Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 12 marca 2025 10:52
  • Data zakończenia: 12 marca 2025 11:08

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jaką liczbę wyjść ma konwerter TWIN?

A. osiem wyjść
B. jedno wyjście
C. dwa wyjścia
D. cztery wyjścia
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 6

Całkowity koszt wykonania instalacji alarmowej, przy wartości materiałów wynoszącej 2 000 zł netto oraz kosztach robocizny w wysokości 1 000 zł netto, wyniesie ile, jeżeli materiały są objęte 23% a usługa 8% podatkiem VAT?

A. 3 080 zł
B. 3 540 zł
C. 3 240 zł
D. 3 460 zł
Aby obliczyć łączny koszt instalacji alarmowej, należy najpierw ustalić wartość materiałów i robocizny, a następnie doliczyć odpowiednie stawki podatku VAT. W tym przypadku wartość materiałów wynosi 2 000 zł netto. Stawka VAT dla materiałów wynosi 23%, co daje kwotę 460 zł (2 000 zł x 0,23). Z kolei koszt robocizny wynosi 1 000 zł netto, a stawka VAT dla robocizny wynosi 8%, co daje kwotę 80 zł (1 000 zł x 0,08). Łączny koszt materiałów z VAT to 2 000 zł + 460 zł = 2 460 zł, natomiast łączny koszt robocizny z VAT to 1 000 zł + 80 zł = 1 080 zł. Sumując te wartości, otrzymujemy całkowity koszt instalacji wynoszący 2 460 zł + 1 080 zł = 3 540 zł. Takie obliczenia są zgodne z obowiązującymi przepisami VAT i są kluczowe w branży budowlanej oraz instalacyjnej, gdzie precyzyjne kalkulacje kosztów mają istotne znaczenie dla rentowności projektów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Oscyloskop
B. Mostek RLC
C. Multimetr
D. Waromierz
Oscyloskop jest idealnym przyrządem do pomiaru sygnałów o wysokich częstotliwościach, ponieważ umożliwia wizualizację przebiegów elektrycznych w czasie rzeczywistym. Wysoka częstotliwość sygnałów, zwykle powyżej kilku megaherców, wymaga urządzenia, które jest w stanie zarejestrować zmiany napięcia w krótkich odstępach czasu i precyzyjnie odwzorować je na ekranie. Oscyloskopy cyfrowe, dzięki dużej przepustowości i możliwości zapisu danych, pozwalają na analizę sygnałów, identyfikację ich kształtu oraz określenie istotnych parametrów, takich jak amplituda, częstość oraz czas trwania sygnału. Przykładowo, w inżynierii elektronicznej oscyloskopy są powszechnie stosowane do testowania i analizy układów komunikacyjnych, gdzie sygnały o wysokiej częstotliwości są kluczowe dla funkcjonowania systemów. Użycie oscyloskopu w praktyce pozwala inżynierom na diagnozowanie problemów z sygnałem, takich jak zniekształcenia, które mogą wpływać na jakość transmisji danych.

Pytanie 9

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. zawór elektromagnetyczny
B. zawór regulacyjny
C. przetwornik
D. kontroler
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 10

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. izolowanych
B. zasilanych akumulatorowo
C. odpornych na wysoką temperaturę
D. wykonanych z elastycznych tworzyw sztucznych
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 11

Podaj właściwą sekwencję przejścia sygnału satelitarnego do telewizora.

