Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 23 maja 2025 20:56
  • Data zakończenia: 23 maja 2025 21:16

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aspirator jest urządzeniem wykorzystywanym do pobierania próbek

A. gleby
B. powietrza
C. ścieków
D. wody
Aspirator powietrza to urządzenie wykorzystywane do pobierania próbek gazów i powietrza w różnych zastosowaniach, w tym w monitorowaniu jakości powietrza, badaniach środowiskowych oraz analizach przemysłowych. Dzięki aspiratorom można uzyskać reprezentatywne próbki powietrza, co jest kluczowe w ocenie zanieczyszczeń atmosferycznych, takich jak pyły, gazy i toksyczne substancje chemiczne. Przykładowo, w branży ochrony środowiska aspiratory służą do oceny stężenia substancji lotnych w powietrzu, co jest istotne dla przestrzegania norm emisji określonych przez przepisy prawa, w tym standardy Unii Europejskiej. Dobre praktyki w używaniu aspiratorów obejmują regularne kalibracje urządzeń oraz stosowanie filtrów, które zwiększają dokładność pobierania próbek. Dodatkowo, aspiratory są często wykorzystywane w laboratoriach do badania powietrza w pomieszczeniach, co ma na celu ochronę zdrowia ludzi oraz zapewnienie odpowiednich warunków pracy.

Pytanie 2

Aby wykonać czynności analityczne wskazane w ramce, należy użyć:

Otrzymaną do badań próbkę badanego roztworu rozcieńczyć wodą destylowaną w kolbie miarowej o pojemności 100 cm3 do kreski i dokładnie wymieszać. Następnie przenieść pipetą 10 cm3 tego roztworu do kolby stożkowej, dodać ok. 50 cm3 wody destylowanej.

A. kolby stożkowej, moździerza, lejka Shotta, naczynka wagowego.
B. kolby miarowej, tygla, pipety, naczynka wagowego.
C. zlewki, kolby ssawkowej, lejka Buchnera, cylindra miarowego.
D. kolby stożkowej, kolby miarowej, pipety, cylindra miarowego.
Odpowiedź wskazująca na użycie kolby stożkowej, kolby miarowej, pipety oraz cylindra miarowego jest poprawna, ponieważ każdy z tych przyrządów odgrywa kluczową rolę w procesie analitycznym. Kolba miarowa jest niezbędna do precyzyjnego rozcieńczania roztworów, co jest istotne w chemii analitycznej, gdzie dokładność stężeń ma fundamentalne znaczenie dla uzyskania wiarygodnych wyników. Pipeta, z kolei, pozwala na precyzyjne odmierzanie małych objętości roztworów, co jest kluczowe przy przygotowywaniu prób do analiz. Kolba stożkowa znajduje zastosowanie w mieszaniu reagentów oraz w prowadzeniu reakcji chemicznych, a cylinder miarowy umożliwia dokładne pomiary większych objętości cieczy. Użycie tych instrumentów jest zgodne z najlepszymi praktykami laboratoryjnymi i standardami dotyczącymi chemii analitycznej, co zapewnia rzetelność przeprowadzanych badań oraz powtarzalność eksperymentów.

Pytanie 3

Użycie płuczek jest konieczne w trakcie procesu

A. oczyszczania gazów
B. destylacji
C. krystalizacji
D. flotacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 4

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. odmierzoną porcję roztworu kwasu octowego
B. odmierzoną ilość kwasu azotowego(V)
C. naważkę kwasu benzenokarboksylowego
D. naważkę kwasu mrówkowego
Użycie naważki kwasu benzenokarboksylowego do przygotowywania miana roztworu wodnego wodorotlenku sodu jest właściwe z kilku istotnych powodów. Kwas benzenokarboksylowy jest znanym kwasem organicznym, którego właściwości chemiczne umożliwiają precyzyjne ustalanie stężenia zasady w roztworze. Przygotowanie roztworu wzorcowego polega na rozpuszczeniu dokładnie znanej masy substancji w wodzie, co pozwala na osiągnięcie pożądanej koncentracji. W praktyce laboratoryjnej, stosowanie substancji o dobrze znanym i stabilnym stężeniu, takich jak kwas benzenokarboksylowy, jest standardem, który zapewnia powtarzalność wyników oraz dokładność analizy. Dodatkowo, przy pomocy tego kwasu można przeprowadzać miareczkowanie, co jest kluczowe w procesach analitycznych oraz badaniach jakościowych. Tego rodzaju praktyki są zgodne z zasadami metrologii chemicznej, która kładzie nacisk na precyzyjne pomiary i standaryzację procesów.

