnych adresów do 64, co również nie odpowiada pierwotnemu założeniu. Wreszcie, maska 255.255.255.224, czyli /27, jeszcze bardziej ogranicza liczbę adresów do 32, co sprawia, że jest to zbyt mała podsieć dla danego adresu IP. Analizując te błędne wybory, można zauważyć powszechne nieporozumienia dotyczące obliczeń liczby adresów w podsieciach oraz nieprawidłowe zastosowanie zapisów CIDR. Ważne jest, aby dokładnie rozumieć, jak maski podsieci wpływają na strukturę adresów IP, co jest kluczowym aspektem projektowania sieci.

Pytanie 32

Jaką maskę domyślną mają adresy IP klasy B?

A. 255.0.0.0
B. 255.255.0.0
C. 255.255.255.255
D. 255.255.255.0
Maski podsieci są kluczowym elementem w zarządzaniu adresami IP, a ich zrozumienie jest niezbędne do prawidłowego projektowania i konfiguracji sieci. Odpowiedzi, które wskazują inne maski niż 255.255.0.0, mylą pojęcia związane z klasami adresów i ich zastosowaniem. Przykładowo, 255.255.255.255 jest tzw. adresem rozgłoszeniowym, który nie jest używany jako maska dla klasy B, lecz jako adres, na który wysyłane są pakiety przez wszystkie hosty w sieci. Z kolei maska 255.255.255.0 jest zgodna z klasą C, która obsługuje mniejsze sieci, oferując jedynie 256 adresów IP, co czyni ją niewłaściwą dla typowych zastosowań klasy B. Zastosowanie maski 255.0.0.0, związanej z klasą A, także jest nieadekwatne, ponieważ umożliwia zbyt dużą liczbę hostów w sieci, co w wielu przypadkach prowadzi do nieefektywnego zarządzania i trudności w organizacji. Tego typu nieporozumienia mogą wynikać z mylnego przekonania, że większe numery w masce oznaczają większe możliwości adresowe, co jest błędne. Kluczowym elementem jest zrozumienie, że każda klasa adresowa ma przypisaną swoją charakterystyczną maskę, która powinna być stosowana w odpowiednich kontekstach sieciowych. Niewłaściwe przypisanie masek może skutkować problemami z komunikacją w sieci i ograniczeniem jej efektywności.

Pytanie 33

Procesor RISC to procesor o

A. rozbudowanej liście instrukcji
B. zmniejszonej liście instrukcji
C. pełnej liście instrukcji
D. głównej liście instrukcji
Wielu użytkowników mylnie klasyfikuje procesory jako charakteryzujące się pełną lub kompleksową listą rozkazów, co jest związane z architekturą CISC. Procesory CISC, takie jak x86, mają na celu zapewnienie bogatego zestawu rozkazów, co może prowadzić do większej złożoności w ich projektowaniu i wykonaniu. Dla programistów oznacza to możliwość korzystania z bardziej zaawansowanych instrukcji, które mogą wykonywać skomplikowane operacje w jednym kroku, jednak wiąże się to z dłuższym czasem wykonania każdej z tych instrukcji. W rzeczywistości to skomplikowanie może prowadzić do trudności w optymalizacji oraz wydajności, szczególnie w kontekście nowoczesnych technologii, które dążą do uproszczenia procesów obliczeniowych. Kolejnym błędnym podejściem jest zrozumienie, że procesory powinny mieć 'główną' lub 'pełną' listę rozkazów. Takie sformułowania mogą wprowadzać w błąd, sugerując, że optymalizacja i efektywność są osiągane przez zwiększenie liczby dostępnych instrukcji. W rzeczywistości kluczem do wydajności w architekturach RISC jest ich prostota i efektywność, co zapewnia lepsze wykorzystanie zasobów systemowych oraz skrócenie czasu dostępu do pamięci. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to nieporozumienia dotyczące zalet złożonych rozkazów i ich wpływu na ogólną efektywność systemów komputerowych.

Pytanie 34

Użytkownik o nazwie Gość jest częścią grupy Goście, która z kolei należy do grupy Wszyscy. Jakie uprawnienia do folderu test1 ma użytkownik Gość?

