Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 15 maja 2025 21:29
  • Data zakończenia: 15 maja 2025 21:45

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,0500 mol/dm3
B. 0,0125 mol/dm3
C. 0,1250 mol/dm3
D. 0,0005 mol/dm3
Nieprawidłowe odpowiedzi mogą wynikać z kilku typowych błędów obliczeniowych i nieporozumień dotyczących zasad rozcieńczania roztworów. Na przykład, wybór stężenia 0,0005 mol/dm³ może być konsekwencją błędnego przeliczenia objętości lub liczby moli, gdzie użytkownik mógł zaniżyć wyniki przez omyłkowe zastosowanie niewłaściwych jednostek. Odpowiedź 0,0500 mol/dm³ sugeruje, że osoba myślała o stężeniu przed rozcieńczeniem, nie uwzględniając faktu, że dodanie wody do roztworu zmienia całkowitą objętość. W przypadku stężenia 0,1250 mol/dm³, błąd może wynikać z mylenia stężenia początkowego z końcowym, co jest częstym błędem w obliczeniach chemicznych. Tego rodzaju nieprawidłowości mogą prowadzić do poważnych konsekwencji w praktycznych zastosowaniach chemicznych, takich jak niepoprawne przygotowanie odczynników do doświadczeń czy analiz, które mogą skutkować błędnymi wynikami. Dlatego w laboratoriach niezwykle istotne jest stosowanie odpowiednich procedur obliczeniowych oraz dokładne sprawdzanie wszystkich obliczeń, aby uniknąć takich pomyłek, które mogą wpłynąć na jakość i dokładność prowadzonych badań.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 100 g lodu i 30 g chlorku amonu.
B. 10 g lodu i 3 g chlorku sodu.
C. 90 g lodu i 30 g chlorku amonu.
D. 150 g lodu i 50 g chlorku sodu.
Odpowiedź '150 g lodu i 50 g chlorku sodu.' jest poprawna, ponieważ odpowiada stosunkowi masowemu 3:1, co jest kluczowe przy przygotowywaniu mieszanin oziębiających. W przypadku mieszanin takich jak sól i lód, zachodzi reakcja endotermiczna, w której sól obniża temperaturę topnienia lodu, co pozwala uzyskać niską temperaturę. Zgodnie z danymi zawartymi w tabeli, dla uzyskania temperatury -21 °C, konieczne jest zastosowanie odpowiednich proporcji lodu i chlorku sodu, a 150 g lodu w połączeniu z 50 g chlorku sodu są idealnymi składnikami. Tego rodzaju mieszaniny są stosowane w różnych aplikacjach, takich jak chłodzenie w laboratoriach chemicznych, gdzie wymagana jest kontrola temperatury, a także w medycynie, gdzie stosuje się je do przechowywania próbek w niskich temperaturach. Zrozumienie tej zasady jest kluczowe w pracach laboratoryjnych i przemysłowych, gdzie kontrolowanie temperatury ma istotne znaczenie dla zachowania właściwości substancji.

Pytanie 4

Który z poniższych zestawów obejmuje jedynie sprzęt do pomiarów?

A. Kolba miarowa, cylinder miarowy oraz eza
B. Kolba miarowa, kolba stożkowa oraz pipeta
C. Kolba miarowa, zlewka oraz bagietka
D. Kolba miarowa, biureta i pipeta
Odpowiedź "Kolba miarowa, biureta i pipeta" jest poprawna, ponieważ wszystkie wymienione narzędzia są klasycznymi przykładami sprzętu miarowego używanego w laboratoriach chemicznych. Kolba miarowa służy do precyzyjnego pomiaru objętości cieczy, co jest kluczowe w wielu reakcjach chemicznych, gdzie dokładność jest niezbędna dla uzyskania powtarzalnych wyników. Biureta, z kolei, jest używana do dozowania cieczy w sposób kontrolowany, najczęściej w titracji, co pozwala na określenie stężenia substancji chemicznej. Pipeta natomiast jest narzędziem, które umożliwia przenoszenie małych objętości cieczy z dużą precyzją. W praktyce laboratoryjnej, wybór odpowiedniego sprzętu pomiarowego jest kluczowy dla uzyskania wiarygodnych danych. Używanie sprzętu zgodnego z normami, takimi jak ISO lub ASTM, zapewnia wysoką jakość pomiarów i minimalizuje ryzyko błędów. Właściwa znajomość i umiejętność posługiwania się tymi narzędziami jest niezbędna dla każdego chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 5

