Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 maja 2025 21:43
  • Data zakończenia: 25 maja 2025 21:58

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. sód
B. etanol
C. glicerynę
D. cynk
Odpowiedź 'sodu' jest prawidłowa, ponieważ sód reaguje gwałtownie z wodą, co prowadzi do wydzielania wodoru i może spowodować niebezpieczne eksplozje. Z tego powodu, podczas prac związanych z sodem, stosowanie łaźni wodnej jest całkowicie niewskazane. W praktyce, jeśli zajmujesz się sodem, powinieneś używać innych metod chłodzenia lub podgrzewania, takich jak piekarniki lub inne systemy grzewcze, które nie wchodzą w reakcję z tym pierwiastkiem. W laboratoriach chemicznych i podczas produkcji chemikaliów, standardy bezpieczeństwa, takie jak te określone przez OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), zalecają unikanie kontaktu sodu z wodą. Dlatego ważne jest, aby stosować odpowiednie materiały i metody pracy, aby uniknąć potencjalnych wypadków i zapewnić bezpieczeństwo w miejscu pracy.

Pytanie 2

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie w temperaturze maksymalnej +4°C.
B. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
C. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
D. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 3

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodorotlenek sodu
B. tlenek cynku i wodorotlenek sodu
C. cynk i wodę
D. chlorek cynku i wodę
Chlorek cynku (ZnCl2) w reakcji z wodorotlenkiem sodu (NaOH) prowadzi do powstania wodorotlenku cynku (Zn(OH)2), który jest nierozpuszczalny w wodzie. W reakcjach chemicznych, w których powstaje osad, takie jak ta, kluczowe jest zrozumienie zasad rozpuszczalności związków. Wodorotlenek cynku wytrąca się z roztworu, co można zobaczyć jako białe zabarwienie. Jest to ważne w wielu zastosowaniach, na przykład w chemii analitycznej do oznaczania cynku w różnych próbkach. Zastosowanie wodorotlenku cynku znajduje się także w przemyśle farmaceutycznym, kosmetycznym oraz w produkcji materiałów budowlanych. Znajomość takich reakcji jest istotna dla chemików, którzy pracują nad syntezami nowych związków oraz w procesach kontroli jakości. Zawężając się do dobrych praktyk, zawsze należy przeprowadzać te reakcje w odpowiednich warunkach laboratoryjnych, dbając o bezpieczeństwo i właściwe postępowanie z odpadami chemicznymi.

Pytanie 4

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. czerwony
B. zielony
C. niebieski
D. żółty
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 5

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. dekantację bez sączenia
B. podgrzewanie roztworu do wrzenia
C. sączenie przez sączek o drobnych porach lub filtr membranowy
D. suszenie roztworu w suszarce laboratoryjnej
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 6

Komora przeszklona w formie dużej szafy, wyposażona w wentylator, która zapobiega wydostawaniu się szkodliwych substancji do atmosfery laboratorium oraz chroni przed pożarami i eksplozjami, to

A. urządzenie do sterylizacji
B. zespół powietrzny
C. dygestorium
D. komora laminarna
Dygestorium to specjalistyczne urządzenie stosowane w laboratoriach, które ma na celu zapewnienie bezpieczeństwa podczas pracy z substancjami chemicznymi oraz biologicznymi. Jego konstrukcja, często przypominająca dużą szafę, wyposażona jest w wentylator, który zapewnia ciągły przepływ powietrza, co skutecznie zapobiega wydostawaniu się szkodliwych oparów lub cząstek do otoczenia. To istotne, szczególnie w kontekście ochrony zdrowia pracowników oraz przestrzeni laboratoryjnej. Dygestoria są zgodne z normami takimi jak PN-EN 14175, które określają wymagania dotyczące ich projektowania i użytkowania. Przykładem zastosowania dygestoriów może być praca z toksycznymi chemikaliami lub substancjami łatwopalnymi, gdzie ich użycie minimalizuje ryzyko pożaru oraz narażenia na niebezpieczne substancje. W praktyce laboratoria chemiczne, biotechnologiczne oraz farmaceutyczne korzystają z dygestoriów, aby zapewnić maksymalne bezpieczeństwo, co jest kluczowe w kontekście dobrych praktyk laboratoryjnych.