Ilustracja do pytania
A. użytkownik Gość ma uprawnienia tylko do odczytu folderu test1
B. użytkownik Gość nie ma uprawnień do folderu test1
C. użytkownik Gość ma uprawnienia jedynie do zapisu w folderze test1
D. użytkownik Gość dysponuje pełnymi uprawnieniami do folderu test1
Przekonanie że użytkownik Gość posiada jakiekolwiek uprawnienia do folderu test1 wynika z niepełnego zrozumienia struktury nadawania uprawnień w systemach operacyjnych takich jak Windows. System ten zarządza uprawnieniami poprzez mechanizm grup użytkowników gdzie każdemu użytkownikowi można przypisać różne poziomy dostępu do zasobów. Często błędnie zakłada się że przynależność do grupy takiej jak Wszyscy automatycznie przyznaje pewne uprawnienia jednak w praktyce konkretne ustawienia uprawnień mogą to modyfikować. W przypadku gdy w ustawieniach uprawnień folderu zaznaczono opcje odmowy dla użytkownika Gość jak pokazano na obrazku oznacza to że wszelkie formy dostępu są wyraźnie ograniczone. Systemy takie jak Windows interpretują ustawienie odmowy jako nadrzędne wobec innych ustawień co oznacza że użytkownikowi Gość żadne uprawnienia nie są przyznane nawet jeśli należą do grup z domyślnymi uprawnieniami jak Wszyscy. Popularnym błędem jest przekonanie że brak specyficznego odznaczenia opcji uprawnień oznacza dostęp co jest niezgodne z zasadami administracji sieciowej. Kluczowe jest zrozumienie że rzeczywiste uprawnienia użytkownika są sumą przypisanych uprawnień z uwzględnieniem nadrzędności ustawień odmowy co w praktyce oznacza że każde ustawienie odmowy przyćmiewa inne możliwe przyznane prawa. Takie podejście zapewnia spójność i bezpieczeństwo zasobów w środowiskach złożonych gdzie różne grupy i użytkownicy mogą mieć różne poziomy dostępu do tych samych zasobów a domyślne przypisanie odmowy zapewnia dodatkowy poziom ochrony przed nieautoryzowanym dostępem. W przypadku zarządzania zasobami krytycznymi zawsze należy rozważać priorytetyzację bezpieczeństwa nad wygodą ustawień domyślnych.

Pytanie 35

Jakie oprogramowanie jest zabronione do użytku na sprzęcie instytucji rządowych lub edukacyjnych?

A. Windows Defender
B. Microsoft Word
C. Microsoft Security Essentials
D. AbiWord
Microsoft Security Essentials to oprogramowanie zabezpieczające, które nie spełnia wymogów dotyczących bezpieczeństwa i zarządzania typowych dla instytucji rządowych oraz edukacyjnych. To narzędzie, chociaż użyteczne na poziomie indywidualnym, nie jest uznawane za wystarczająco zaawansowane, aby sprostać standardom bezpieczeństwa, jakie są wymagane w takich środowiskach. W instytucjach tych preferuje się rozwiązania zabezpieczające, które oferują zaawansowane funkcje ochrony przed zagrożeniami, takie jak zarządzanie politykami bezpieczeństwa, centralne zarządzanie, a także wsparcie dla skanowania w czasie rzeczywistym i analizy zagrożeń. Przykładem alternatywnych programów mogą być rozwiązania klasy enterprise, takie jak Symantec Endpoint Protection czy McAfee Total Protection, które są projektowane z myślą o większych organizacjach, oferując bardziej kompleksowe narzędzia do ochrony danych i sieci. Ponadto, wiele instytucji rządowych stosuje regulacje, które wymagają użycia oprogramowania zatwierdzonego przez odpowiednie agencje, co dodatkowo wyklucza Microsoft Security Essentials jako opcję w tych środowiskach.

