Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 19 maja 2025 21:04
  • Data zakończenia: 19 maja 2025 21:26

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podejmując się głównej naprawy ciągnika siodłowego, na początku należy

A. poddać cały pojazd czyszczeniu
B. rozłączyć naczepę z ciągnikiem
C. odprowadzić płyny eksploatacyjne
D. zdemontować ciągnik na poszczególne części
Spuszczenie płynów eksploatacyjnych, mycie pojazdu czy rozmontowanie go na podzespoły to działania, które mogą wydawać się logiczne, jednak ich realizacja przed odłączeniem naczepy jest niewłaściwa. Spuszczenie płynów, takich jak olej silnikowy czy płyn chłodniczy, może prowadzić do niepotrzebnych wycieków, które stają się niebezpieczne, jeśli naczepa nie jest odłączona. Może to również utrudnić ocenę stanu technicznego pojazdu, ponieważ płyny są istotnym wskaźnikiem jakichkolwiek problemów z silnikiem. Podobnie, mycie ciągnika przed odłączeniem naczepy nie przynosi żadnych korzyści, a wręcz przeciwnie, może prowadzić do zanieczyszczenia naczepy lub jej komponentów. Rozmontowanie na podzespoły przed upewnieniem się, że pojazd jest stabilny, naraża mechanika na niebezpieczeństwo oraz może prowadzić do uszkodzenia jakichkolwiek kluczowych elementów. W przypadku braku odpowiedniego zabezpieczenia, nawet najmniejsze ruchy mogą skutkować poważnymi urazami. Dlatego, z perspektywy profesjonalizmu i bezpieczeństwa, pierwszym krokiem powinno być zawsze zapewnienie, że pojazd jest prawidłowo przygotowany do przeprowadzania dalszych prac serwisowych.

Pytanie 2

Aby rozmontować półosie napędowe z obudowy tylnego mostu napędowego, należy zastosować ściągacz

A. bezwładnościowy
B. 3-ramienny
C. 2-ramienny
D. do łożysk
Wybór niewłaściwego typu ściągacza, takiego jak 3-ramienny lub 2-ramienny, może prowadzić do wielu problemów podczas demontażu półosi napędowych z pochwy tylnego mostu napędowego. 3-ramienne ściągacze są zazwyczaj używane do demontażu elementów o bardziej okrągłych kształtach lub tam, gdzie siły rozkładają się równomiernie, co nie jest odpowiednie w przypadku półosi, gdzie często występują nieprzewidywalne naprężenia. Z kolei 2-ramienny ściągacz, mimo że ma zastosowanie w wielu sytuacjach, również nie zapewnia wystarczającej stabilności i równomierności siły, co może prowadzić do uszkodzeń elementu lub położenia montażowego. W przypadku demontażu z przyczyn technicznych i osadzenia elementów, ściągacze tego typu mogą nie być w stanie skutecznie wykonać zadania, powodując dodatkowe problemy i wydłużając czas pracy. Dodatkowo, zastosowanie ściągaczy bezwładnościowych jest zgodne z najlepszymi praktykami w branży, co podkreśla ich skuteczność i bezpieczeństwo. Niewłaściwy dobór narzędzi może skutkować nie tylko uszkodzeniem półosi, ale także zagrożeniem dla bezpieczeństwa osoby wykonującej pracę. Dlatego kluczowe jest, aby dobrze zrozumieć specyfikę demontażu i korzystać z odpowiednich narzędzi, które są zgodne z zaleceniami producentów i normami branżowymi.

Pytanie 3

Jakim narzędziem należy przeprowadzić pomiar bicia poprzecznego tarcz hamulcowych?

A. średnicówką zegarową
B. suwmiarką zegarową
C. mikrometrem czujnikowym
D. czujnikiem zegarowym
Czujnik zegarowy jest narzędziem pomiarowym używanym do precyzyjnego pomiaru odchyleń i bicia poprzecznego tarcz hamulcowych. Umożliwia on dokładne odczyty dzięki wbudowanemu mechanizmowi sprężynowemu, który reaguje na zmiany w położeniu mierzonego obiektu. Pomiar bicia poprzecznego tarcz hamulcowych jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania oraz bezpieczeństwa jazdy. Stosowanie czujnika zegarowego pozwala na wykrycie minimalnych odchyleń, które mogą prowadzić do nierównomiernego zużycia tarcz lub wibracji podczas hamowania. W praktyce, aby wykonać pomiar, należy zamontować czujnik na stabilnej podstawie oraz umieścić jego końcówkę na powierzchni tarczy. Po uruchomieniu pomiaru można odczytać wartości, które powinny mieścić się w tolerancjach określonych przez producenta. Przestrzeganie tych norm jest istotne, aby zapewnić optymalną wydajność układu hamulcowego oraz uniknąć potencjalnych awarii.

