Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 4 maja 2025 16:18
  • Data zakończenia: 4 maja 2025 16:42

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 2,65 g
B. 5,83 g
C. 5,30 g
D. 2,92 g
Żeby obliczyć masę sody potrzebnej do reakcji z 2-naftolem, na początku musimy zgarnąć ilość moli 2-naftolu. Mamy masę 2-naftolu, która wynosi 7,2 g i jego masę molową, co to jest 144 g/mol. Teraz dzielimy masę przez masę molową i wychodzi nam, że n(2-naftol) to 7,2 g podzielić na 144 g/mol, czyli jakieś 0,05 mola. Z równania reakcji wiemy, że na 2 mole 2-naftolu potrzeba 1 mol sody. Więc jak mamy 0,05 mola 2-naftolu, to potrzebujemy tylko 0,025 mola Na2CO3. A masa molowa Na2CO3 to 106 g/mol, więc masa sody, której potrzebujemy, to 0,025 mol razy 106 g/mol, co daje nam 2,65 g. Ponieważ lepiej mieć zapas, liczymy też 10% z 2,65 g, co wychodzi 0,265 g. Tak więc całkowita masa sody do reakcji to 2,65 g + 0,265 g, czyli 2,92 g. Tego typu obliczenia są mega ważne w chemii, bo dają nam pewność, że wszystko się ładnie zareaguje i nie zmarnujemy materiałów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Zamieszczony fragment procedury opisuje sposób otrzymywania

„W zlewce o pojemności 250 cm3 rozpuść w 50 cm3 wody destylowanej 5 g uwodnionego siarczanu(VI) miedzi(II). Do roztworu dodaj 16,7 cm3 roztworu NaOH o stężeniu 6 mol/dm3. Następnie dodaj 10 g glukozy w celu przeprowadzenia reakcji redukcji jonów miedzi(II) do miedzi(I). Ostrożnie ogrzewaj zlewkę z mieszaniną reakcyjną do otrzymania czerwonego osadu (...)Osad odsącz, przemyj alkoholem i susz na bibule na powietrzu."

A. Cu(OH)2.
B. CuO.
C. Cu20.
D. Na2SO4.
Wybór Cu(OH)2, CuO oraz Na2SO4 jako odpowiedzi prowadzi do nieporozumień dotyczących podstawowych zasad chemii, szczególnie w kontekście reakcji redoks i zjawisk związanych z redukcją. Cu(OH)2, znany jako wodorotlenek miedzi(II), nie jest produktem procesu opisanego w pytaniu. Jego powstanie wymagałoby reakcji miedzi(II) z zasadami, a nie redukcji. CuO, to tlenek miedzi(II), który powstaje w inny sposób, zazwyczaj w wyniku utleniania miedzi w obecności tlenu, a więc również nie jest związany z opisanym procesem. Na2SO4, czyli siarczan sodu, jest całkowicie innym związkiem, który nie ma związku z miedzią ani z redukcją, a jego obecność w tym kontekście może wskazywać na mylną interpretację reakcji chemicznych. Typowe błędy myślowe obejmują pomylenie różnych stopni utlenienia miedzi, co skutkuje wybraniem niewłaściwych produktów. Kluczowe jest zrozumienie, że reakcje chemiczne są ściśle powiązane z warunkami, w jakich się odbywają, a także rodzajami reagentów używanych w danym procesie. Zrozumienie tych podstaw jest kluczowe dla skutecznej analizy chemicznej i uzyskania właściwych wyników w laboratoriach chemicznych.