A. Antena satelitarna, odbiornik satelitarny, konwerter, odbiornik telewizyjny
B. Konwerter, antena satelitarna, odbiornik satelitarny, odbiornik telewizyjny
C. Odbiornik satelitarny, antena satelitarna, konwerter, odbiornik telewizyjny
D. Antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny
Prawidłowa kolejność drogi sygnału satelitarnego do odbiornika telewizyjnego to: antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny. Antena satelitarna, najczęściej w postaci czaszy, zbiera sygnał radiowy z satelity, który jest umieszczony na geostacjonarnej orbicie. Sygnał ten jest następnie kierowany do konwertera, który ma za zadanie przetworzyć sygnał na odpowiednią częstotliwość oraz wzmocnić go. Konwerter zamienia sygnał satelitarny na sygnał, który może być przetworzony przez odbiornik satelitarny. Odbiornik satelitarny dekoduje sygnał i przesyła go do odbiornika telewizyjnego, gdzie sygnał jest wyświetlany na ekranie. Warto zauważyć, że ta kolejność jest zgodna z zasadami instalacji systemów satelitarnych, które zalecają prawidłowe połączenia i konfiguracje w celu zapewnienia optymalnej jakości obrazu oraz dźwięku. Przykładem zastosowania tego procesu może być instalacja domowego systemu telewizyjnego, gdzie właściwa kolejność komponentów jest kluczowa dla prawidłowego odbioru sygnału.

Pytanie 12

Termin "licznik mikrorozkazów" odnosi się do

A. systemu mikroprocesorowego
B. manipulatora
C. oscyloskopu cyfrowego
D. pętli PLL
Wybór odpowiedzi wskazujących na pętle PLL, manipulatora czy oscyloskop cyfrowy może wynikać z nieporozumienia dotyczącego funkcji tych urządzeń w kontekście systemów mikroprocesorowych. Pętle PLL (Phase Locked Loop) są stosowane do synchronizacji częstotliwości, co jest kluczowe w systemach komunikacyjnych i radiowych, ale nie mają bezpośredniego związku z licznikiem mikrorozkazów, który operuje na poziomie mikroarchitektury procesora. Manipulatory, choć są istotnymi komponentami w systemach automatyki i robotyki, skupiają się na interakcji z otoczeniem, a nie na zliczaniu mikrooperacji wewnątrz mikroprocesora. Oscyloskopy cyfrowe, z kolei, są narzędziami pomiarowymi używanymi do analizy sygnałów elektronicznych, a ich funkcjonalność koncentruje się na wizualizacji i analizie sygnałów, co również nie jest związane z operacjami mikrorozkazów. Typowe błędy myślowe, które mogą prowadzić do wyboru tych odpowiedzi, obejmują mylenie funkcji różnych komponentów w systemach elektronicznych oraz brak zrozumienia roli, jaką licznik mikrorozkazów pełni w architekturze mikroprocesorowej. Kluczowe w nauce o systemach mikroprocesorowych jest zrozumienie hierarchii funkcjonalnej oraz interakcji między poszczególnymi blokami, co pozwala na prawidłową interpretację ich ról w całym systemie.

Pytanie 13

Która metoda instalacji podstaw koryt kablowych jest niewłaściwa?

A. Mocowanie przy użyciu kołków rozporowych oraz wkrętów
B. Mocowanie przy pomocy stalowych gwoździ
C. Gipsowanie w bruzdach
D. Przyklejanie do podłoża
Gipsowanie koryt kablowych w bruzdach to nie najlepszy pomysł na ich montaż. Gips nie da nam solidnej stabilności ani ochrony mechanicznej dla kabli. Jest dość kruchy i łatwo się łamie, co może spowodować kłopoty z całą konstrukcją. W praktyce lepiej używać czegoś mocniejszego, jak kołki rozporowe i wkręty. To zapewnia trwałość i bezpieczeństwo dla instalacji. Jeśli koryta są źle zamocowane, mogą się przemieszczać, a to już prosta droga do uszkodzenia kabli. Normy branżowe mówią jasno, że powinny być zamocowane stabilnie. Bezpieczne mocowanie, na przykład przy użyciu stalowych gwoździ, jest zgodne z tym, co zalecają producenci i standardy instalacyjne. Dzięki temu minimalizujemy ryzyko uszkodzeń i ułatwiamy ewentualne serwisowanie czy rozbudowywanie systemu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie urządzenie pozwala na podłączenie anteny o impedancji falowej 300 Ω do odbiornika, który ma gniazdo antenowe o impedancji 75 Ω?