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. wodorotlenek miedzi(I)
B. wodorotlenek miedzi(II)
C. tlenek miedzi(II)
D. tlenek miedzi(I)
Dobra robota z tą odpowiedzią! Tlenek miedzi(II) (CuO) naprawdę powstaje kiedy ogrzewasz wodorotlenek miedzi(II) (Cu(OH)2), który, swoją drogą, jest tym niebieskim osadem, który dostajesz mieszając CuSO4 z NaOH. Kiedy to podgrzewasz, wodorotlenek miedzi(II) traci wodę i zamienia się w tlenek miedzi(II), który ma czarną barwę. To ciekawa reakcja, bo tlenek miedzi(II) ma sporo zastosowań – używa się go jako katalizatora w różnych reakcjach chemicznych, a także w ceramice. Na przykład, w przemyśle ceramicznym korzysta się z niego przy produkcji pigmentów, a dzięki swoim przewodzącym właściwościom, także w elektronice. Warto to rozumieć, bo nie tylko chemia analityczna na tym korzysta, ale też nauka w laboratoriach, gdzie obserwacja takich reakcji jest mega ważna.

Pytanie 6

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. chroniące przed substancjami chemicznymi
B. zapewniające izolację termiczną
C. zwykłe gumowe
D. płócienne
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Sączenie na gorąco powinno być użyte, aby

A. nie miało miejsca wydzielanie kryształów z roztworu
B. miało miejsce wydzielanie kryształów z roztworu
C. doszło do rozpuszczenia substancji obecnych w roztworze
D. nie doszło do rozpuszczenia substancji obecnych w roztworze
Sączenie na gorąco jest techniką stosowaną w chemii, która ma na celu usunięcie zanieczyszczeń z roztworu, a także zapobiegnięcie wydzielaniu kryształów. W procesie tym, roztwór podgrzewany jest do określonej temperatury, co zwiększa rozpuszczalność wielu substancji, a tym samym zapewnia, że będą one pozostawały w stanie rozpuszczonym. Dzięki temu można uzyskać czysty filtrat, wolny od osadów, co jest szczególnie przydatne w analizach chemicznych i preparatyce. Przykładem zastosowania są procesy w laboratoriach chemicznych, gdzie mamy do czynienia z roztworami soli i związków organicznych, które w warunkach pokojowych mogą krystalizować. Zastosowanie sączenia na gorąco pozwala na efektywne oddzielanie cennych substancji od niepożądanych, co jest zgodne z najlepszymi praktykami w chemii analitycznej oraz przemysłowej. Takie podejście zwiększa także jakość i wydajność procesów oczyszczania substancji chemicznych.

Pytanie 9

Czego się używa w produkcji z porcelany?

A. naczynia wagowe oraz krystalizatory
B. moździerze i parowniczki
C. zlewki oraz bagietki
D. szkiełka zegarkowe oraz szalki Petriego
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 10

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na sucho
B. wyprażenia próbki do stałej masy
C. topnienia próbki
D. mineralizacji próbki na mokro
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 11

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu siarkowego(VI).
B. kwasu solnego.
C. kwasu fosforowego(V).
D. kwasu azotowego(V).
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 12

Jakie jest przeznaczenie pieca muflowego?