Pytanie 5

Ekstrakcję w trybie ciągłym przeprowadza się

A. w kolbie płaskodennej
B. w aparacie Soxhleta
C. w zestawie do ogrzewania
D. w rozdzielaczu z korkiem
Wybór odpowiedzi związanych z rozdzielaczem z korkiem, kolbą płaskodenną czy zestawem do ogrzewania wskazuje na nieporozumienie dotyczące zasad ekstrakcji. Rozdzielacz z korkiem jest urządzeniem stosowanym do rozdzielania dwóch faz, a nie do ciągłej ekstrakcji. Takie podejście może prowadzić do błędnych wniosków, gdyż nie umożliwia efektywnego kontaktu między rozpuszczalnikiem a materiałem, co jest kluczowe dla procesu ekstrakcji. Kolba płaskodenna, chociaż może być używana do różnych reakcji chemicznych, nie jest odpowiednia dla ekstrakcji ciągłej, ponieważ nie zapewnia ciągłego przepływu rozpuszczalnika przez próbkę. Z kolei zestaw do ogrzewania służy jedynie do podgrzewania substancji, nie realizując jednocześnie procesu ekstrakcji. W przypadku ekstrakcji istotne jest, aby rozpuszczalnik mógł wielokrotnie przechodzić przez materiał, co jest niemożliwe w przypadku wymienionych urządzeń. Niezrozumienie różnicy między ciągłą a przerywaną ekstrakcją może prowadzić do wyboru niewłaściwej metody, co w konsekwencji wpływa na efektywność i jakość uzyskanego produktu.

Pytanie 6

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości drugorzędnej analitycznej
B. czystości
C. spektralnej czystości
D. czystości chemicznej
Wybór odczynników o niższej czystości, takich jak 'cz.' (czystość), 'spekt.cz.' (czystość spektroskopowa) czy 'chem.cz.' (czystość chemiczna), może prowadzić do nieprawidłowych wyników analiz chemicznych. Odczynniki te mogą zawierać różne zanieczyszczenia, które mogą znacząco wpłynąć na wyniki pomiarów. Na przykład, czystość spektroskopowa odnosi się do zastosowania w określonych technikach analitycznych, ale nie gwarantuje, że substancja jest odpowiednia do ogólnych analiz chemicznych. Czystość chemiczna może być niewystarczająca, szczególnie gdy wymagana jest wysoka dokładność. Istnieje również ryzyko, że reagenty o niższej czystości mogą zawierać nieznane substancje, co prowadzi do błędnych wniosków w analizach ilościowych. W wielu przypadkach, laboratoria analityczne są zobowiązane do przestrzegania surowych standardów, aby zapewnić, że wszystkie stosowane odczynniki są odpowiedniej czystości. Użycie reagentów o niewłaściwej czystości jest częstym błędem, który może wynikać z niedoinformowania lub nieprzestrzegania protokołów laboratoryjnych. Użytkownicy powinni zwracać szczególną uwagę na specyfikacje każdego odczynnika chemicznego, aby upewnić się, że spełniają one wymogi potrzebne do danego zastosowania analitycznego.

Pytanie 7

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. destylacji
B. koagulacji
C. krystalizacji
D. filtracji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 8

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 10 g KCl i 200 g wody
B. 20 g KCl i 180 g wody
C. 5 g KCl i 200 g wody
D. 10 g KCl i 190 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 9

Do 200 g roztworu NaOH (M = 40 g/mol) o stężeniu 10 % dodano wodę destylowaną w kolbie miarowej o pojemności 500 cm3 do znaku. Jakie jest stężenie molowe powstałego roztworu?

A. 0,5 mol/dm3
B. 0,1 mol/dm3
C. 1,0 mol/dm3
D. 4,0 mol/dm3
Aby obliczyć stężenie molowe roztworu wodorotlenku sodu (NaOH), najpierw należy ustalić, ile moli NaOH znajduje się w 200 g roztworu o stężeniu 10%. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g NaOH. W związku z tym, w 200 g roztworu znajduje się 20 g NaOH. Obliczamy liczbę moli: 20 g / 40 g/mol = 0,5 mol NaOH. Następnie, roztwór został rozcieńczony do 500 cm³, co odpowiada 0,5 dm³. Zatem stężenie molowe można obliczyć jako: liczba moli / objętość w dm³, co daje 0,5 mol / 0,5 dm³ = 1,0 mol/dm³. Takie obliczenia są istotne w chemii analitycznej, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników. Rozpoznawanie i obliczanie stężeń molowych jest fundamentalną umiejętnością dla chemików, a także dla inżynierów chemicznych, którzy pracują z reakcjami chemicznymi, w laboratoriach oraz w przemyśle chemicznym.