Pytanie 5

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Chemiczne zapotrzebowanie na tlen (ChZT).
B. Mangan.
C. Chlor pozostały.
D. Kwasowość.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 6

W tabeli przestawiono dane dotyczące wybranych roztworów wodnych wodorotlenku sodu.
Oblicz masę wodorotlenku sodu, jaką należy rozpuścić w 200,0 cm3 wody, aby otrzymać roztwór o gęstości 1,0428 g/cm3.

d420 [g/cm3]masa NaOH [g/100 cm3]
1,00951,01
1,02072,04
1,04284,17
1,06486,39
1,08698,70
1,108911,09

A. 4,17 g
B. 8,34 g
C. 4,08 g
D. 8,70 g
Odpowiedź 8,34 g jest prawidłowa, ponieważ aby uzyskać roztwór o gęstości 1,0428 g/cm³ w objętości 200 cm³, musimy wziąć pod uwagę masę wodorotlenku sodu (NaOH) niezbędną do osiągnięcia takiej gęstości. Z danych w tabeli wynika, że dla 100 cm³ roztworu potrzebna jest masa NaOH, która po podwojeniu daje nam 8,34 g dla 200 cm³. To podejście jest zgodne z zasadami obliczeń chemicznych, gdzie gęstość, masa i objętość są ze sobą powiązane. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma ogromne znaczenie dla wyników eksperymentów. Zrozumienie relacji między gęstością a masą przy rozcieńczaniu lub przygotowywaniu roztworów jest istotne nie tylko w chemii, ale również w innych dziedzinach, takich jak farmacja czy biotechnologia, gdzie odpowiednie stężenie substancji czynnej jest kluczowe dla skuteczności terapii.

Pytanie 7

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. AgNO3 + KBr —> AgBr↓ + KNO3
B. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
C. Fe + S —> FeS
D. 2HgO —> 2Hg + O2
Reakcja przedstawiona w równaniu 2HgO —> 2Hg + O2 jest klasycznym przykładem reakcji rozkładu, która skutkuje wydzieleniem produktów gazowych. W tym przypadku, pod wpływem ciepła, woda utleniona (HgO) rozkłada się na rtęć metaliczną (Hg) oraz tlen (O2), który jest gazem. Proces ten ilustruje zasady termodynamiki oraz mechanizm reakcji chemicznych. W praktyce rozkład wody utlenionej jest ważny w różnych dziedzinach, w tym w chemii analitycznej, gdzie tlen jest wykorzystywany w reakcjach utleniających. Tego typu reakcje są również istotne w kontekście bezpieczeństwa, gdyż uwolnienie gazów może mieć wpływ na warunki pracy w laboratoriach. Dobrą praktyką w chemii jest stosowanie zasad BHP w obecności gazów, które mogą być wybuchowe lub toksyczne. W związku z tym, zrozumienie reakcji gazowych jest niezbędne do prowadzenia bezpiecznych eksperymentów chemicznych oraz skutecznego zarządzania ryzykiem.

Pytanie 8

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. na otwartym powietrzu pod dachem
B. w izolowanych pomieszczeniach magazynów ogólnych
C. w specjalnie wydzielonych piwnicach murowanych
D. w różnych punktach laboratorium
Przechowywanie materiałów tworzących mieszaniny wybuchowe w dowolnych miejscach laboratorium jest podejściem nieodpowiedzialnym oraz niezgodnym z obowiązującymi standardami bezpieczeństwa. Takie praktyki mogą prowadzić do niekontrolowanych reakcji chemicznych, które stwarzają realne zagrożenie zarówno dla pracowników, jak i dla infrastruktury laboratorium. Magazynowanie tych substancji w pomieszczeniach ogólnych, w których znajdują się inne materiały, zwiększa ryzyko ich przypadkowego wymieszania lub uwolnienia. Ponadto, pomieszczenia nieizolowane nie są odpowiednio wentylowane, co może prowadzić do akumulacji wybuchowych par. Również przechowywanie chemikaliów na wolnym powietrzu pod dachem wiąże się z ryzykiem ich ekspozycji na czynniki atmosferyczne, co może prowadzić do degradacji materiałów lub ich reakcji z wilgocią. Wydzielone piwnice murowane, jeśli nie są wyposażone w odpowiednie systemy zabezpieczeń i wentylacji, mogą nie spełniać wymogów bezpieczeństwa. Kluczowe jest przestrzeganie zasad magazynowania określonych w przepisach, takich jak Kodeks Pracy i regulacje dotyczące substancji niebezpiecznych, aby zminimalizować ryzyko i zapewnić bezpieczne środowisko pracy.