Pytanie 7

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 5
B. 100
C. 50
D. 10
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 8

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. niestabilne materiały wybuchowe.
B. sprężone gazy pod ciśnieniem.
C. gazy utleniające, kategoria zagrożenia 1.
D. gazy łatwopalne, kategoria zagrożenia 1.
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 9

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 1%
B. 0,1%
C. 100%
D. 10%
Stwierdzenia, że błąd względny wynosi 1%, 100% lub 0,1% są wynikiem nieprawidłowego rozumienia definicji błędu względnego oraz jego obliczania. Błąd względny jest proporcjonalny do stosunku błędu pomiaru do wartości mierzanej, co w omawianym przypadku oznacza, że jeżeli mamy wagę z dokładnością 0,1 g, to w kontekście próbki o masie 1 g, maksymalny błąd pomiaru wynosi 0,1 g. Obliczając błąd względny, musimy uwzględnić, iż 0,1 g to 10% z 1 g, co jest kluczowym aspektem w analizie wyników. Odpowiedzi takie jak 1% sugerują, że badacz błędnie oblicza proporcję błędu do całkowitej wagi próbki, co może prowadzić do poważnych konsekwencji w analizach laboratoryjnych. Odpowiedź 100% jest całkowicie mylna, ponieważ błędy pomiaru nie mogą przekraczać wartości mierzonych. Ostatnia opcja, 0,1%, jest wprowadzająca w błąd, ponieważ nie uwzględnia rzeczywistego stosunku błędu do wartości mierzonych. W zakresie kontroli jakości oraz walidacji metod pomiarowych, kluczowe jest posługiwanie się poprawnymi definicjami i wzorami, aby zapewnić dokładność i wiarygodność wyników analitycznych.

Pytanie 10

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. techniczny
B. spektralnie czysty
C. czysty
D. czysty do analizy
Odpowiedzi "czysty do analizy", "czysty" oraz "spektralnie czysty" odnoszą się do odczynników o znacznie wyższej czystości niż odczynniki techniczne. Odczynniki czyste do analizy mają czystość na poziomie 99% i są stosowane w zastosowaniach, gdzie precyzyjne pomiary i reakcje chemiczne są kluczowe, na przykład w analizach jakościowych i ilościowych. Odczynniki te są zgodne z surowymi standardami, takimi jak normy ASTM lub ISO, co czyni je odpowiednimi do zastosowań laboratoryjnych, gdzie jakiekolwiek zanieczyszczenia mogłyby wpłynąć na wyniki badań. Z kolei odczynniki czyste oraz spektralnie czyste są wykorzystywane w bardziej zaawansowanych technikach analitycznych, takich jak spektroskopia, gdzie nawet śladowe zanieczyszczenia mogą skutkować błędnymi wynikami. Wybór niewłaściwego typu odczynnika do konkretnego zastosowania często prowadzi do istotnych błędów w badaniach, co podkreśla znaczenie odpowiedniego doboru środków chemicznych. W praktyce laboratoryjnej, nieprawidłowy wybór odczynnika może wynikać z braku znajomości ich właściwości oraz zastosowań, co jest krytyczne w kontekście uzyskiwania wiarygodnych rezultatów. Dlatego kluczowe jest, aby każdy chemik czy technik laboratoryjny był dobrze zaznajomiony z różnymi klasami odczynników oraz ich specyfikacjami.

Pytanie 11

300 cm3 zanieczyszczonego benzenu poddano procesowi destylacji. Uzyskano 270 cm3 czystej substancji. Jaką wydajność miało oczyszczanie?

