Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 27 maja 2025 23:12
  • Data zakończenia: 27 maja 2025 23:23

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 0°
B. 45°
C. 90°
D. -90°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.

Pytanie 3

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Kabel telefoniczny
B. Światłowód
C. Sygnał radiowy
D. Kabel UTP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 4

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HH
B. HR
C. HL
D. HG

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 5

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
B. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
C. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar
D. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na konieczność wymiany elementów filtrów standardowych w zespole przygotowania powietrza podczas przeglądu konserwacyjnego wykonywanego raz w roku lub w przypadku, gdy spadek ciśnienia na filtrze przekroczy 0,5 bara, jest zgodna z najlepszymi praktykami w zakresie utrzymania systemów wentylacyjnych i klimatyzacyjnych. Regularne przeglądy, co najmniej raz w roku, pozwalają na wczesne wykrycie problemów oraz zapewnienie optymalnej wydajności filtrów, co jest kluczowe dla jakości powietrza w pomieszczeniach. W przypadku, gdy spadek ciśnienia na filtrze przekracza 0,5 bara, oznacza to, że filtr jest zanieczyszczony lub zatkany, co może prowadzić do spadku efektywności całego systemu, a w skrajnych przypadkach do uszkodzeń urządzeń. Przykładem zastosowania tej praktyki może być przemysłowe użycie systemów filtracji w halach produkcyjnych, gdzie zanieczyszczenia powietrza mogą wpływać na jakość produktów. W takich przypadkach, regularna wymiana filtrów jest nie tylko zalecana, ale wręcz niezbędna dla zapewnienia ciągłości produkcji oraz ochrony zdrowia pracowników. Ponadto, stosowanie się do zaleceń producenta dotyczących konserwacji i wymiany filtrów pozwala na utrzymanie gwarancji na urządzenia oraz na optymalizację kosztów eksploatacyjnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
B. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
C. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
D. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. wskaźnika działania systemu
C. przełącznika instalacyjnego systemu
D. ochrony prądowej systemu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 15

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Indukcyjnego
B. Optycznego
C. Pojemnościowego
D. Rezystancyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Transoptor wykorzystuje się do

A. galwanicznego połączenia obwodów
B. konwersji impulsów elektrycznych na promieniowanie świetlne
C. sygnalizowania transmisji
D. galwanicznej izolacji obwodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów elektrycznych. Jego głównym zadaniem jest zapewnienie nieprzerwanego, ale izolowanego połączenia pomiędzy dwoma obwodami, co pozwala na przesyłanie sygnałów elektrycznych bez bezpośredniego połączenia między nimi. Przykładem zastosowania transoptora jest integracja urządzeń pracujących przy różnych poziomach napięcia, takich jak mikroprocesory i elementy wykonawcze, co chroni wrażliwe układy przed wysokim napięciem. Transoptory są powszechnie stosowane w automatyce przemysłowej, telekomunikacji oraz systemach pomiarowych, gdzie izolacja jest kluczowa dla bezpieczeństwa i niezawodności. Dzięki nim możliwe jest także zminimalizowanie zakłóceń elektromagnetycznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi w projektowaniu systemów elektronicznych.

Pytanie 26

Jakie jest zastosowanie transoptora?

A. zamiany impulsów elektrycznych na promieniowanie świetlne
B. galwanicznej izolacji obwodów
C. galwanicznego połączenia obwodów
D. sygnalizacji transmisji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Zgrzewanie
B. Klejenie
C. Lutowanie twarde
D. Lutowanie miękkie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 34

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Multimetra uniwersalnego
B. Multimetra analogowego
C. Amperomierza cęgowego
D. Amperomierza tablicowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.