Pytanie 10

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 KMnO4 → K2MnO4 + MnO2 + O2
B. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
C. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
D. CaCO3 → CaO + CO2
Inne podane reakcje nie są reakcjami redoks, co może prowadzić do nieporozumień w ich interpretacji. Przykład 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4 jest typowym procesem podwójnej wymiany, w którym nie zachodzi zmiana stopni utlenienia. Zarówno sód, jak i miedź pozostają w swoich stanach utlenienia, co wyklucza tę reakcję z kategorii redoks. Kolejny przypadek, 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O, to reakcja neutralizacji kwasu i zasady, w której również nie zachodzi redukcja ani utlenienie. Podobnie, reakcja CaCO3 → CaO + CO2 jest reakcją rozkładu, w której wytwarzanie dwutlenku węgla nie wiąże się ze zmianą stopni utlenienia w znaczący sposób. Często mylone są reakcje, w których zachodzi zmiana stanu skupienia lub przekształcenie chemiczne, z reakcjami redoks. Kluczowym aspektem odróżniającym te procesy jest analiza stopni utlenienia reagentów oraz produktów, co jest istotne w edukacji chemicznej. Zrozumienie tych różnic jest niezbędne, aby uniknąć błędnych wniosków i skutkować efektywnym wykorzystaniem chemicznych reakcji w praktyce laboratoryjnej oraz przemysłowej.

Pytanie 11

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia masy na szalce zastosowano odważniki: 10 g, 5 g, 500 mg, 200 mg, 200 mg, 50 mg, 20 mg, 10 mg oraz 10 mg. Masa substancji razem z naczynkiem wyniosła

A. 15,99 g
B. 15,94 g
C. 16,04 g
D. 16,94 g
Odpowiedzi 15,94 g, 16,04 g oraz 16,94 g są błędne z kilku powodów. Przede wszystkim, kluczowym błędem jest niepoprawne dodanie mas odważników. W przypadku pierwszej z błędnych odpowiedzi, założono, że suma mas wynosi 15,94 g, co sugeruje, że niektóre odważniki zostały pominięte lub źle zsumowane. Często zdarza się, że przy obliczeniach pomija się mniejsze wartości, co prowadzi do błędnych wyników. Z kolei wartość 16,04 g może wynikać z dodania nadmiarowej masy, co z kolei pokazuje, że osoba odpowiadająca mogła pomylić się w obliczeniach lub nie uwzględnić jednostek miary. Z kolei ostatnia odpowiedź, 16,94 g, może być wynikiem błędnego założenia o wadze substancji w naczyniu, co sugeruje, że zaniedbano kluczowe elementy procesu ważenia, takie jak uwzględnienie masy samego naczynia. W praktyce, aby uzyskać poprawny wynik, niezbędne jest dokładne zrozumienie zasady ważenia oraz umiejętność sumowania jednostek miary. Warto również pamiętać o stosowaniu zasad panujących w laboratoriach, takich jak ważenie substancji po zważeniu pustego naczynia i odjęcie tej wartości od wyniku. Systematyczne stosowanie dobrych praktyk w laboratoriach znacząco podnosi jakość wyników oraz redukuje margines błędu.

Pytanie 12

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Soxleth.
B. Kipp.
C. Thiel.
D. Engler.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 13

Naważkę NaOH o masie 0,0400 g rozpuścić w małej ilości wody, a następnie przelać ten roztwór do kolby miarowej o pojemności 500 cm3 i uzupełnić kolbę miarową wodą do tzw. kreski. Masa molowa NaOH wynosi 40,0 g/mol. Jakie jest stężenie molowe przygotowanego roztworu?

A. 2,000 mol/dm3
B. 0,020 mol/dm3
C. 0,002 mol/dm3
D. 0,200 mol/dm3
Aby obliczyć stężenie molowe sporządzonego roztworu wodorotlenku sodu (NaOH), należy najpierw obliczyć liczbę moli substancji. Masa wodorotlenku sodu wynosi 0,0400 g, a jego masa molowa to 40,0 g/mol. Liczba moli NaOH wynosi zatem: n = m/M = 0,0400 g / 40,0 g/mol = 0,001 mol. Roztwór został rozcieńczony do objętości 500 cm³, co odpowiada 0,500 dm³. Stężenie molowe (C) obliczamy ze wzoru: C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Wstawiając wartości, otrzymujemy: C = 0,001 mol / 0,500 dm³ = 0,002 mol/dm³. Takie obliczenia są fundamentalne w chemii analitycznej i stosowane są w laboratoriach do przygotowywania roztworów o znanym stężeniu. Znajomość stężeń molowych jest kluczowa w reakcjach chemicznych, szczególnie w kontekście analizy ilościowej oraz w procesach przemysłowych, gdzie precyzyjne dawkowanie reagentów ma kluczowe znaczenie dla jakości produktów końcowych.