A. 111%
B. 10%
C. 90%
D. 80%
Wydajność procesu oczyszczania oblicza się przy użyciu wzoru: (objętość uzyskanego produktu / objętość surowca) * 100%. W naszym przypadku mamy 270 cm³ czystego benzenu uzyskanego z 300 cm³ zanieczyszczonego. Podstawiając wartości do wzoru, otrzymujemy: (270 / 300) * 100% = 90%. Taki wynik oznacza, że proces destylacji był efektywny i pozwolił na odzyskanie 90% czystej substancji. W praktyce, w przemyśle chemicznym, ocena wydajności procesów oczyszczania jest kluczowa, aby zapewnić opłacalność i efektywność produkcji. Wysoka wydajność wskazuje na skuteczną separację substancji, co jest istotne zarówno z punktu widzenia ekonomicznego, jak i jakościowego. Procesy oczyszczania są stosowane w różnych branżach, w tym w produkcji farmaceutycznej czy petrochemicznej, gdzie czystość substancji ma bezpośrednie znaczenie dla bezpieczeństwa i właściwości końcowego produktu. Prawidłowe obliczenie wydajności pozwala również na identyfikację potencjalnych problemów w procesie, co sprzyja ciągłemu doskonaleniu technologii produkcji.

Pytanie 12

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. wodorotlenek sodu
B. kwas fluorowodorowy
C. wodorotlenek potasu
D. glicerynę
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 13

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. palcową
B. kulistą
C. prostą
D. spiralną
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 14

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. cylinder miarowy o pojemności 25 cm3
B. pipetę wielomiarową o pojemności 25 cm3
C. pipetę jednomiarową o pojemności 20 cm3
D. pipetę jednomiarową o pojemności 10 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 15

Ekstrakcję w trybie ciągłym przeprowadza się

A. w kolbie płaskodennej
B. w zestawie do ogrzewania
C. w aparacie Soxhleta
D. w rozdzielaczu z korkiem
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 16

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. bliżej nieokreśloną masę domieszek
B. około 50% czystej substancji
C. 90,7% czystej substancji
D. 100% czystej substancji
Aby określić czystość węglanu magnezu (MgCO3), rozważamy reakcję jego prażenia, w wyniku której MgCO3 rozkłada się na tlenek magnezu (MgO) i dwutlenek węgla (CO2). Ubytek masy wynoszący 2,38 g odnosi się do masy CO2, która powstała podczas tego procesu. Zgodnie z równaniem reakcji, każdy mol MgCO3 (84 g) produkuje jeden mol CO2 (44 g). Dzięki tej relacji możemy obliczyć ilość czystego MgCO3 w próbce. Wyliczając procent czystej substancji, stwierdzamy, że 2,38 g CO2 odpowiada około 5,5 g MgCO3 (obliczone jako 2,38 g * (84 g / 44 g)). Ostatecznie, z próbki o masie 5 g, czystość wynosi 90,7%. Wiedza ta jest niezwykle istotna w analizie chemicznej, gdzie precyzyjne określenie czystości substancji jest niezbędne do oceny ich jakości i zastosowania w przemyśle chemicznym, farmaceutycznym czy materiałowym.

Pytanie 17

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. spawanie
B. mineralizację suchą
C. rozpuszczanie i rozcieńczanie
D. wymywanie lub wymianę jonową
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 18

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. narkotycznym
B. korodującym na metale
C. żrącym dla skóry
D. toksycznym dla skóry
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.

Pytanie 19

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słabą zasadę
B. mieszaninę chromową
C. słaby kwas
D. rozpuszczalnik organiczny
Mieszanina chromowa składa się z kwasu siarkowego i dichromianu potasu, co czyni ją klasycznym środkiem do oczyszczania powierzchni zanieczyszczonych zwęglonymi osadami. Jej działanie polega na utlenianiu związków organicznych, co umożliwia ich skuteczne usunięcie. Przykładem zastosowania mieszaniny chromowej jest czyszczenie narzędzi laboratoryjnych oraz szkła laboratoryjnego, gdzie trudne do usunięcia resztki organiczne mogą zakłócać eksperymenty. W branży chemicznej stosowanie tej metody jest zgodne z najlepszymi praktykami, ponieważ nie tylko efektywnie usuwa osady, ale również minimalizuje ryzyko kontaminacji kolejnych prób. Ponadto, zgodnie z normami bezpieczeństwa, osoby pracujące z mieszanką chromową powinny stosować odpowiednie środki ochrony osobistej oraz przestrzegać zasad dotyczących zarządzania odpadami chemicznymi, aby zminimalizować wpływ na środowisko. Właściwe korzystanie z mieszaniny chromowej jest kluczowe dla osiągnięcia wysokiej jakości wyników w laboratoriach badawczych.