A. przygotowania próbek do postaci jonowej
B. separacji próbek
C. rozkładu próbek na sucho
D. koncentracji próbek
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 15,8 g KMnO4
B. 3,16 g KMnO4
C. 1,58 g KMnO4
D. 7,95 g KMnO4
Aby obliczyć masę KMnO4 potrzebną do sporządzenia roztworu o określonym stężeniu, należy zastosować wzór: m = C * V * M, gdzie m to masa substancji, C to stężenie molowe (w mol/dm³), V to objętość roztworu (w dm³), a M to masa molowa substancji (w g/mol). W przypadku KMnO4, jego masa molowa wynosi 158 g/mol, a stężenie, które chcemy uzyskać, to 0,02 mol/dm³. Objętość roztworu to 500 cm³, co odpowiada 0,5 dm³. Podstawiając wartości do wzoru, otrzymujemy: m = 0,02 mol/dm³ * 0,5 dm³ * 158 g/mol = 1,58 g. Otrzymana wartość 1,58 g oznacza, że do przygotowania 500 cm³ roztworu KMnO4 o stężeniu 0,02 mol/dm³ należy odważyć tę dokładną ilość substancji. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzenia analiz oraz eksperymentów. Przykładowo, w chemii analitycznej, dokładne stężenie roztworów ma bezpośredni wpływ na wyniki titracji oraz innych metod analitycznych.

Pytanie 15

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. BZT.
B. Azotu azotanowego(V).
C. Barwy.
D. Fosforanów ogólnych.
Poprawna odpowiedź to fosforany ogólne, ponieważ zgodnie z metodyką analizy, próbki wody wymagają zakwaszenia w celu wiązania i stabilizacji fosforanów. Badania wykazały, że niskie pH, osiągane poprzez dodanie kwasu siarkowego(VI), minimalizuje straty fosforanów w wyniku ich adsorpcji na cząstkach stałych oraz ich konwersji do form, które są trudniejsze do zmierzenia. W praktyce, do oznaczania fosforanów ogólnych często stosuje się metody kolorimetryczne, które opierają się na reakcji fosforanów z odczynnikami w kwasowym środowisku. Standardy analityczne, takie jak metody opisane przez APHA (American Public Health Association), podkreślają znaczenie odpowiedniego przygotowania próbki w niskim pH, aby zapewnić rzetelność wyników. Ponadto, ustalenie odpowiednich warunków przechowywania i transportu próbek, w tym ich zakwaszenia, jest kluczowe w monitorowaniu jakości wód i ochrony zasobów wodnych. Właściwe metody analizy fosforanów wspierają zarządzanie ekosystemami wodnymi oraz podejmowanie decyzji dotyczących ochrony środowiska.

Pytanie 16

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 200 g
C. 2500 g
D. 1000 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 17

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,01 mol/dm3
B. 0,50 mol/dm3
C. 0,05 mol/dm3
D. 0,10 mol/dm3
Aby obliczyć stężenie molowe roztworu NaOH, należy najpierw obliczyć liczbę moli NaOH w 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol, co oznacza, że 1 mol NaOH waży 40 g. Liczba moli można obliczyć ze wzoru: liczba moli = masa (g) / masa molowa (g/mol). Dla 0,5 g NaOH obliczenia będą wyglądały następująco: 0,5 g / 40 g/mol = 0,0125 mol. Następnie przeliczamy objętość roztworu z cm³ na dm³, co daje 250 cm³ = 0,25 dm³. Stężenie molowe obliczamy, dzieląc liczbę moli przez objętość roztworu w dm³: 0,0125 mol / 0,25 dm³ = 0,05 mol/dm³. Zrozumienie tych obliczeń jest kluczowe w chemii analitycznej, gdzie precyzyjne przygotowywanie roztworów o określonym stężeniu jest niezbędne w eksperymentach i analizach. W praktyce, takie umiejętności są szczególnie ważne w laboratoriach chemicznych, gdzie dokładność i powtarzalność wyników mają kluczowe znaczenie.

Pytanie 18

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
B. tygiel, siatkę grzewczą, eksykator.
C. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
D. tygiel, trójkąt ceramiczny, krystalizator.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 19