Pytanie 9

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. prowadzą do zakwaszenia wód
B. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
C. wykazują toksyczne działanie na organizmy żywe
D. powodują nadmierny wzrost roślinności w zbiornikach wodnych
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 10

Jakie urządzenie wykorzystuje się do pobierania próbek gazów?

A. aspirator
B. barometr
C. czerpak
D. pojemnik
Aspirator jest urządzeniem zaprojektowanym do pobierania próbek gazów w sposób kontrolowany i skuteczny. Jego działanie opiera się na zasadzie podciśnienia, które umożliwia pobieranie gazów bez narażania ich na zanieczyszczenia czy straty. W praktyce, aspiratory są wykorzystywane w laboratoriach analitycznych, przemyśle chemicznym oraz w monitorowaniu jakości powietrza. Użycie aspiratora pozwala na precyzyjne pobieranie próbek z określonych lokalizacji, co jest kluczowe w analizach, takich jak badanie emisji z kominów, czy ocena stężenia substancji szkodliwych w atmosferze. Standardy, takie jak ISO 17025, podkreślają znaczenie urządzeń do pobierania próbek w kontekście wiarygodności wyników badań. Należy również pamiętać, że aspiratory są często stosowane w połączeniu z odpowiednimi filtrami, co dodatkowo zwiększa jakość pobieranych próbek. Takie podejście zapewnia integrację metod analitycznych z procedurami zapewnienia jakości.

Pytanie 11

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. żrąca.
B. rakotwórcza.
C. nieszkodliwa.
D. mutagenna.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 12

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08

A. Chloroformu.
B. Tlenku siarki(IV).
C. Amoniaku.
D. Ozonu.
Ozon (O3) ma objętość molową, która w warunkach normalnych odchyla się od wartości teoretycznej, typowej dla gazu doskonałego, bardziej niż pozostałe gazy wymienione w pytaniu. Dla gazów doskonałych zakłada się, że ich cząsteczki nie oddziałują ze sobą oraz że zajmują objętość zero, co nie ma miejsca w rzeczywistości. Ozon, ze względu na swoją strukturę i bardziej złożoną budowę cząsteczkową, wykazuje znaczące interakcje między cząsteczkami, co prowadzi do odchyleń od wzorów gazu doskonałego. W praktyce, szczególnie w chemii atmosferycznej, zrozumienie tych odchyleń ma kluczowe znaczenie dla modelowania reakcji chemicznych i procesów, takich jak fotochemiczne zachowanie ozonu w atmosferze. Wiedza ta jest niezbędna dla naukowców i inżynierów zajmujących się ochroną środowiska, ponieważ ozon jest zarówno gazem o działaniu prozdrowotnym w górnych warstwach atmosfery, jak i zanieczyszczeniem w niższych warstwach, co sprawia, że jego analiza jest kluczowa dla oceny jakości powietrza i skutków zdrowotnych. Dodatkowo, znajomość objętości molowej ozonu ma zastosowanie w wielu dziedzinach, w tym w meteorologii i farmakologii, gdzie precyzyjne pomiary gazów są kluczowe dla skutecznych interwencji oraz badań.

Pytanie 13

Mianowanie roztworu KMnO4 następuje według poniższej procedury:
Około 0,2 g szczawianu sodu, ważonego z dokładnością ±0,1 mg, przenosi się do kolby stożkowej, rozpuszcza w około 100 cm3 wody destylowanej, następnie dodaje się 10 cm3 roztworu kwasu siarkowego(VI) i podgrzewa do temperatury około 70 °C. Miareczkowanie przeprowadza się roztworem KMnO4 do momentu uzyskania trwałego, jasnoróżowego koloru.
Powyższa procedura odnosi się do miareczkowania