Pytanie 14

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
B. Kolba miarowa, lejek szklany, bagietka
C. Kolba stożkowa, lejek z sitkiem, bagietka
D. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody
Odpowiedź wskazująca na kolbę ssawkową, lejek z sitowym dnem oraz pompkę wodną jako zestaw do sączenia pod zmniejszonym ciśnieniem jest prawidłowa. Kolba ssawkowa jest specjalnie zaprojektowana do przechwytywania i transportu cieczy, a jej konstrukcja umożliwia tworzenie podciśnienia wewnątrz kolby. Lejek z sitowym dnem odgrywa kluczową rolę w procesie filtracji, umożliwiając sączenie cieczy przez sitko, co pozwala na oddzielenie cząstek stałych od cieczy. Pompka wodna jest używana do redukcji ciśnienia, co jest istotne w procesach takich jak ekstrakcja czy destylacja, gdyż umożliwia efektywne usuwanie cieczy w niższych temperaturach, co z kolei zapobiega degradowaniu wrażliwych substancji chemicznych. Użycie tego sprzętu jest zgodne z najlepszymi praktykami laboratoryjnymi, gdzie ważne jest zachowanie integralności próbek oraz minimalizacja strat substancji lotnych.

Pytanie 15

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. gaśnicy pianowej
B. wody
C. piasku
D. gaśnicy śniegowej
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 16

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
B. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
C. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
D. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 17

Naczynia miarowe, skalibrowane "na wlew" (IN) to:

A. kolby destylacyjne
B. kolby miarowe
C. pipety jednomiarowe o obj. 25 cm3
D. biurety
Kolby miarowe to naczynia kalibrowane na wlew, co oznacza, że ich pojemność jest określona na poziomie, gdy ciecz wlewana jest do oznaczenia na szyjce naczynia. Dzięki temu kolby miarowe zapewniają wysoką dokładność pomiarów objętości. Stosowane są one w chemii analitycznej oraz w laboratoriach do przygotowywania roztworów o dokładnie określonych stężeniach. Przykładem zastosowania kolb miarowych może być przygotowanie roztworu buforowego, gdzie precyzyjne wymieszanie składników jest kluczowe dla uzyskania stabilnych warunków reakcji. Dobrą praktyką jest używanie kolb o różnych pojemnościach, co pozwala na elastyczne dostosowanie objętości do potrzeb konkretnego doświadczenia. Kolby miarowe powinny być używane zgodnie z odpowiednimi standardami, takimi jak ISO 4788, które definiują wymagania dotyczące dokładności i precyzji pomiarów w laboratoriach.

Pytanie 18

Transformacja zolu w żel to zjawisko określane jako

A. peptyzacja
B. azulacja
C. koagulacja
D. sedymentacja
Koagulacja jest procesem, w którym cząstki zawieszone w cieczy łączą się w większe agregaty, co prowadzi do utworzenia żelu. W kontekście przemiany zolu w żel, koagulacja jest kluczowym etapem, w którym cząstki zolu zaczynają się łączyć, co prowadzi do strukturalnych zmian w materiale. Przykładem zastosowania tej wiedzy jest produkcja żeli polimerowych, które wykorzystywane są w przemyśle kosmetycznym oraz farmaceutycznym. W tych branżach koagulacja jest istotna, ponieważ kontrolowanie tego procesu pozwala na uzyskanie pożądanej tekstury i stabilności produktu. W praktyce, inżynierowie często stosują techniki, takie jak dodawanie koagulantów, aby przyspieszyć proces koagulacji w złożonych formulacjach. Dobre praktyki w tym zakresie obejmują również optymalizację parametrów procesu, takich jak temperatura i pH, które mogą znacząco wpływać na efektywność koagulacji. Zrozumienie tej przemiany jest kluczowe w wielu dziedzinach inżynierii materiałowej oraz chemicznej.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
B. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
C. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
D. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
Wybór odpowiedzi dotyczącej probówki nr 3 jako roztworu wodorotlenku sodu jest poprawny z kilku powodów. Uniwersalny papier wskaźnikowy to narzędzie, które zmienia kolor w zależności od pH roztworu. W przypadku wodorotlenku sodu, który jest silnym zasadowym elektrolitem, kątem pH może osiągać wartości powyżej 12, co powoduje, że papier zmienia kolor na niebieski. Fenoloftaleina, również stosowana w tym przypadku, zmienia kolor na malinowy w pH powyżej 8,2, co dodatkowo potwierdza obecność wodorotlenku sodu. W praktyce, umiejętność identyfikacji substancji na podstawie ich odczynu jest niezbędna w laboratoriach chemicznych, gdzie konieczne jest precyzyjne określenie właściwości chemicznych roztworów. Zgodnie z dobrymi praktykami, stosowanie wskaźników pH jest kluczowe w procesach analitycznych, a ich interpretacja pozwala na właściwe dobieranie reagentów w dalszych etapach eksperymentu.