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. destylacja
B. adsorpcja
C. ekstrakcja
D. rektyfikacja
Ekstrakcja to taki proces, w którym oddzielamy składniki z jednorodnej mieszaniny, używając rozpuszczalnika, który potrafi rozpuścić jeden lub więcej z tych składników. To ma dość szerokie zastosowanie w różnych dziedzinach, jak chemia, farmacja czy przemysł spożywczy. Na przykład, kiedy produkuje się olejki eteryczne, ekstrakcja jest super ważna, żeby uzyskać czyste związki zapachowe z roślin. W laboratoriach chemicznych wykorzystuje się ekstrakcję faz ciekłych, żeby oczyścić różne związki chemiczne z mieszanin, a w analizach środowiskowych też się korzysta z ekstrakcji, żeby wyciągnąć zanieczyszczenia z próbek wód czy gleb. Ekstrakcja jest zgodna z dobrymi praktykami laboratoryjnymi, co znaczy, że zaleca się używanie odpowiednich rozpuszczalników i ciekawie też dostosowywać warunki temperaturowe oraz ciśnieniowe, żeby uzyskać jak najlepsze wyniki i nie tracić składników. Warto dodać, że ekstrakcja może być przeprowadzana w różnych skalach - od małych eksperymentów w laboratoriach po duże procesy przemysłowe, co czyni ją naprawdę wszechstronnym narzędziem.

Pytanie 20

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(III) z azotu
B. kwasu azotowego(IV) z azotu
C. kwasu azotowego(II) z azotu
D. kwasu azotowego(V) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
B. analizę produktu zawsze realizuje się dwiema różnymi metodami
C. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
D. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
Kiedy dzielimy średnią próbkę na dwie części, to chcemy mieć pewność, że wyniki są rzetelne i analizy wiarygodne. Jak jedna z próbek idzie do analizy rozjemczej, to mamy możliwość sprawdzenia wyników, gdy coś jest nie tak. To ważne zwłaszcza, gdy są jakieś spory między dostawcą a odbiorcą. Na przykład, wyobraź sobie sytuację, gdzie obie strony mają inne zdanie na temat jakości produktu. Analiza próbki może wtedy pomóc w rozwiązaniu konfliktu. W zgodzie z normami ISO i dobrymi praktykami w laboratoriach, każda próbka powinna być traktowana z najwyższą starannością. A jak są niezgodności, analiza rozjemcza robi się kluczowa. Taki podział próbek też jest ważny, żeby zachować transparentność w badaniach, bo to buduje zaufanie w relacjach handlowych oraz przy certyfikacji produktów.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Chemikalia, dla których upłynął okres przydatności,

A. należy zutylizować z odpadami chemicznymi
B. można wykorzystać do końca opakowania
C. powinny być przechowywane w magazynie
D. można je stosować, pod warunkiem że substancja pozostaje czysta
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 25

Procedura oznaczenia kwasowości mleka. Do wykonania analizy, zgodnie z powyższą procedurą, potrzebne są

Do kolby stożkowej o pojemności 300 cm3 pobrać dokładnie 25 cm3 badanego mleka i rozcieńczyć wodą destylowaną do objętości 50 cm3. Dodać 2-3 krople fenoloftaleiny i miareczkować mianowanym roztworem wodorotlenku sodu do uzyskania lekko różowego zabarwienia.

A. pipeta jednomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 25 cm3.
B. pipeta jednomiarowa o pojemności 25 cm3, zlewka o pojemności 300 cm3, biureta.
C. pipeta wielomiarowa o pojemności 25 cm3, kolba stożkowa o pojemności 300 cm3, biureta, cylinder miarowy o pojemności 100 cm3.
D. cylinder miarowy o pojemności 50 cm3, kolba stożkowa o pojemności 300 cm3, biureta.
Wybrana odpowiedź jest prawidłowa, ponieważ dokładnie odpowiada wymaganym materiałom do analizy kwasowości mleka zgodnie z ustaloną procedurą. Pipeta jednomiarowa o pojemności 25 cm3 jest kluczowym narzędziem do precyzyjnego odmierzania próbki mleka, co jest niezbędne dla zachowania dokładności wyniku analizy. Kolba stożkowa o pojemności 300 cm3 pozwala na rozcieńczenie próbki mleka z wodą destylowaną, co jest istotne dla uzyskania właściwej reakcji podczas miareczkowania. Biureta służy do precyzyjnego dozowania odczynnika w procesie miareczkowania, co jest standardem w laboratoriach chemicznych, a cylinder miarowy o pojemności 25 cm3 umożliwia dokładne odmierzenie wody destylowanej. Zastosowanie tych narzędzi zgodnie z dobrą praktyką laboratoryjną zapewnia wiarygodność wyników i powtarzalność analiz, co jest niezwykle istotne w kontekście kontroli jakości produktów mleczarskich.