A. symetryzator
B. zwrotnica
C. konwerter
D. rozdzielacz
Symetryzator to urządzenie, które umożliwia konwersję impedancji między różnymi poziomami, co w przypadku podłączenia anteny o impedancji falowej 300 Ω do odbiornika z gniazdem antenowym 75 Ω jest kluczowe. Dzięki zastosowaniu symetryzatora, można zminimalizować straty sygnału, które mogłyby wystąpić w wyniku niedopasowania impedancji. W praktyce, symetryzatory są często stosowane w instalacjach antenowych, gdzie różne elementy systemu pracują na różnych poziomach impedancji. Na przykład, w systemach telewizyjnych lub radiowych, symetryzatory są wykorzystywane do podłączenia anteny do odbiornika, aby zapewnić optymalne parametry pracy i jak najlepszą jakość odbioru. Dobrą praktyką jest również stosowanie symetryzatorów w przypadku anten szerokopasmowych, co pozwala na efektywne wykorzystanie zakresu częstotliwości. Warto zaznaczyć, że symetryzatory mogą również pełnić funkcję dzielnika sygnału, co zwiększa ich wszechstronność.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
B. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
C. fototranzystor
D. transoptor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 75 Ω
B. 50 Ω
C. 120 Ω
D. 100 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Gdy zachodzi potrzeba połączenia światłowodu z przewodem skrętkowym, powinno się użyć

A. konwerter.
B. router.
C. wzmacniak.
D. koncentrator.
Wydaje mi się, że wybór wzmacniaka, routera lub koncentratora w przypadku łączenia światłowodu ze skrętką pokazuje, że nie do końca rozumiesz, jak te urządzenia działają i do czego służą w sieciach. Wzmacniak ma za zadanie zwiększać moc sygnału, co jest przydatne, gdy sygnał osłabia się na długich odcinkach, ale nie rozwiąże problemu, bo nie przekształca sygnału optycznego na elektryczny. Router z kolei zarządza ruchem w sieci i rozdziela sygnał, ale też nie służy do konwersji sygnałów. Wprowadzenie routera do połączenia światłowodu z skrętką może spowodować błędy w konfiguracji i nieefektywne wykorzystanie sieci. A koncentrator, czyli hub, działa tylko jako dzielnik pasma sieciowego, więc także nie rozwiązuje problemu. Użycie tych urządzeń w tej sytuacji sugeruje, że brakuje Ci wiedzy na temat ich realnych funkcji i roli w sieciach komputerowych. Żeby skutecznie wykorzystać technologię, warto znać standardy i zasady transmisji danych, co w tym przypadku wskazuje na to, że powinno się użyć konwertera.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakiego typu modulacja jest używana w paśmie UKF?

A. Amplitudy
B. Fazy
C. Częstotliwości
D. Cyfrowej
Modulacja częstotliwości (FM) jest podstawowym rodzajem modulacji stosowanym w paśmie UKF (Ultra High Frequency), a jej zastosowanie w telekomunikacji radiofonicznej jest szeroko rozpowszechnione. FM polega na zmianie częstotliwości nośnej w odpowiedzi na sygnał audio, co skutkuje poprawą jakości dźwięku i odpornością na zakłócenia. Praktyczne zastosowanie FM można zaobserwować w transmisji radiowej, gdzie sygnał jest modulated w zakresie 88-108 MHz. W porównaniu do modulacji amplitudy (AM), FM oferuje lepszą jakość dźwięku, mniejsze zniekształcenia oraz większą odporność na szumy. Standardy takie jak ITU-R BS.412-9 określają wymagania dla systemów FM, zapewniając wysoką jakość odbioru. W kontekście nowoczesnych technologii, modulacja częstotliwości znajduje zastosowanie nie tylko w radiofonii, ale także w transmisji danych, telewizji oraz systemach komunikacji bezprzewodowej, co czyni ją kluczowym elementem współczesnej telekomunikacji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. po zakończeniu montażu
B. po usunięciu starego urządzenia
C. zanim rozpoczną się prace demontażowe
D. w trakcie instalacji nowego sprzętu
Odpowiedź "przed rozpoczęciem prac demontażowych" jest prawidłowa, ponieważ bezpieczeństwo jest kluczowym aspektem w pracy z instalacjami elektronicznymi. Przed przystąpieniem do jakichkolwiek działań związanych z wymianą urządzenia, kluczowe jest odłączenie przewodu zasilającego. To działanie minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. W praktyce, każdy technik powinien stosować się do procedur zawartych w normach bezpieczeństwa, takich jak PN-EN 50110-1, które nakładają obowiązek odłączenia zasilania przed przystąpieniem do pracy. Dodatkowo, w przypadku wymiany urządzeń, zawsze warto stosować się do zasad dotyczących oznaczania i dokumentacji prac, aby mieć pewność, że wszystkie etapy demontażu i montażu są odpowiednio udokumentowane. Przykładem może być sytuacja, gdy technik wymienia starą lampę na nową; przed przystąpieniem do demontażu lampy, powinien najpierw wyłączyć zasilanie, co zapewnia bezpieczeństwo zarówno jego, jak i osób znajdujących się w pobliżu.