A. alkacymetrycznego
B. redoksymetrycznego
C. potencjometrycznego
D. kompleksometrycznego
Mianowanie roztworu manganianu(VII) potasu (KMnO4) w opisywanej procedurze odbywa się w ramach miareczkowania redoksymetrycznego, które jest techniką analizy chemicznej opartą na reakcji utleniania i redukcji. Manganian(VII) potasu jest silnym utleniaczem, a w reakcjach z substancjami redukującymi, takimi jak szczawian sodu, przeprowadza reakcję redoks, gdzie dochodzi do wymiany elektronów. Szczawian sodu w obecności kwasu siarkowego(VI) (H2SO4) ulega utlenieniu, a KMnO4 redukuje się do manganu(II). Ostatecznym punktem końcowym miareczkowania jest zauważenie trwałego lekkoróżowego zabarwienia roztworu, co wskazuje na niewielką nadmiarowość manganianu i zakończenie reakcji. Miareczkowanie redoksymetryczne znajduje zastosowanie w analizie różnych substancji, takich jak kwasy, alkohol czy węglowodany, stanowiąc istotny element w laboratoriach analitycznych. W praktyce, ważne jest zachowanie odpowiednich warunków, takich jak temperatura, pH i stężenie reagentów, aby zapewnić precyzyjność i powtarzalność wyników.

Pytanie 14

W celu rozdrabniania niewielkich ilości bardzo twardego materiału wykorzystuje się moździerze

A. melaminowe
B. ze stali molibdenowej
C. teflonowe
D. agatowe
Odpowiedź "ze stali molibdenowej" jest poprawna, ponieważ moździerze wykonane z tego materiału charakteryzują się wyjątkową twardością i odpornością na zużycie, co czyni je idealnymi do rozdrabniania twardych substancji. Stal molibdenowa, dzięki swoim właściwościom, zapewnia doskonałą trwałość oraz stabilność mechaniczną, co jest kluczowe przy pracy z bardzo twardymi materiałami, takimi jak niektóre minerały czy substancje chemiczne. Użycie moździerzy stalowych w laboratoriach chemicznych oraz gastronomicznych jest powszechną praktyką, gdyż pozwala na uzyskanie dokładnych i jednorodnych rezultatów. Przykładem zastosowania może być rozdrabnianie przypraw, takich jak pieprz czy zioła, gdzie kluczowe jest zachowanie aromatów i właściwości smakowych. Ponadto stal molibdenowa jest mniej podatna na korozję w porównaniu do innych stali, co wydłuża żywotność narzędzia oraz zapewnia bezpieczeństwo w kontakcie z różnymi substancjami chemicznymi.

Pytanie 15

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.

A. zastosować na skórę mydło w płynie.
B. polać skórę środkiem zobojętniającym.
C. podać do picia dużą ilość schłodzonej wody.
D. przemyć skórę dużą ilością wody.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 16

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. pierwotna laboratoryjna
B. jednostkowa
C. średnia laboratoryjna
D. wtórna
Odpowiedź 'średnia laboratoryjna' jest poprawna, ponieważ odnosi się do próbki, która jest reprezentatywna dla większej partii produktu. W kontekście badań laboratoryjnych, średnia laboratoryjna to zestaw próbek, które zostały pobrane z partii, a następnie połączone w celu uzyskania jednego, reprezentatywnego wyniku. Tego typu próbki są kluczowe w zapewnieniu, że wyniki analizy będą miały zastosowanie do całej partii, a nie tylko do pojedynczego elementu. Przykładowo, w przemyśle spożywczym, podczas badania jakości produktu, laboratoryjna średnia może dostarczyć informacji na temat ogólnych właściwości partii, takich jak zawartość substancji odżywczych czy obecność zanieczyszczeń. Używanie średnich laboratoryjnych jest zgodne z normami takimi jak ISO 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych oraz poprawności i wiarygodności wyników. W praktyce, stosowanie średnich laboratoryjnych pozwala na lepsze zrozumienie i kontrolę procesów produkcyjnych oraz zwiększa pewność co do jakości finalnych produktów.

Pytanie 17

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2C2O4
B. Na2B4O7·10H2O
C. Na2CO3
D. NaOH
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 18

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
B. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
C. umytych wodorotlenkiem sodu
D. sterylnych
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 19

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
B. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
C. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
D. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
Odpowiedź jest poprawna, ponieważ przygotowanie 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3 wymaga zastosowania odpowiednich zasad obliczeń chemicznych. W tym przypadku, aby otrzymać roztwór o pożądanej objętości i stężeniu, musimy najpierw obliczyć liczbę moli kwasu chlorowodorowego potrzebnych do przygotowania takiego roztworu. Liczba moli obliczana jest ze wzoru: n = C × V, gdzie n to liczba moli, C to stężenie, a V to objętość. Dla tego zadania: n = 0,2 mol/dm3 × 0,5 dm3 = 0,1 mola. Zastosowanie kolby miarowej o pojemności 500 cm3, równoważnej 0,5 dm3, jest zatem odpowiednie, ponieważ po rozmieszaniu fiksanalu, który zawiera dokładnie 0,1 mola HCl, uzyskamy wymagane stężenie. Takie przygotowania są zgodne z dobrą praktyką laboratoryjną, zapewniając dokładność oraz powtarzalność wyników, co jest kluczowe w chemii analitycznej.