Pytanie 22

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. wodną
B. przeciwpożarową
C. parową
D. ściekową
Zrozumienie znaczenia kolorów stosowanych w oznakowaniu instalacji przemysłowych i laboratoryjnych jest kluczowe dla zapewnienia bezpieczeństwa. Odpowiedzi, które wskazują inne kolorowe kody, takie jak parowa, ściekowa czy przeciwpożarowa, mogą prowadzić do poważnych konsekwencji, jeżeli nie zidentyfikuje się ich właściwie. Instalacje parowe są zazwyczaj oznaczane na czerwono, co sugeruje wysokie ryzyko związane z wysoką temperaturą oraz ciśnieniem, a ich pomylenie z instalacjami wodnymi może być katastrofalne. Z kolei instalacje ściekowe, które często są kodowane w kolorze brązowym lub czarnym, służą do transportowania odpadów i muszą być zarządzane z zachowaniem szczególnej ostrożności, aby uniknąć zanieczyszczenia środowiska. Kolor czerwony dla systemów przeciwpożarowych odnosi się do urządzeń gaśniczych i hydrantów, co także wymaga szybkiej identyfikacji w sytuacjach awaryjnych. Ignorowanie tych standardów i pomylenie kolorów może prowadzić do nieporozumień, które są niebezpieczne w sytuacjach kryzysowych. Dlatego kluczowym jest, aby wszyscy pracownicy laboratoriów oraz obiektów przemysłowych byli dobrze przeszkoleni w zakresie prawidłowego oznakowania instalacji oraz znaczenia kolorów, co podkreśla znaczenie edukacji w zakresie BHP w miejscu pracy.

Pytanie 23

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 0,013 g
B. 130 mg
C. 1300 mg
D. 13 g
Odpowiedź 0,013 g jest prawidłowa, ponieważ waga laboratoryjna o dokładności odczytu 10 mg (0,01 g) nie pozwala na precyzyjne ważenie mas mniejszych niż ta wartość. Przygotowanie odważki o masie 0,013 g wymagałoby pomiaru, który jest poniżej granicy dokładności wagi, skutkując niedokładnym odczytem. W praktyce laboratoria powinny stosować wagi, które są w stanie dokładnie mierzyć masy w zakresie ich potrzeb, a zgodność z normami dotyczącymi dokładności pomiarów jest kluczowa. Przykładowo, w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników, zawsze używa się wag, które sprostają wymaganiom analitycznym. Ważenie substancji o masach mniejszych niż 10 mg przy użyciu wagi, która ma taką granicę dokładności, prowadziłoby do błędów systematycznych, co mogłoby mieć wpływ na dalsze etapy analizy.

Pytanie 24

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
B. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
C. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
D. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
Często niepoprawne uszeregowanie odczynników chemicznych może wynikać z tego, że nie do końca rozumiemy różnice między klasami czystości i ich stosowaniem. Jak ktoś pisze, że 'czysty' jest czystszy niż 'czysty do analizy', to wprowadza w błąd. 'Czysty' to substancja, która może mieć jakieś zanieczyszczenia chemiczne, przez co nie nadaje się do dokładnych analiz. A 'czysty do analizy' to taki, co był oczyszczony, żeby zminimalizować wpływ zanieczyszczeń na wyniki. W laboratoriach chemicznych powinno się stosować reagentów o określonym poziomie czystości, żeby zapewnić rzetelność badań. Jak się pomyli w uszeregowaniu, to można wpaść w problemy z normami i standardami, które określają wymagania czystości chemikaliów. Polecam zapoznać się z dokumentacją techniczną i wytycznymi o reagentach, żeby unikać błędów w rozumieniu poziomów czystości i ich użycia.