Pytanie 29

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
B. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
C. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
D. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
Wybór odpowiedzi dotyczącej zabezpieczenia układów scalonych TTL przed wpływem ładunków elektrostatycznych, porażenie prądem elektrycznym lub ochrony montera przed ładunkami zgromadzonymi w urządzeniu, jest niewłaściwy z kilku powodów. Po pierwsze, układy scalone TTL, mimo że również są wrażliwe na ładunki elektrostatyczne, nie są tak delikatne jak CMOS. Z tego powodu, w kontekście opasek antyelektrostatycznych, istotniejsza jest ochrona komponentów CMOS, które wymagają specjalistycznego podejścia. Po drugie, opaska nie chroni montera przed porażeniem prądem elektrycznym zasilającym urządzenie. Porażenie prądem jest zagrożeniem niezwiązanym z ładunkami elektrostatycznymi, a jego zapobieganiu służą inne środki, takie jak izolowane narzędzia, odpowiednia odzież ochronna oraz przestrzeganie procedur bezpieczeństwa. Wreszcie, ochrona przed ładunkami elektrostatycznymi zgromadzonymi w urządzeniu nie jest rolą opaski, lecz raczej odpowiednich praktyk przechowywania i transportu komponentów. Podsumowując, w kontekście zastosowania opasek antyelektrostatycznych, istotne jest zrozumienie specyfiki wrażliwości różnych typów układów scalonych oraz różnicy pomiędzy ochroną przed ładunkami elektrostatycznymi a innymi formami zagrożeń elektrycznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Temperatura otoczenia
B. Poziom wilgotności powietrza
C. Grubość ścian oraz stropów
D. Liczba użytkowników
Wielu użytkowników może błędnie sądzić, że ilość użytkowników ma bezpośredni wpływ na zasięg sieci WLAN. Choć rzeczywiście, gdy zbyt wielu użytkowników korzysta z jednej sieci, może to wpłynąć na prędkość i jakość połączenia, nie ma to jednak bezpośredniego wpływu na zasięg sygnału, który jest bardziej związany z właściwościami fizycznymi kanałów transmisyjnych. Inne czynniki, takie jak wilgotność powietrza i temperatura, również są często mylnie uważane za mające istotny wpływ na zasięg WLAN. Choć zmienne te mogą teoretycznie wpływać na propagację fal radiowych, ich wpływ jest znacznie mniejszy w porównaniu do przeszkód fizycznych, takich jak ściany czy stropy. W rzeczywistości, zmiany warunków atmosferycznych mają znaczenie głównie w kontekście długodystansowych transmisji radiowych, a nie w zamkniętych pomieszczeniach. Błędem jest także pomijanie wpływu architektury budynku na sygnał WLAN; projektanci sieci powinni przede wszystkim zwrócić uwagę na to, jak layout budynku oraz zastosowane materiały budowlane mogą wpłynąć na jakość sygnału. Dlatego kluczowe jest uwzględnienie tych aspektów podczas planowania i projektowania sieci bezprzewodowej, aby zapewnić jej efektywne działanie.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. niskich temperatur.
B. promieniowania X.
C. opadów deszczu.
D. wyładowań atmosferycznych.
Warystor, znany również jako rezystor nieliniowy, to element elektroniczny, który chroni urządzenia przed przepięciami, zwłaszcza wyładowaniami atmosferycznymi. Działa na zasadzie zmiany swojej rezystancji w zależności od napięcia, co pozwala na skuteczne odprowadzanie nadmiaru energii. W praktyce warystory są powszechnie stosowane w zasilaczach, urządzeniach elektronicznych oraz systemach telekomunikacyjnych, gdzie mogą zapobiegać uszkodzeniom spowodowanym nagłymi wzrostami napięcia. Standardy takie jak IEC 61000-4-5 dotyczą ochrony przed przepięciami, a warystory są kluczowymi komponentami w spełnianiu tych norm. Dzięki swoim właściwościom, warystory mogą znacznie zwiększyć niezawodność sprzętu, co jest szczególnie istotne w branżach, gdzie przerwy w działaniu mogą prowadzić do dużych strat finansowych. Warto również zauważyć, że odpowiedni dobór warystora do konkretnej aplikacji, w tym jego napięcia przebicia i charakterystyki prądowej, ma kluczowe znaczenie dla skuteczności ochrony.