Pytanie 20

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Chromatografia
B. Krystalizacja
C. Destylacja
D. Sublimacja
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 21

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. H2SO4 i HCl w proporcji objętościowej 3:1
B. H2SO4 i HCl w proporcji objętościowej 1:3
C. HNO3 i HCl w proporcji objętościowej 3:1
D. HCl i HNO3 w proporcji objętościowej 3:1
Odpowiedź, że woda królewska jest mieszaniną HCl i HNO3 w stosunku objętościowym 3:1, jest poprawna. Woda królewska to silnie żrąca substancja, zdolna do rozpuszczania metali szlachetnych, takich jak złoto i platyna. Składa się głównie z kwasu solnego (HCl) i kwasu azotowego (HNO3), co czyni ją nieocenionym narzędziem w laboratoriach chemicznych oraz w przemyśle metalurgicznym. Stosunek 3:1 jest kluczowy, ponieważ zapewnia odpowiednie proporcje kwasów, które umożliwiają ich synergiczne działanie, gdzie HCl dostarcza jony chlorowe, a HNO3 przyczynia się do utleniania metali. W praktyce, woda królewska jest często wykorzystywana do analizy chemicznej i przygotowywania próbek do dalszych badań, a także w procesach oczyszczania metali. W branży laboratoryjnej przestrzeganie standardów bezpieczeństwa jest niezbędne, ponieważ zarówno HCl, jak i HNO3 są substancjami niebezpiecznymi, a ich mieszanie wymaga ostrożności oraz stosowania odpowiednich środków ochrony osobistej, takich jak rękawice i okulary ochronne.

Pytanie 22

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
B. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
C. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
D. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 23

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 5:3
B. 3:5
C. 2:3
D. 3:2
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 24

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 400 g
B. 100 g
C. 50 g
D. 200 g
Aby uzyskać roztwór nasycony w temperaturze 20°C, należy rozpuścić w 200 gramach wody około 400 gramów cukru. Zjawisko nasycenia roztworu oznacza, że w danej temperaturze nie można już rozpuścić większej ilości substancji. W przypadku cukru rozpuszczalność w wodzie jest znaczna, a przy 20°C wynosi około 2000 g na 1 litr wody. Woda w tej temperaturze ma zatem zdolność rozpuszczenia znacznej ilości cukru, co sprawia, że 400 g w 200 g wody to zaledwie 20% maksymalnej ilości, jaką dałoby się rozpuścić. Praktyczne zastosowanie tej wiedzy można zauważyć w przemyśle spożywczym, gdzie dokładne parametry roztworu są kluczowe dla produkcji napojów słodzonych, syropów czy innych produktów zawierających cukier. Zrozumienie rozpuszczalności substancji jest niezbędne w wielu procesach chemicznych i technologicznych, co podkreśla znaczenie tej umiejętności w praktyce laboratoryjnej i przemysłowej.

Pytanie 25

Transformacja zolu w żel to zjawisko określane jako

A. azulacja
B. sedymentacja
C. koagulacja
D. peptyzacja
Koagulacja jest procesem, w którym cząstki zawieszone w cieczy łączą się w większe agregaty, co prowadzi do utworzenia żelu. W kontekście przemiany zolu w żel, koagulacja jest kluczowym etapem, w którym cząstki zolu zaczynają się łączyć, co prowadzi do strukturalnych zmian w materiale. Przykładem zastosowania tej wiedzy jest produkcja żeli polimerowych, które wykorzystywane są w przemyśle kosmetycznym oraz farmaceutycznym. W tych branżach koagulacja jest istotna, ponieważ kontrolowanie tego procesu pozwala na uzyskanie pożądanej tekstury i stabilności produktu. W praktyce, inżynierowie często stosują techniki, takie jak dodawanie koagulantów, aby przyspieszyć proces koagulacji w złożonych formulacjach. Dobre praktyki w tym zakresie obejmują również optymalizację parametrów procesu, takich jak temperatura i pH, które mogą znacząco wpływać na efektywność koagulacji. Zrozumienie tej przemiany jest kluczowe w wielu dziedzinach inżynierii materiałowej oraz chemicznej.