Pytanie 36

Liczba 5110 w zapisie binarnym wygląda jak

A. 110011
B. 101011
C. 110111
D. 101001
W przypadku błędnych odpowiedzi, takich jak 101001, 110111 i 101011, należy zwrócić uwagę na proces konwersji liczb między systemami liczbowymi. Odpowiedź 101001 to binarna reprezentacja liczby 41 w systemie dziesiętnym. Z kolei 110111 odpowiada liczbie 55, a 101011 reprezentuje liczbę 43. Wybór tych odpowiedzi może wynikać z nieporozumień związanych z zasadami konwersji. Często popełnianym błędem jest brak precyzyjnego zapisywania reszt z dzielenia, co prowadzi do błędnych konkluzji. Niektórzy mogą niepoprawnie interpretować wartości binarne podczas analizy lub obliczeń, co skutkuje mylnym przekonaniem o ich poprawności. Zrozumienie, jak każda cyfra w systemie binarnym odpowiada potędze liczby 2, jest kluczowe. Na przykład, w liczbie 110011, każda cyfra ma swoją wagę: najmniej znacząca cyfra to 2^0, następnie 2^1, 2^2 itd. Zsumowanie tych wartości, gdzie cyfra jest równa 1, prowadzi do uzyskania poprawnej wartości dziesiętnej. Dobre praktyki w konwersji liczb obejmują staranne śledzenie procesu oraz weryfikację wyników na różnych etapach, co pozwala uniknąć typowych błędów i zapewnia dokładność obliczeń.

Pytanie 37

Element oznaczony numerem 1 w schemacie blokowym procesora pełni funkcję

Ilustracja do pytania
A. przeprowadzania operacji na blokach informacji
B. wykonywania operacji na liczbach zmiennoprzecinkowych
C. przechowywania dodatkowych danych dotyczących realizowanej operacji
D. zapisywania rezultatu operacji
Wśród podanych odpowiedzi niektóre dotyczą ważnych elementów procesora, ale nie odnoszą się bezpośrednio do funkcji FPU. Na przykład przechowywanie dodatkowych informacji o wykonywanej operacji może być związane z rejestrami flagowymi lub buforami, które kontrolują różne stany operacji. Te komponenty są kluczowe do zapewnienia precyzyjnego sterowania przepływem danych i operacji, ale nie są bezpośrednio związane z operacjami zmiennoprzecinkowymi. Wykonywanie operacji na blokach danych często odnosi się do ALU, które przetwarza operacje arytmetyczne i logiczne na liczbach całkowitych i może obsługiwać masowe operacje, jednak FPU jest wyspecjalizowane dla obliczeń zmiennoprzecinkowych, co odróżnia je od innych jednostek. Przechowywanie wyniku operacji zazwyczaj odbywa się w rejestrach ogólnego przeznaczenia lub specjalnych rejestrach wyników, które przechowują dane tymczasowo dla dalszego przetwarzania lub wyjścia, ale nie definiuje to funkcji FPU. Zrozumienie tych różnic jest kluczowe dla prawidłowego rozróżnienia między rolami poszczególnych jednostek w architekturze procesora. FPU jest zatem dedykowane do wykonywania skomplikowanych obliczeń zmiennoprzecinkowych, podczas gdy inne jednostki pełnią swoje specyficzne role w ogólnym procesie przetwarzania danych w komputerze, co podkreśla znaczenie specjalizacji funkcjonalnej w architekturze komputerowej.

Pytanie 38

Poniżej zaprezentowano fragment pliku konfiguracyjnego serwera w systemie Linux. Jaką usługi dotyczy ten fragment?