Pytanie 35

Osoba doznała poparzenia dłoni substancją żrącą. Udzielając pierwszej pomocy poszkodowanemu, należy jak najszybciej

A. nałożyć krem.
B. obmyć strumieniem zimnej wody.
C. oczyścić jałową gazą.
D. nałożyć maść.
Posmarowanie oparzonej dłoni kremem, maścią czy przetarcie jałową gazą jest niewłaściwe w przypadku oparzenia substancją żrącą. Takie działania mogą prowadzić do poważnych konsekwencji, ponieważ aplikacja jakiegokolwiek preparatu na uszkodzoną skórę może zablokować dalsze wydostawanie się substancji chemicznej oraz spowodować pogorszenie stanu skóry poprzez wprowadzenie dodatkowych zanieczyszczeń. Kremy i maści często zawierają substancje, które mogą reagować z chemikaliami, prowadząc do pogłębienia oparzenia. Z kolei przetarcie jałową gazą może powodować uszkodzenia już i tak wrażliwej skóry, co w efekcie przyczyni się do większego bólu i ryzyka infekcji. Warto pamiętać, że oparzenia chemiczne wymagają natychmiastowego schłodzenia i neutralizacji, co nie jest możliwe poprzez stosowanie kremów czy maści. W takich sytuacjach kluczowym błędem jest przekonanie, że stosowanie preparatów mogących "ukoić" ból jest działaniem wystarczającym. Takie myślenie często wynika z braku wiedzy na temat odpowiednich procedur w udzielaniu pierwszej pomocy. W przypadku oparzeń chemicznych zawsze należy pamiętać o pierwszym kroku, jakim jest spłukanie oparzonego miejsca wodą, aby zminimalizować skutki działania substancji. Dopiero po tym kroku można myśleć o dalszej pomocy medycznej.