Pytanie 26

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. rozpoczęciu reanimacji
B. wyniesieniu osoby poszkodowanej na świeże powietrze
C. zwilżeniu zimną wodą czoła i karku
D. rozpoczęciu resuscytacji
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 27

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. titrantem
B. substratem
C. analitem
D. produktem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 28

Kalibracja pH-metru nie jest potrzebna po

A. każdym pomiarze w danej serii.
B. dłuższej przerwie w pomiarach.
C. długotrwałym używaniu tej samej elektrody.
D. wymianie elektrody.
Kalibracja pH-metru po każdym pomiarze w serii nie jest aż taka konieczna, bo te urządzenia są zaprojektowane z myślą o stabilności pomiarów w krótkich odstępach. Jeśli pH-metr był już wcześniej skalibrowany, a warunki się nie zmieniły, to można spokojnie kontynuować pomiary bez nowej kalibracji. Na przykład w laboratoriach, gdzie robi się dużo pomiarów pH tego samego roztworu, często kalibruje się pH-metr przed rozpoczęciem całej serii pomiarów, a potem korzysta z tej samej kalibracji. Tylko pamiętaj, że jeśli robisz dłuższą przerwę w pomiarach lub zmienia się temperatura, to lepiej znów skalibrować, żeby mieć pewność, że wyniki są dokładne. Takie zasady są podkreślane w standardach ISO i ASTM, więc warto je znać, bo nieprzestrzeganie ich może prowadzić do złych wyników i utraty zaufania do analiz.

Pytanie 29

Do 200 g roztworu NaOH (M = 40 g/mol) o stężeniu 10 % dodano wodę destylowaną w kolbie miarowej o pojemności 500 cm3 do znaku. Jakie jest stężenie molowe powstałego roztworu?

A. 0,1 mol/dm3
B. 4,0 mol/dm3
C. 0,5 mol/dm3
D. 1,0 mol/dm3
Błędne odpowiedzi często opierają się na niepoprawnym zrozumieniu pojęcia stężenia oraz na niewłaściwym obliczeniu liczby moli substancji w roztworze. Dla odpowiedzi wskazujących na stężenie 0,5 mol/dm³, można zauważyć, że mogą one wynikać z błędnego założenia, że 200 g roztworu zawiera mniej moli NaOH, niż wynika to z obliczeń. Inną typową pomyłką jest zakładanie, że rozcieńczenie wpływa na całkowitą ilość moli w roztworze, co jest nieprawdziwe. Po rozcieńczeniu liczba moli pozostaje niezmieniona, a zmienia się tylko objętość roztworu, co prowadzi do błędnych wyników stężenia. Odpowiedzi wskazujące na 4,0 mol/dm³ mogą wynikać z mylnego przeliczenia masy substancji na mole bez uwzględnienia objętości roztworu, co jest kluczowe przy obliczaniu stężeń. Niezrozumienie metody obliczania stężenia molowego prowadzi do niepoprawnych wniosków, a także wykazuje brak znajomości podstawowych zasad chemii, takich jak prawo zachowania masy czy zasady przygotowywania roztworów. W praktyce laboratoryjnej ważne jest, aby dokładnie obliczać zarówno masy, jak i objętości, aby uzyskać poprawne wyniki analizy i zapewnić jakość badań.

Pytanie 30

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 5,60 g
B. 56,00 g
C. 0,56 g
D. 0,28 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 31

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, waga, bagietka
B. Zlewka, waga, tryskawka, bagietka
C. Zlewka, lejek, statyw, bagietka
D. Zlewka, lejek, trójnóg, tygiel
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 32

Który z poniższych sposobów homogenizacji próbki jest najbardziej odpowiedni do przygotowania próbki gleby do analizy chemicznej?