Pytanie 25

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 150g
B. 100g
C. 250g
D. 200g
Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.

Pytanie 26

300 cm3 zanieczyszczonego benzenu poddano procesowi destylacji. Uzyskano 270 cm3 czystej substancji. Jaką wydajność miało oczyszczanie?

A. 80%
B. 111%
C. 90%
D. 10%
Wydajność procesu oczyszczania oblicza się przy użyciu wzoru: (objętość uzyskanego produktu / objętość surowca) * 100%. W naszym przypadku mamy 270 cm³ czystego benzenu uzyskanego z 300 cm³ zanieczyszczonego. Podstawiając wartości do wzoru, otrzymujemy: (270 / 300) * 100% = 90%. Taki wynik oznacza, że proces destylacji był efektywny i pozwolił na odzyskanie 90% czystej substancji. W praktyce, w przemyśle chemicznym, ocena wydajności procesów oczyszczania jest kluczowa, aby zapewnić opłacalność i efektywność produkcji. Wysoka wydajność wskazuje na skuteczną separację substancji, co jest istotne zarówno z punktu widzenia ekonomicznego, jak i jakościowego. Procesy oczyszczania są stosowane w różnych branżach, w tym w produkcji farmaceutycznej czy petrochemicznej, gdzie czystość substancji ma bezpośrednie znaczenie dla bezpieczeństwa i właściwości końcowego produktu. Prawidłowe obliczenie wydajności pozwala również na identyfikację potencjalnych problemów w procesie, co sprzyja ciągłemu doskonaleniu technologii produkcji.

Pytanie 27

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. zapewniające izolację termiczną
B. zwykłe gumowe
C. chroniące przed substancjami chemicznymi
D. płócienne
Wybór rękawic w laboratoriach jest naprawdę ważny i powinien zależeć od tego, co się tam robi. Rękawice gumowe czy płócienne to nie najlepszy wybór, bo nie dają odpowiedniej ochrony w przypadku obróbki szkła. Gumowe rękawice co prawda chronią przed chemikaliami, ale nie zapewniają izolacji termicznej, co jest ryzykowne przy pracy z gorącym szkłem. Jak ktoś sięgnie po gorący element, to może się mocno poparzyć, a to nieciekawa sprawa. Z płóciennymi rękawicami jest podobnie, bo one w ogóle nie mają właściwości ochronnych przed wysoką temperaturą czy chemikaliami, więc to jeszcze większe ryzyko. Trzeba też pamiętać, że rękawice chemiczne powinno się nosić tylko tam, gdzie jest zagrożenie kontaktu z toksycznymi substancjami, ale przy wysokich temperaturach to nie wystarcza. Ludzie czasem zapominają, że wybierając sprzęt ochronny, trzeba myśleć o specyfice pracy i zagrożeniach, żeby stosować się do najlepszych praktyk i zasad BHP, co na koniec dnia ma chronić ich zdrowie.

Pytanie 28

Jakie czynniki wpływają na zmiany jakościowe w składzie próbki?

A. wiedzy i umiejętności próbobiorcy.
B. lokalizacji pobrania.
C. składu biologicznego próbki.
D. przeprowadzonych analiz.
Skład biologiczny próbki jest kluczowym czynnikiem wpływającym na jakość i właściwości badanej próbki. Zmiany jakościowe w składzie próbki mogą być wynikiem różnorodnych procesów biologicznych, chemicznych czy fizycznych, które zachodzą w jej obrębie. Na przykład, mikroorganizmy obecne w próbce mogą wpływać na degradację substancji biologicznych, a ich działalność może prowadzić do powstawania metabolitów o różnej aktywności. W praktyce, zrozumienie składu biologicznego próbki pozwala na lepsze projektowanie eksperymentów i interpretację wyników badań. W dziedzinach takich jak biotechnologia czy analiza środowiskowa, istotne jest uwzględnienie takich czynników jak pH, temperatura czy obecność składników odżywczych, które mogą modyfikować skład biologiczny. Dobre praktyki laboratoryjne, takie jak odpowiednie przechowywanie próbek i unikanie kontaminacji, mają na celu minimalizowanie wpływu zmian jakościowych na wyniki badań. Wiedza na temat składu biologicznego próbki jest zatem fundamentem skutecznego przeprowadzania badań analitycznych oraz interpretacji ich rezultatów.