Pytanie 36

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. brakiem zmian w czasie regulacji
B. wzrostem amplitudy oscylacji
C. zmniejszeniem stabilności układu
D. wydłużeniem czasu regulacji
Stwierdzenie, że zwiększenie stałej czasowej Ti w regulatorze PID zmniejsza stabilność układu, nie znajduje uzasadnienia. Stabilność układu regulacji PID jest przede wszystkim determinowana przez proporcjonalne i różniczkowe składniki regulatora oraz przez charakterystykę samego systemu. Zwiększenie Ti nie wpływa na te parametry w sposób bezpośredni. Czas regulacji to inny wskaźnik, który odnosi się do tego, jak szybko system osiąga wartość zadaną. Zwiększając Ti, wydłużamy czas, po którym system zaczyna reagować na zmiany, co może być mylnie interpretowane jako spadek stabilności. Również przypisanie większej amplitudy oscylacji do wydłużonego czasu całkowania jest nieprawidłowe. Oscylacje w odpowiedzi układu mogą być wynikiem zbyt agresywnego ustawienia parametrów PID, a nie samej wartości Ti. Ponadto, ustalenie, że czas regulacji nie ulegnie zmianie, jest błędne, ponieważ w systemach regulacji czas regulacji jest bezpośrednio powiązany z parametrami regulatora. W praktyce, każde zwiększenie Ti skutkuje spowolnieniem reakcji systemu, co nieuchronnie prowadzi do wydłużenia czasu regulacji. Właściwe podejście do strojenia regulatorów PID jest kluczowe w inżynierii sterowania i powinno opierać się na analizie dynamiki systemu oraz symulacjach, zamiast na błędnych założeniach.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W tabeli przedstawiono fragment danych technicznych kamery IP. W jakim maksymalnym zakresie temperatur może ona pracować?

Dane techniczne
Przetwornik1/3" 2 MP PS CMOS
Rozdzielczość2 Mpx, 1920 x 1080 pikseli
Czułość0,01 lux/F 1,2, 0 lux (IR LED ON)
Obiektyw3,6 mm
Oświetlacz35 diod ⌀5 IR LED (zasięg 20 m)
Stosunek sygnału do szumu>50 dB (AGC OFF)
Kompresja wideoH.264/MJPEG/MPEG4
Prędkość i rozdzielczość przetwarzania25 kl/s @ 1920×1080 (2 Mpx)
Strumienietransmisja strumienia głównego: 2 Mpx / 720 p (25 kl/s)
transmisja strumienia pomocniczego: D1/CIF (25 kl/s)
Bitrate32 K ~ 8192 Kbps (H.264), 32 K ~ 12288 Kbps (MJPEG)
UstawieniaAWB, ATW, AGC, BLC, DWDR, 3DNR, HLC, MIR
Dzień / NocICR
Ethernet10/100 Base-T PoE 802.3af
Wsparcie dla protokołówOnvif, PSIA, CGI
Obsługiwane protokołyIPv4/IPv6, HTTP, HTTPS, SSL, TCP/IP, UDP, UPnP, ICMP, IGMP, SNMP, RTSP, RTP, SMTP, NTP, DHCP, DNS, PPPOE, DDNS, FTP, IP Filter, QoS, Bonjour
Klasa szczelnościIP66
Zacisk przewodu ochronnegoTAK
ZasilanieDC 12 V (gniazdo 5,5/2,1) lub PoE 48 V (802.3af)
Wilgotność0 ~ 95%
Temperatura pracy-20°C ~ 60°C
Waga650 g
Wymiary70x66x160 mm

A. Od 0°C do +40°C
B. Od -20°C do +60°C
C. Od -30°C do +80°C
D. Od -10°C do +40°C
Odpowiedź "Od -20°C do +60°C" jest poprawna, ponieważ w tabeli danych technicznych kamery IP zawarto dokładny zakres temperatury, w jakim urządzenie może niezawodnie funkcjonować. Wartości te są kluczowe dla użytkowników, którzy planują zastosowanie kamery w różnorodnych warunkach środowiskowych. Na przykład, kamery pracujące w temperaturach poniżej zera, takie jak -20°C, są szczególnie przydatne w systemach monitoringu w rejonach o ostrym klimacie. Z kolei górny limit +60°C może być istotny w miejscach narażonych na intensywne nasłonecznienie. Przestrzeganie tych parametrów zapewnia nie tylko prawidłowe działanie, ale również wydłuża żywotność sprzętu, co jest zgodne z najlepszymi praktykami branżowymi, które sugerują, aby zawsze operować w zalecanych przez producenta zakresach temperatur. W przypadku przekroczenia tych wartości, ryzykujemy uszkodzenie podzespołów, co może prowadzić do awarii systemu monitoringu. Zrozumienie zakresu temperatury pracy jest więc kluczowe dla efektywności i niezawodności monitoringu w różnych warunkach zewnętrznych.