Pytanie 20

Aby otrzymać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
B. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
D. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i uzupełnić kolbę wodą destylowaną do kreski
Aby przygotować roztwór AgNO3 o stężeniu 0,1 mol/dm3, kluczowe jest dokładne obliczenie masy soli do odważenia. Masa molowa AgNO3 wynosi 169,8 g/mol, co oznacza, że 1 mol roztworu zawiera 169,8 g substancji. Dla stężenia 0,1 mol/dm3 obliczamy masę: 0,1 mol/dm3 * 169,8 g/mol = 16,98 g. Jednak w przypadku 100 cm3 roztworu potrzebujemy 1/10 tej masy, co daje 1,698 g. Właściwe wykonanie tego kroku jest zgodne z dobrą praktyką laboratoryjną, która podkreśla znaczenie precyzyjnego przygotowania roztworów, aby zapewnić powtarzalność wyników. Ważne jest również, aby całkowicie rozpuścić substancję w wodzie destylowanej przed uzupełnieniem do kreski w kolbie miarowej, co pozwoli uniknąć błędów związanych z niedostatecznym wymieszaniem. Tego typu procedury są standardem w laboratoriach chemicznych, co czyni je praktycznym doświadczeniem dla studentów oraz profesjonalistów w dziedzinie chemii.

Pytanie 21

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. przed połączeniem nałożyć na szlify glicerynę
B. przed połączeniem nałożyć na szlify wazelinę
C. przed połączeniem wypłukać szlify acetonem
D. dokładnie oczyścić i osuszyć sprzęt
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 22

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
Odpowiedź jest prawidłowa, ponieważ pH skali logarytmicznej oznacza, że zmiana o 1 jednostkę pH odpowiada zmianie stężenia jonów wodoru [H+] o dziesięciokrotność. W przypadku roztworu o pH=2, stężenie [H+] wynosi 0,01 mol/dm3, natomiast w roztworze o pH=5 stężenie [H+] wynosi 0,00001 mol/dm3. Różnica ta jest ogromna, ponieważ oznacza, że stężenie jonów [H+] w roztworze o pH=5 jest 1000 razy mniejsze niż w roztworze o pH=2. Taka wiedza jest niezwykle ważna w chemii analitycznej oraz przy przygotowywaniu roztworów, gdzie precyzyjne pomiary pH i stężeń jonów są kluczowe. W przemyśle chemicznym, farmaceutycznym oraz w laboratoriach badawczych, zrozumienie tej zależności pozwala na efektywne zarządzanie procesami chemicznymi i kontrolę jakości produktów. Zasada ta jest również istotna w biologii, ponieważ wiele procesów metabolicznych zachodzi w wąskim zakresie pH, a niewłaściwe stężenie jonów może prowadzić do denaturacji enzymów czy innych białek.

Pytanie 23

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 7,50 g
B. 5,00 g
C. 0,75 g
D. 0,05 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 24

W laboratorium chemicznym przewody instalacji rurowych są oznaczane różnymi kolorami, zgodnie z obowiązującymi normami. Polska Norma PN-70 N-01270/30 określa kolor dla wody jako

A. zielony
B. czerwony
C. niebieski
D. żółty
Odpowiedź "zielony" jest poprawna, ponieważ według Polskiej Normy PN-70 N-01270/30 kolor zielony jest przypisany dla instalacji wodnych. W praktyce oznakowanie rur wodociągowych tym kolorem ma na celu poprawę bezpieczeństwa w laboratoriach chemicznych oraz w innych obiektach, gdzie może wystąpić współistnienie różnych substancji. Oznakowanie ma na celu jednoznaczne wskazanie, jakiego medium można się spodziewać w danej instalacji, co ma kluczowe znaczenie w kontekście ewentualnych wypadków lub niebezpieczeństw. Na przykład w laboratoriach, gdzie używa się wielu substancji chemicznych, a także rozmaitych płynów, właściwe oznaczenie rur wodnych pozwala uniknąć pomyłek, które mogłyby prowadzić do poważnych konsekwencji. Przestrzeganie tego rodzaju norm w instalacjach przemysłowych oraz badawczych jest częścią szerokiego systemu zarządzania bezpieczeństwem, który powinien być wdrażany w każdym laboratorium.