Pytanie 29

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania dopływów
B. celu oraz zakresu badań
C. rodzaju pojemników do ich przechowywania
D. usytuowania źródeł zanieczyszczeń
Wybór miejsca pobierania próbek wody z rzeki jest procesem, który musi uwzględniać wiele czynników, aby uzyskane wyniki były wiarygodne i reprezentatywne. Analiza celu i zakresu badań jest pierwszym krokiem, który pozwala na określenie, jakie parametry będą monitorowane. Na przykład, w sytuacji, gdy celem jest ocena wpływu zanieczyszczeń na ekosystem rzeki, kluczowe będzie wybranie miejsc w pobliżu źródeł zanieczyszczenia, aby uchwycić ich oddziaływanie. W kontekście rozmieszczenia dopływów, warto zauważyć, że miejsca ich zrzutu mogą znacząco zmieniać jakość wody w rzece, a tym samym wpływać na wyniki badań. Ignorowanie tych aspektów przy wyborze lokalizacji może prowadzić do błędnych wniosków dotyczących stanu wód. Nie można zatem lekceważyć wpływu rozmieszczenia źródeł zanieczyszczenia oraz dopływów, gdyż są to czynniki bezpośrednio związane z jakością próbek. Często popełnianym błędem jest przekonanie, że najmniej istotnym elementem są naczynia do przechowywania próbek, co jest mylnym założeniem. Choć rodzaj naczyń jest istotny dla zapewnienia integralności próbki, nie powinien wpływać na wybór miejsca ich pobierania, które powinno wynikać z badań i norm jakościowych.

Pytanie 30

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. stapianiem
B. sublimacją
C. rozpuszczaniem
D. roztwarzaniem
Stapianie to proces zmiany stanu skupienia substancji z fazy stałej na ciecz, który zachodzi w wyniku podgrzewania materiału do jego temperatury topnienia. W tym przypadku, struktura krystaliczna nie jest niszczona w sposób, w jaki ma to miejsce podczas rozpuszczania. Z kolei sublimacja odnosi się do bezpośredniej przemiany substancji z fazy stałej w gazową, omijając fazę ciekłą. Ten proces również nie dotyczy rozpuszczania, które wymaga obecności rozpuszczalnika, aby cząsteczki solutu mogły się rozproszyć. Roztwarzanie jest terminem często mylonym z rozpuszczaniem, jednak w kontekście chemicznym może odnosić się do różnych procesów, które zachodzą podczas mieszania substancji, a niekoniecznie do samego procesu rozpuszczania, gdzie zachodzi interakcja pomiędzy cząsteczkami solutu a cząsteczkami rozpuszczalnika. Typowe błędy myślowe w tej kwestii obejmują nieuzasadnione utożsamianie procesów fizycznych oraz brak zrozumienia mechanizmów, które za nimi stoją. Wiedza o tych różnicach jest kluczowa w naukach przyrodniczych, ponieważ może wpływać na interpretacje wyników eksperymentów oraz na projektowanie procesów przemysłowych związanych z rozpuszczaniem i jego zastosowaniami.

Pytanie 31

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. wtórna
B. jednostkowa
C. pierwotna laboratoryjna
D. średnia laboratoryjna
Odpowiedzi, które wskazują wtórną, jednostkową lub pierwotną laboratoryjną próbkę, opierają się na nieprecyzyjnych definicjach i nie są odpowiednie w kontekście analizy reprezentatywności prób. Wtórna próbka odnosi się często do próbki pobranej z próbki, co nie odzwierciedla pojęcia reprezentatywności całej partii produktu. Ponadto, jednostkowa próbka odnosi się do pojedynczego elementu i nie może dostarczyć informacji na temat całej grupy, co czyni ją niewłaściwą w kontekście analizy statystycznej. Z kolei pierwotna laboratoryjna próbka wskazuje na próbkę pobraną bezpośrednio z miejsca produkcji, ale również nie oddaje koncepcji reprezentatywności. W praktyce, stosowanie tych pojęć może prowadzić do błędnych wniosków dotyczących jakości produktów, co jest niezgodne z najlepszymi praktykami w zakresie kontroli jakości i analizy laboratoryjnej. Używanie niewłaściwych terminów może skutkować poważnymi konsekwencjami, w tym błędami w ocenie ryzyka, co jest kluczowe w wielu branżach, zwłaszcza w farmaceutycznej czy spożywczej. Zrozumienie różnic pomiędzy tymi pojęciami jest istotne dla zapewnienia skutecznych i wiarygodnych analiz oraz zgodności z międzynarodowymi standardami.