A. Pobranie losowego fragmentu bez rozdrabniania
B. Przesianie gleby przez sitko o dużych oczkach bez mieszania
C. Suszenie gleby przed pobraniem próbki bez mieszania
D. Dokładne wymieszanie i rozdrobnienie całej próbki
Niektóre techniki przygotowania próbki gleby wydają się kusząco proste, ale prowadzą do poważnych błędów analitycznych. Przesiewanie przez sitko o dużych oczkach bez wcześniejszego dokładnego wymieszania to czynność, która może zostawić w próbce fragmenty o zupełnie innym składzie – duże bryły, korzenie, kamienie lub nawet skupiska materii organicznej. Tak przygotowana próbka nie będzie reprezentatywna, bo skład chemiczny różnych fragmentów gleby może się znacząco różnić. Pobranie losowego fragmentu bez rozdrabniania to typowe niedopatrzenie w praktyce terenowej – prowadzi do sytuacji, gdzie analizuje się właściwie 'co popadnie', a nie przeciętne właściwości całej próbki. W efekcie wyniki mogą być bardzo rozbieżne, nawet jeśli dwie próbki zostały pobrane z tego samego miejsca. Suszenie gleby przed pobraniem próbki bez jej wymieszania wydaje się logiczne, bo suszenie eliminuje wilgoć, ale bez wymieszania i rozdrobnienia wciąż mamy fragmenty o różnym składzie i strukturze. To może skutkować tzw. błędem próbki, czyli sytuacją, gdzie analizowana porcja nie odzwierciedla prawdziwego stanu całej próbki. Z mojego doświadczenia wynika, że takie uproszczenia najczęściej wynikają z pośpiechu lub braku znajomości dobrych praktyk laboratoryjnych. W profesjonalnych laboratoriach zawsze dąży się do ujednolicenia próbki – niezależnie od tego, czy badamy gleby pod kątem zanieczyszczeń, czy składników odżywczych dla rolnictwa. Niedokładna homogenizacja to jedna z najczęstszych przyczyn niepowtarzalnych lub nieprawidłowych wyników, które mogą prowadzić do błędnych wniosków i decyzji, nawet na poziomie administracyjnym czy prawnym.

Pytanie 33

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na sucho
B. mineralizacji próbki na mokro
C. topnienia próbki
D. wyprażenia próbki do stałej masy
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 34

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
C. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
D. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
Odpowiedź jest poprawna, ponieważ przygotowanie roztworu o stężeniu 0,1 mol/dm³ wymaga precyzyjnego odmierzania substancji chemicznych. Aby uzyskać roztwór o pojemności 100 cm³ i stężeniu 0,1 mol/dm³, należy obliczyć ilość AgNO₃ potrzebną do przygotowania takiego roztworu. Masa molowa AgNO₃ wynosi 169,8 g/mol, więc dla 0,1 mol/dm³ w 100 cm³ (0,1 dm³) potrzeba 0,01 mola tej substancji. Zatem 0,01 mola x 169,8 g/mol daje 1,698 g AgNO₃. Przeniesienie odważonej ilości do kolby miarowej o pojemności 100 cm³ i rozpuszczenie w wodzie destylowanej oraz uzupełnienie do kreski zapewnia, że otrzymujemy dokładnie przygotowany roztwór o wymaganym stężeniu. Tego rodzaju praktyka jest zgodna z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 35

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 ml
B. 200 dm3
C. 20 dm3
D. 200 cm3
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 36

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. czerwonym
B. żółtym
C. niebieskim
D. zielonym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 37

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 2500 g
B. 200 g
C. 100 g
D. 1000 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 38

Które z poniższych działań należy wykonać przed rozpoczęciem pracy z nowym szkłem laboratoryjnym?