Pytanie 26

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. sedymentację
B. destylację prostą
C. krystalizację
D. destylację frakcyjną
Destylacja frakcyjna to naprawdę najbardziej odpowiedni sposób na rozdzielanie ropy naftowej. Dzięki niej możemy oddzielać różne frakcje węglowodorów, bo opiera się na ich punktach wrzenia. W praktyce to wygląda tak, że mieszanka cieczy przechodzi przez kolumnę destylacyjną i przy różnych temperaturach wrzenia frakcji, oddzielają się one na różnych poziomach. W przemyśle naftowym używa się tej metody do produkcji paliw, jak benzyna, olej napędowy czy nafta lotnicza, które są separowane w odpowiednich zakresach temperatur. To wszystko jest zgodne z tym, co robią specjaliści i naprawdę ważne, bo liczy się efektywność rozdziału i jakość produktów. Co ciekawe, destylacja frakcyjna ma też zastosowanie w innych branżach, na przykład w produkcji alkoholu czy chemii organicznej. Tam też potrzeba dobrego oddzielania składników, żeby uzyskać czyste substancje.

Pytanie 27

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 2,24 dm3
B. 4,48 dm3
C. 11,2 dm3
D. 22,4 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
B. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
C. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
D. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. średni
B. twardy
C. częściowy
D. miękki
Wybór złego sączka do filtracji osadu galaretowatego Fe(OH)3 może naprawdę narobić bałaganu. Sączki średnie czy twarde, chociaż mogą działać, to nie są najlepsze w przypadku galaretowatych osadów. Te średnie mają większe pory, więc małe cząsteczki osadu mogą przez nie przechodzić, co mija się z celem oddzielania. A twarde sączki są za sztywne, żeby dobrze zatrzymać delikatny osad, co kończy się utratą prób. Sączki częściowe, które mają łapać tylko niektóre cząsteczki, mogą być nieadekwatne dla skomplikowanych osadów. W praktyce, niewłaściwy sączek nie tylko psuje jakość końcowego produktu, ale i może zafałszować wyniki, co jest niezgodne z dobrymi praktykami w laboratoriach. Dlatego przed wyborem sączka warto dokładnie sprawdzić właściwości osadu i wymogi filtracji.

Pytanie 33

Do przechowywania stężonego kwasu azotowego(V) w laboratorium należy stosować:

A. Aluminiowy termos laboratoryjny
B. Metalową puszkę bez wieczka
C. Otwarty plastikowy pojemnik
D. Szczelnie zamknięte butelki z ciemnego szkła
Kwas azotowy(V) to substancja wyjątkowo agresywna chemicznie i niebezpieczna. Przechowuje się go w szczelnie zamkniętych butelkach z ciemnego szkła, bo to materiał odporny na jego działanie oraz chroniący przed światłem. Światło przyspiesza rozkład kwasu azotowego, a ciemne szkło ogranicza ten proces, co ma kluczowe znaczenie dla zachowania jego właściwości. Dodatkowo szczelne zamknięcie zapobiega uwalnianiu się szkodliwych par oraz absorpcji wilgoci z powietrza, co mogłoby prowadzić do niepożądanych reakcji i obniżenia stężenia. To rozwiązanie zgodne z większością norm BHP i zaleceniami producentów odczynników chemicznych. W praktyce laboratoryjnej stosowanie ciemnych butelek jest po prostu standardem, bo minimalizuje ryzyko zarówno dla ludzi jak i samej substancji. Warto pamiętać, że kwas azotowy atakuje większość metali oraz niektóre tworzywa sztuczne, dlatego szkło jest tu najbezpieczniejsze. Dodatkowo – dobra praktyka to trzymać takie butelki w szafkach chemoodpornych, najlepiej z wentylacją. Moim zdaniem, jeśli ktoś planuje pracę w laboratorium, powinien znać te zasady na pamięć.