Pytanie 32

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. płynu do zmywania naczyń
B. kwasu solnego
C. roztworu KMnO4 z dodatkiem kwasu solnego
D. wody destylowanej
Woda destylowana, mimo że wydaje się czysta, to nie ma tych właściwości chemicznych, które mogłyby skutecznie poradzić sobie z osadami nieorganicznymi. Zazwyczaj używamy jej do rozcieńczania, a nie jako aktywnego środka czyszczącego. Płyn do mycia naczyń także nie jest najlepszym rozwiązaniem, bo on zajmuje się głównie usuwaniem tłuszczu i zanieczyszczeń organicznych, a nie mineralnych, jak tlenki czy węglany. Roztwór KMnO4 z kwasem solnym brzmi ciekawie, ale też nie jest praktycznym sposobem na czyszczenie naczyń szklanych z tych osadów, bo mogą się pojawić niepożądane reakcje i produkty uboczne. W laboratoriach trzeba mieć na uwadze ryzyko niewłaściwego używania kwasów i substancji utleniających, bo to może prowadzić do dość poważnych wypadków. Używanie nieodpowiednich metod czyszczenia to dość powszechny błąd, przez który można zniszczyć drogie narzędzia i popsuć wyniki eksperymentów, więc warto znać odpowiednie techniki i chemikalia do różnych rodzajów zanieczyszczeń.

Pytanie 33

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. stałej
B. ciekłej
C. półciekłej
D. gazowej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 34

Czego brakuje w zestawie pokazanym na ilustracji?

A. stojak, łącznik i łapa
B. stojak, termometr oraz siatka
C. stojak, łącznik oraz termometr
D. bagietka, termometr oraz siatka
Wybór innych odpowiedzi często wiąże się z niepełnym zrozumieniem roli, jaką poszczególne elementy odgrywają w laboratoriach. Bagietka, będąca elementem używanym w kuchni, nie ma zastosowania w kontekście laboratoryjnym. Jej obecność w zestawie nie tylko nie pasuje do środowiska laboratorium, ale także wskazuje na brak wiedzy o standardowych narzędziach wykorzystywanych w procesach eksperymentalnych. Termometr, choć ważny w wielu pomiarach, nie jest elementem strukturalnym, który wspierałby stabilność zestawów montażowych. Odpowiedzi zawierające termometr pomijają kluczowe komponenty, takie jak statyw i łącznik, które są nieodzowne w każdym eksperymencie wymagającym precyzyjnego pomiaru. Z kolei łącznik i łapa, będące istotnymi elementami w laboratoriach, są fundamentalne dla łączenia i stabilizacji, co jest kluczowe dla uniknięcia wypadków w trakcie doświadczeń. Często popełnianym błędem jest skupianie się na pojedynczych narzędziach, zamiast na całościowej konfiguracji sprzętu, co prowadzi do nieporozumień. Właściwe zrozumienie komplementarności elementów sprzętu laboratoryjnego jest kluczowe dla ich efektywnego wykorzystania w praktyce.

Pytanie 35

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. wodnych
B. piaskowych
C. olejowych
D. powietrznych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 36

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę jednomiarową o pojemności 10 cm3
B. pipetę jednomiarową o pojemności 20 cm3
C. pipetę wielomiarową o pojemności 25 cm3
D. cylinder miarowy o pojemności 25 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 37

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Sedymentacja.
B. Dekantacja.
C. Filtracja.
D. Destylacja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 38

Nie należy używać gorącej wody do mycia

A. kolby miarowej
B. kolby stożkowej
C. zlewki
D. szkiełka zegarkowego
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Urządzeniem pomiarowym nie jest

A. termometr
B. konduktometr
C. eksykator
D. pehametr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.