A. Ogrzać szkło w suszarce do 200°C bez mycia
B. Przetrzeć szkło suchą szmatką
C. Dokładnie umyć, wypłukać wodą destylowaną i wysuszyć
D. Włożyć szkło do zamrażarki na 30 minut
Przed przystąpieniem do pracy w laboratorium, odpowiednie przygotowanie szkła laboratoryjnego jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Zaleca się, aby każdy nowy element szkła został dokładnie umyty, wypłukany wodą destylowaną i następnie wysuszony. To nie jest tylko formalność – na powierzchni nowego szkła mogą pozostawać resztki środków produkcyjnych, pyłów, opiłków lub nawet tłuszczów używanych w procesie produkcji i transportu. Takie zanieczyszczenia potrafią znacząco wpłynąć na przebieg reakcji chemicznych, fałszować wyniki pomiarów czy powodować wytrącanie się niepożądanych osadów. W praktyce laboratoryjnej normą jest wieloetapowe mycie szkła: najpierw wodą z detergentem, następnie dokładne płukanie wodą z kranu, a na końcu kilkukrotne płukanie wodą destylowaną. Suszenie zapewnia, że do wnętrza próbki nie dostanie się woda o nieznanym składzie. Moim zdaniem, sumienne podejście do czystości szkła jest jedną z najważniejszych zasad pracy laboranta. Każdy zawodowiec wie, że nawet drobny brud czy mgiełka tłuszczu mogą przekreślić godziny żmudnej pracy. W wielu laboratoriach, szczególnie tych akredytowanych, są nawet specjalne protokoły przygotowania sprzętu – warto je poznać i stosować, bo to naprawdę się opłaca.

Pytanie 39

Aby przygotować 500 g roztworu o stężeniu 10% (m/m), ile substancji należy odważyć?

A. 100 g substancji
B. 10 g substancji
C. 50 g substancji
D. 5 g substancji
Aby sporządzić roztwór o stężeniu 10% (m/m), należy zrozumieć, że stężenie to oznacza, że na każde 100 g roztworu przypada 10 g substancji rozpuszczonej. W przypadku przygotowywania 500 g roztworu, można obliczyć potrzebną ilość substancji, stosując proporcję. 10% z 500 g to 50 g substancji: 500 g * 0,10 = 50 g. Taki sposób obliczenia jest zgodny z zasadami chemii analitycznej, gdzie dokładność i precyzja są kluczowe. W praktyce, przygotowując roztwory, należy zawsze stosować odpowiednie wagi analityczne oraz zapewnić odpowiednie warunki do ich mieszania, aby uzyskać jednorodny roztwór. Ważne jest również, aby znać właściwości substancji, które są wykorzystywane do sporządzania roztworów, aby uniknąć niebezpieczeństw związanych z ich stosowaniem, co jest zgodne z dobrą praktyką laboratoryjną.

Pytanie 40

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 83%
B. 80%
C. 75%
D. 93%
Aby obliczyć wydajność reakcji, najpierw należy określić teoretyczną ilość wodorotlenku wapnia, którą można by uzyskać z 30 g węglanu wapnia. Reakcja wypalania węglanu wapnia (CaCO3) do tlenku wapnia (CaO) można zapisać jako: CaCO3 → CaO + CO2. Obliczając masę molową węglanu wapnia, otrzymujemy 100 g/mol. Zatem 30 g węglanu wapnia to 0,3 mol. Następnie, tlenek wapnia reaguje z wodą, tworząc wodorotlenek wapnia (Ca(OH)2): CaO + H2O → Ca(OH)2. Masa molowa wodorotlenku wapnia wynosi 74 g/mol. Z 0,3 mola CaO możemy uzyskać 0,3 mola Ca(OH)2, co daje 22,2 g teoretycznego wodorotlenku wapnia (0,3 mol * 74 g/mol). W rzeczywistości uzyskaliśmy 18,5 g, więc wydajność reakcji obliczamy jako (18,5 g / 22,2 g) * 100% = 83%. Wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, a jej znajomość jest niezbędna w przemyśle chemicznym, gdzie optymalizacja kosztów i surowców ma ogromne znaczenie.