Pytanie 25

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl
0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm3 w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.
Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
B. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
C. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
D. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
Wybrana odpowiedź jest prawidłowa, ponieważ do przygotowania wzorcowego roztworu NaCl w kolbie miarowej o pojemności 1 dm³ konieczne jest użycie wagi analitycznej o dokładności 0,0001 g oraz kolby miarowej o pojemności 1000 cm³. Waga analityczna umożliwia precyzyjne ważenie masy NaCl, co jest kluczowe w analizach chemicznych, aby uzyskać roztwór o dokładnej koncentracji. NaCl musi być dokładnie odważony, aby zapewnić, że przygotowany roztwór będzie zgodny z wymaganiami jakościowymi, ponieważ nawet niewielkie odchylenia od właściwej masy mogą prowadzić do błędów w dalszych analizach, takich jak miareczkowanie. Kolba miarowa o pojemności 1000 cm³ jest odpowiednia, ponieważ pozwala na rozpuszczenie całej masy NaCl w określonej objętości wody, co umożliwia uzyskanie jednorodnego roztworu. Tego typu procedury są standardem w laboratoriach chemicznych, co podkreśla znaczenie zachowania dokładności oraz precyzji w analizach chemicznych i bioanalitycznych, a także w pracach badawczych.

Pytanie 26

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. rozpuszczalność
B. reaktywność
C. czystość
D. palność
Temperatura topnienia jest istotnym wskaźnikiem czystości substancji chemicznych, szczególnie związków organicznych. Czystość substancji można ocenić na podstawie jej temperatury topnienia, ponieważ czyste substancje mają ściśle określoną temperaturę topnienia, podczas gdy obecność zanieczyszczeń obniża, a czasem także podwyższa tę temperaturę. Przykładem jest analiza kwasu benzoesowego, który ma temperaturę topnienia wynoszącą 122 °C. Jeśli podczas pomiaru odkryjemy, że temperatura topnienia wynosi 120 °C, może to sugerować obecność zanieczyszczeń. W praktyce, metody takie jak montaż termometru w naczyniu z próbką oraz kontrola tempa podgrzewania są stosowane, aby uzyskać dokładny wynik. W laboratoriach chemicznych stosuje się również standardy takie jak ASTM E2875, które precyzują metody pomiaru temperatury topnienia. Dzięki tym praktykom, możliwe jest nie tylko potwierdzenie czystości próbki, ale również ocena jakości związków organicznych, co jest kluczowe w chemii analitycznej, farmaceutycznej i przemysłowej.

Pytanie 27

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, waga, bagietka
B. Zlewka, waga, tryskawka, bagietka
C. Zlewka, lejek, statyw, bagietka
D. Zlewka, lejek, trójnóg, tygiel
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 28

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. NaCl
B. (NH4)2SO>sub>4
C. CaCO3 • MgCO3
D. CaSO4
Odpowiedź "CaCO3 • MgCO3" jest poprawna, ponieważ wskazuje na zastosowanie dolomitu, który zawiera zarówno węglan wapnia (CaCO3), jak i węglan magnezu (MgCO3). Te substancje są znane z właściwości alkalicznych, co sprawia, że są skutecznymi materiałami neutralizującymi kwasy, takie jak lodowaty kwas octowy. W praktyce, węglan wapnia jest często wykorzystywany w przemysłach chemicznych i budowlanych jako środek neutralizujący, a dolomit znajduje zastosowanie w rolnictwie jako poprawiacz gleby. Neutralizacja kwasów jest kluczowa w procesach przemysłowych, aby zminimalizować ryzyko korozji i uszkodzeń instalacji. Standardy dotyczące stosowania materiałów neutralizujących opierają się na zasadach bezpieczeństwa chemicznego, które wymagają stosowania odpowiednich substancji w celu ochrony zdrowia i środowiska. Zdecydowanie zaleca się korzystanie z tego typu włączy w laboratoriach oraz podczas procesów produkcyjnych, aby zapewnić zgodność z normami ochrony środowiska.