Pytanie 34

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
D. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 35

Do narzędzi pomiarowych zalicza się

A. cylinder
B. zlewkę
C. kolbę stożkową
D. naczynko wagowe
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 36

Aby otrzymać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
C. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
D. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
Aby przygotować roztwór AgNO3 o stężeniu 0,1 mol/dm3, kluczowe jest dokładne obliczenie masy soli do odważenia. Masa molowa AgNO3 wynosi 169,8 g/mol, co oznacza, że 1 mol roztworu zawiera 169,8 g substancji. Dla stężenia 0,1 mol/dm3 obliczamy masę: 0,1 mol/dm3 * 169,8 g/mol = 16,98 g. Jednak w przypadku 100 cm3 roztworu potrzebujemy 1/10 tej masy, co daje 1,698 g. Właściwe wykonanie tego kroku jest zgodne z dobrą praktyką laboratoryjną, która podkreśla znaczenie precyzyjnego przygotowania roztworów, aby zapewnić powtarzalność wyników. Ważne jest również, aby całkowicie rozpuścić substancję w wodzie destylowanej przed uzupełnieniem do kreski w kolbie miarowej, co pozwoli uniknąć błędów związanych z niedostatecznym wymieszaniem. Tego typu procedury są standardem w laboratoriach chemicznych, co czyni je praktycznym doświadczeniem dla studentów oraz profesjonalistów w dziedzinie chemii.

Pytanie 37

Proces mineralizacji próbki, który polega na jej spopieleniu w piecu muflowym w temperaturze 300-500°C i rozpuszczeniu pozostałych resztek w kwasach w celu oznaczenia zawartości metali ciężkich, to mineralizacja

A. ciśnieniowe.
B. mikrofalowe.
C. suche.
D. mokre.
Mineralizacja sucha to proces, który polega na spalaniu próbki w piecu muflowym w temperaturze 300-500°C. Taki sposób mineralizacji jest szeroko stosowany w analizach środowiskowych i chemicznych w celu oznaczania zawartości metali ciężkich. Po spaleniu próbki, pozostałości popiołu są rozpuszczane w odpowiednich kwasach, co umożliwia ich dalszą analizę, na przykład przez spektroskopię absorpcyjną czy atomową. Zastosowanie mineralizacji suchej jest zgodne z normami ISO dla analizy metali ciężkich, co zapewnia wysoką jakość i powtarzalność wyników. Dzięki tej metodzie można efektywnie eliminować materię organiczną, co zapewnia dokładniejsze pomiary stężenia metali. Praktyczne zastosowania obejmują badania gleby, osadów dennych oraz próbek biochemicznych, co czyni tę metodę kluczową w monitorowaniu zanieczyszczenia środowiska.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Transportuje się pobrane próbki wody do analiz fizykochemicznych

A. w temperaturze 15±3°C, z dostępem światła
B. w temperaturze 10±3°C, z dostępem światła
C. w temperaturze 20±3°C, bez dostępu światła
D. w temperaturze 5±3°C, bez dostępu światła
Prawidłowa odpowiedź, czyli transportowanie próbek wody w temperaturze 5±3°C, bez dostępu światła, jest zgodna z najlepszymi praktykami oraz standardami laboratoryjnymi. Niska temperatura jest kluczowa, ponieważ spowalnia procesy biologiczne i chemiczne, które mogą prowadzić do zmian w składzie chemicznym próbki. Na przykład, w przypadku próbek wód powierzchniowych, wyższa temperatura może sprzyjać rozwojowi mikroorganizmów, co zafałszowałoby wyniki analizy. Dodatkowo, brak dostępu światła jest istotny dla ochrony próbek przed fotoutlenianiem i degradacją substancji organicznych, co również mogłoby wpłynąć na wiarygodność wyników. Standardy takie jak ISO 5667-3 dotyczące pobierania próbek wody zalecają właśnie takie warunki transportu, aby zminimalizować ryzyko zafałszowania wyników analiz. Stosowanie tych zasad w praktyce laboratoryjnej jest niezbędne dla uzyskania rzetelnych i powtarzalnych wyników analiz fizykochemicznych, co ma kluczowe znaczenie w monitorowaniu jakości wód. W sytuacjach, gdy próbki są transportowane na dłuższe odległości, stosuje się również odpowiednie pojemniki, które izolują próbki od wpływu czynników zewnętrznych, co w połączeniu z optymalną temperaturą i brakiem światła, zapewnia ich integralność.