Ilustracja do pytania
A. DHCP
B. TFTP
C. DDNS
D. SSH2
Plik konfiguracyjny przedstawiony na obrazku nie jest związany z usługą TFTP, SSH2 ani DDNS, co można zrozumieć poprzez analizę zawartych w nim elementów. TFTP (Trivial File Transfer Protocol) to prosty protokół do przesyłania plików, który operuje na UDP i nie wymaga zaawansowanej konfiguracji związanej z adresowaniem IP. W kontekście pliku konfiguracyjnego, nie znajdziemy tam specyfikacji podsieci ani zakresów adresów IP, ponieważ TFTP nie zajmuje się tym aspektem zarządzania siecią. SSH2 natomiast odnosi się do Secure Shell w wersji 2, protokołu zapewniającego bezpieczny dostęp do zdalnych systemów. Konfiguracja SSH2 koncentruje się na elementach związanych z autoryzacją, kluczami kryptograficznymi oraz portami komunikacyjnymi, zamiast na aspektach dynamicznego przydzielania adresów. DDNS (Dynamic Domain Name System) umożliwia dynamiczną aktualizację rekordów DNS, co oznacza, że jego konfiguracja dotyczy zasadniczo domen i nie obejmuje bezpośrednio zarządzania podsiecią czy adresami IP. Typowy błąd myślowy polega na kojarzeniu DDNS z dynamicznym charakterem DHCP, jednak ich funkcje w sieci są różne. DDNS zarządza nazwami domen, podczas gdy DHCP odpowiada za adresy IP. Zrozumienie tych fundamentalnych różnic jest kluczowe dla prawidłowego przypisania konfiguracji do odpowiedniej usługi w ramach egzaminu zawodowego. Każda z tych technologii pełni odmienną rolę w ekosystemie sieciowym, co podkreśla znaczenie ich prawidłowego zrozumienia i zastosowania w praktyce administracji sieciowej. Analiza takich plików konfiguracyjnych wymaga od specjalisty znajomości specyfikacji i zastosowania każdego z tych protokołów, co pozwala na efektywne zarządzanie infrastrukturą IT.

Pytanie 39

Jaka jest równoważna forma 232 bajtów?

A. 4GiB
B. 8GB
C. 2GB
D. 1GiB
Odpowiedzi przedstawione jako 1GiB, 2GB i 8GB są błędne, ponieważ wynikają z nieprawidłowych przeliczeń jednostek pamięci. 1GiB to równowartość 1 073 741 824 bajtów, co oznacza, że 232 bajty są zaledwie ułamkiem tego rozmiaru. Podobnie 2GB (2 147 483 648 bajtów) i 8GB (8 589 934 592 bajtów) są znacznie większe niż 232 bajty, co sprawia, że ich wybór jest nieodpowiedni. Często mylone są różnice między gigabajtami (GB) a gibibajtami (GiB), gdzie 1 GiB jest równy 1024 MB, a 1 GB jest równy 1000 MB. Standardy te są kluczowe w branży IT, gdzie precyzyjne zrozumienie jednostek pamięci jest niezbędne dla efektywnego zarządzania danymi i projektowania systemów. Typowym błędem jest nieodróżnianie tych dwóch jednostek, co prowadzi do nadmiernych oszacowań potrzebnej pamięci. W praktyce, zrozumienie kontekstu, w jakim używamy jednostek, jest kluczowe, zwłaszcza gdy mówimy o ich zastosowaniu w różnych technologiach, takich jak dyski twarde, pamięci flash i sieci komputerowe, gdzie efektywność przechowywania danych jest kluczowym czynnikiem sukcesu.

Pytanie 40

Obrazek ilustruje rezultat działania programu

Ilustracja do pytania
A. dir
B. sort
C. tree
D. vol
Dir jest poleceniem wyświetlającym listę plików w bieżącym katalogu w systemach Windows. Nie pokazuje struktury podkatalogów jak tree, co czyni je mniej użyteczne w kontekście wizualizacji całej struktury katalogów. Vol z kolei wyświetla etykietę i numer seryjny woluminu dysku, co jest zupełnie niepowiązane z prezentacją struktury plików. Użytkownicy mogą mylnie interpretować jego zastosowanie jako narzędzie do przeglądania plików, jednak jego funkcja ogranicza się do dostarczania szczegółów o fizycznym dysku. Sort to polecenie służące do sortowania danych tekstowych, stosowane w przetwarzaniu strumieni danych lub plików tekstowych. Sortowanie list plików jest możliwe w połączeniu z innymi poleceniami, lecz samo w sobie nie oferuje funkcji wizualizacji struktury katalogów. Zrozumienie tych poleceń jest ważne dla efektywnego zarządzania danymi i systemami, ponieważ pozwala na prawidłowe i zgodne z przeznaczeniem użycie narzędzi systemowych. Poznanie ich właściwego kontekstu aplikacyjnego zapobiega błędnym założeniom i umożliwia bardziej wydajne operacje w administracji systemowej, gdzie precyzja i odpowiedni dobór narzędzi są kluczowe dla sukcesu operacyjnego i wydajnościowych celów organizacji informatycznej.