Pytanie 29

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na sucho
B. mineralizacji próbki na mokro
C. topnienia próbki
D. wyprażenia próbki do stałej masy
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 30

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
B. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
C. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
D. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
Odpowiedź 50 cm³ alkoholu etylowego i 100 cm³ eteru dietylowego jest poprawna, ponieważ mieszanka przygotowywana w stosunku objętościowym 1:2 oznacza, że na każdą część alkoholu przypadają dwie części eteru. Aby obliczyć ilość składników w przypadku 150 cm³ całkowitej objętości, stosujemy proporcje. W tym przypadku 1 część alkoholu etylowego i 2 części eteru oznaczają, że 1/3 całkowitej objętości to alkohol, a 2/3 to eter. Zatem, 150 cm³ * 1/3 = 50 cm³ alkoholu etylowego, a 150 cm³ * 2/3 = 100 cm³ eteru dietylowego. Zastosowanie takich proporcji jest zgodne z najlepszymi praktykami w chemii analitycznej, gdzie precyzyjne pomiary są kluczowe dla uzyskania powtarzalnych wyników. Dobrym przykładem zastosowania tej wiedzy jest praca w laboratoriach chemicznych, gdzie często przygotowuje się roztwory o określonych stężeniach i proporcjach, co jest niezbędne w badaniach jakości i ilości substancji chemicznych. Właściwe zrozumienie proporcji i ich zastosowania przyczynia się do skutecznych i bezpiecznych procedur laboratoryjnych.

Pytanie 31

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,3 mol/dm3
B. 0,03 mol/dm3
C. 0,003 mol/dm3
D. 0,0003 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 32

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Biureta gazowa
B. Rozdzielacz
C. Kolba stożkowa
D. Kolba ssawkowa
Rozdzielacz to w sumie mega ważne narzędzie w laboratorium, bo pozwala oddzielić różne fazy, a to kluczowe podczas ekstrakcji. Jego główna rola to separacja cieczy o różnych gęstościach, co jest istotne w chemii i biochemii. Ekstrakcja to tak naprawdę wydobywanie substancji z jednego medium do drugiego, a rozdzielacz, dzięki swojej budowie, umożliwia to w fajny sposób. Na przykład, gdy chcemy wyciągnąć związki organiczne z roztworów wodnych, to właśnie rozdzielacz pozwala nam na zebranie frakcji organicznej po oddzieleniu od wody. W praktyce często korzysta się z rozdzielaczy w kształcie lejka, co jest zgodne z zasadami dobrej praktyki w labie (GLP), bo zapewnia dokładność i powtarzalność wyników. Oczywiście, użycie rozdzielacza ma też swoje zasady dotyczące bezpieczeństwa i efektywności, więc to narzędzie jest naprawdę niezastąpione w laboratoriach chemicznych.

Pytanie 33

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. rok
B. pół roku
C. miesiąc
D. tydzień
Prawidłowa odpowiedź to pobieranie próbek wody co najmniej raz w miesiącu, co jest zgodne z najlepszymi praktykami w monitorowaniu jakości wód. Badania takie pozwalają na uchwycenie sezonowych zmian w składzie chemicznym i biologicznym wody, które mogą być wynikiem zmieniających się warunków pogodowych, działalności rolniczej lub przemysłowej oraz naturalnych cykli ekosystemu. Stosowanie miesięcznych interwałów pobierania próbek jest standardem w wielu programach monitorowania ekologicznego, ponieważ umożliwia dokładne śledzenie dynamiki zmian oraz identyfikację potencjalnych zagrożeń dla ekosystemu wodnego. Przykładowo, w przypadku rzek czy jezior, różne pory roku mogą wpływać na stężenia składników odżywczych, co ma kluczowe znaczenie dla zdrowia biocenozy. Regularne badania w odstępach miesięcznych wspierają nie tylko prawidłową ocenę jakości wody, ale także umożliwiają szybką reakcję na zmiany, które mogą być wynikiem zanieczyszczeń lub innych niekorzystnych zjawisk.