Pytanie 4

Aby zweryfikować poprawność przeprowadzonej naprawy układu kierowniczego, należy zrealizować

A. badanie na stanowisku rolkowym
B. pomiar siły hamowania
C. jazdę próbną
D. sprawdzenie luzu elementów układu zawieszenia
Jazda próbna jest kluczowym etapem weryfikacji poprawności wykonanej naprawy układu kierowniczego, ponieważ pozwala na bezpośrednią ocenę zachowania pojazdu w czasie rzeczywistym. Podczas jazdy próbnej można zauważyć wszelkie nieprawidłowości w pracy układu kierowniczego, takie jak luzy, nieprecyzyjne skręcanie, czy zjawiska takie jak drżenie kierownicy. Praktyka pokazuje, że dopiero rzeczywiste warunki drogowe ujawniają potencjalne problemy, które mogą nie być widoczne podczas statycznych testów. Ponadto jazda próbna umożliwia również sprawdzenie, czy naprawa nie wpłynęła negatywnie na inne układy pojazdu, takie jak zawieszenie czy hamulce. Standardy branżowe, takie jak normy ISO dotyczące bezpieczeństwa pojazdów, podkreślają znaczenie tego etapu w procesie naprawy i konserwacji pojazdów. Dlatego każdy warsztat samochodowy powinien wdrożyć procedury jazdy próbnej jako integralną część procesu weryfikacji napraw.

Pytanie 5

Jaką metodą należy przeprowadzić naprawę otworu, który w trakcie użytkowania stracił nominalne wymiary?

A. lutowania
B. tulejowania
C. spawania
D. nitowania
Tulejowanie to całkiem ciekawy sposób na naprawę otworów, który widzi się w przemyśle maszynowym, a także podczas remontów różnych urządzeń. Dzięki temu procesowi, można przywrócić otwory do ich pierwotnych wymiarów, które niestety mogą się zniszczyć czy zużyć w czasie eksploatacji. Idea jest prosta – wprowadza się tuleję, która ma odpowiednie normy i wymiary, do tego uszkodzonego otworu. Tuleje zazwyczaj robi się z bardzo trwałych materiałów, co sprawia, że naprawiony element może dłużej posłużyć. W praktyce tulejowanie jest wykorzystywane w różnych dziedzinach, takich jak motoryzacja, lotnictwo, a nawet budownictwo. Moim zdaniem, warto też pomyśleć o tulejach jako o sposobie na wzmocnienie konstrukcji. Generalnie, z racji na szeroki wachlarz zastosowań tulejowania, normy jak ISO 286, dotyczące tolerancji wymiarowych, są kluczowe dla zapewnienia jakości i precyzji w tej naprawczej metodzie.

Pytanie 6

Po prawidłowej realizacji naprawy związanej z wymianą czujnika prędkości obrotowej koła?

A. należy odłączyć klemę masową akumulatora na 15 sekund
B. należy dziesięciokrotnie uruchomić silnik w celu przeprowadzenia samodiagnozy układu ABS
C. kontrolka ABS wyłączy się automatycznie po osiągnięciu odpowiedniej prędkości jazdy
D. konieczne jest ponowne przeprowadzenie diagnostyki układu oraz usunięcie kodów błędów
Odłączenie klem masowej akumulatora na 15 sekund w celu resetu układów elektronicznych mogłoby rzeczywiście wpływać na stan niektórych systemów w pojeździe, jednak nie jest to standardowe podejście do układów ABS po wymianie czujnika prędkości obrotowej. Tego typu działanie nie zmienia faktu, że kontrolka ABS może pozostać aktywna, a system niekoniecznie przeprowadzi pełną samodiagnozę. W przypadku układów ABS, które są zaawansowane technologicznie, ważne jest, aby po wymianie czujnika przeprowadzić odpowiednie testy diagnostyczne zamiast liczyć na reset systemu przez odłączenie zasilania. Ponadto, samodzielne uruchamianie silnika dziesięciokrotnie w celu „samodiagnozy” nie jest uzasadnione, ponieważ system ABS dokonuje oceny i diagnostyki w trakcie normalnej pracy pojazdu. Co więcej, ponowna diagnostyka układu oraz usunięcie ewentualnych kodów błędów powinny być nieodłącznie związane z każdą interwencją w układach elektronicznych pojazdu. Dlatego ważne jest, aby mechanicy stosowali się do najlepszych praktyk i standardów diagnostycznych, aby uniknąć błędnych wniosków oraz zapewnić pełną funkcjonalność systemów bezpieczeństwa w pojazdach.