Pytanie 34

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu fosforowego(V).
B. kwasu siarkowego(VI).
C. kwasu azotowego(V).
D. kwasu solnego.
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 35

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. ekstrakcji
B. krystalizacji
C. sublimacji
D. destylacji
Destylacja jest procesem, który polega na podgrzewaniu cieczy, w wyniku czego powstają pary, które następnie są skraplane i zbierane jako ciecz. Jest to jedna z najczęściej stosowanych metod zatężania roztworów, szczególnie w przypadku roztworów wodnych soli nieorganicznych. W praktyce laboratoria chemiczne wykorzystują destylację do separacji składników roztworów, co pozwala na uzyskanie czystszych substancji oraz na analizę ich stężenia. W destylacji kluczowe jest dobranie odpowiedniego układu aparatu destylacyjnego, takiego jak destylator prosty czy destylator frakcyjny, w zależności od różnic w temperaturze wrzenia substancji. Przykłady zastosowania destylacji obejmują przemysł chemiczny, gdzie stosuje się ją do oczyszczania rozpuszczalników oraz w laboratoriach analitycznych do przygotowywania próbek do dalszych badań. Zgodnie z normami ISO, destylacja jest uznawana za metodę wysokowydajną i efektywną, co czyni ją niezbędnym narzędziem w chemii analitycznej.

Pytanie 36

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z pożarem
B. z lotnością
C. z wybuchem
D. z poparzeniem
Wybór odpowiedzi związanej z lotnością, poparzeniem czy wybuchem nie uwzględnia kluczowego zagrożenia, jakim jest pożar, które jest szczególnie istotne w kontekście wielu reagentów chemicznych. Lotność substancji chemicznych, chociaż ważna, odnosi się głównie do ich zdolności do przechodzenia w stan gazowy. Substancje lotne mogą tworzyć łatwopalne mieszaniny z powietrzem, lecz to nie zawsze prowadzi do wybuchu. Z kolei poparzenia chemiczne są rzeczywiście zagrożeniem, jednak nie są one bezpośrednio związane z pożarem, a bardziej z reakcjami chemicznymi, które mogą wystąpić w kontakcie z reagentem. Odpowiedź związana z wybuchem odnosi się do specyficznych warunków, które są wymagane, by doszło do takiego zdarzenia, jak np. obecność silnie reaktywnych substancji czy niewłaściwe warunki przechowywania. Typowym błędem myślowym jest mylenie tych zagrożeń lub niewłaściwe ocenianie ich prawdopodobieństwa. Kluczowe jest zrozumienie, że wiele substancji chemicznych, które mogą wydawać się niegroźne, w rzeczywistości mają wysoką tendencję do zapłonu i muszą być przechowywane oraz używane zgodnie z obowiązującymi normami bezpieczeństwa, jak na przykład NFPA (National Fire Protection Association), które dostarczają wytycznych dotyczących ochrony przed pożarami w laboratoriach.

Pytanie 37

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
B. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
C. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
D. Przechowywanie w temperaturze maksymalnej +4°C.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 38

Substancje kancerogenne to

A. mutagenne
B. enzymatyczne
C. uczulające
D. rakotwórcze
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 39

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 dm3
B. 200 cm3
C. 200 dm3
D. 20 ml
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 40

Proces oddzielania składników jednorodnej mieszaniny, polegający na eliminacji jednego lub większej ilości składników z roztworu lub substancji stałej przy użyciu odpowiednio wybranego rozpuszczalnika, to

A. ekstrakcja
B. destylacja
C. adsorpcja
D. rektyfikacja
Ekstrakcja to taki proces, w którym oddzielamy składniki z jednorodnej mieszaniny, używając rozpuszczalnika, który potrafi rozpuścić jeden lub więcej z tych składników. To ma dość szerokie zastosowanie w różnych dziedzinach, jak chemia, farmacja czy przemysł spożywczy. Na przykład, kiedy produkuje się olejki eteryczne, ekstrakcja jest super ważna, żeby uzyskać czyste związki zapachowe z roślin. W laboratoriach chemicznych wykorzystuje się ekstrakcję faz ciekłych, żeby oczyścić różne związki chemiczne z mieszanin, a w analizach środowiskowych też się korzysta z ekstrakcji, żeby wyciągnąć zanieczyszczenia z próbek wód czy gleb. Ekstrakcja jest zgodna z dobrymi praktykami laboratoryjnymi, co znaczy, że zaleca się używanie odpowiednich rozpuszczalników i ciekawie też dostosowywać warunki temperaturowe oraz ciśnieniowe, żeby uzyskać jak najlepsze wyniki i nie tracić składników. Warto dodać, że ekstrakcja może być przeprowadzana w różnych skalach - od małych eksperymentów w laboratoriach po duże procesy przemysłowe, co czyni ją naprawdę wszechstronnym narzędziem.