Pytanie 7

Diagnostyka organoleptyczna opiera się na

A. przeprowadzeniu samodzielnej diagnozy
B. wykorzystaniu określonych narzędzi
C. użyciu zmysłów
D. połączeniu z diagnoskopem
Organoleptyczna metoda diagnostyki polega na wykorzystaniu zmysłów, takich jak wzrok, węch, smak, dotyk oraz słuch, do oceny jakości i stanu różnych materiałów czy produktów. Przykładem zastosowania tej metody jest ocena świeżości żywności, gdzie eksperci potrafią ocenić zapach, teksturę oraz wygląd, co pozwala na szybkie wykrycie ewentualnych problemów, takich jak zepsucie czy nieprawidłowe przechowywanie. W przemyśle spożywczym oraz farmaceutycznym, organoleptyczne metody diagnostyczne są zgodne z normami ISO, które wymagają przeprowadzania takich ocen w celu zapewnienia jakości produktów. Praktyczne zastosowanie tej metody jest kluczowe w kontekście kontroli jakości, gdzie zmysły mogą uzupełniać analizy chemiczne i mikrobiologiczne, co prowadzi do całościowej oceny produktu. Korzystając z organoleptycznych metod, specjaliści są w stanie szybko i efektywnie identyfikować problemy, co pozwala na wcześniejsze wdrożenie działań naprawczych oraz zwiększenie bezpieczeństwa konsumentów.

Pytanie 8

Podczas obsługi urządzenia do piaskowania elementów należy bezwzględnie zakładać

A. obuwie ochronne
B. rękawice lateksowe
C. okulary ochronne
D. czapkę z daszkiem
Użycie okularów ochronnych podczas obsługi urządzenia do piaskowania części jest kluczowe dla zapewnienia bezpieczeństwa operatora. Piaskowanie generuje cząsteczki pyłu oraz drobne cząstki materiału, które mogą łatwo trafić do oczu, powodując poważne urazy. Okulary ochronne, zgodne z normami ochrony osobistej, powinny być wykonane z materiałów odpornych na uderzenia, aby skutecznie chronić oczy przed potencjalnymi projektami. Przykładowo, stosowanie okularów z powłoką antyrefleksyjną i odpornych na zarysowania jest zalecane, aby zwiększyć komfort pracy oraz bezpieczeństwo. Ponadto, w kontekście przestrzegania przepisów BHP, wiele organizacji wymaga stosowania okularów ochronnych jako standardowego wyposażenia podczas wszelkich operacji związanych z obróbką materiałów. Prawidłowe zabezpieczenie oczu jest również elementem kultury bezpieczeństwa w miejscu pracy, co przyczynia się do obniżenia ryzyka wypadków.

Pytanie 9

Przed rozpoczęciem weryfikacji sprawności układu hamulcowego pojazdu w stanowisku diagnostycznym w Stacji Kontroli Pojazdów należy najpierw

A. zmierzyć grubość materiału ciernego klocków hamulcowych
B. zmierzyć poziom wody w płynie hamulcowym
C. sprawdzić funkcjonowanie serwomechanizmu
D. wyregulować ciśnienie w oponach
Wyregulowanie ciśnienia w ogumieniu jest kluczowym krokiem przed przystąpieniem do badania układu hamulcowego, ponieważ niewłaściwe ciśnienie w oponach wpływa na równowagę pojazdu oraz efektywność hamowania. Zbyt niskie lub zbyt wysokie ciśnienie może prowadzić do nierównomiernego zużycia opon oraz zmiany charakterystyki prowadzenia pojazdu. W sytuacji awaryjnej, gdy hamulce muszą działać optymalnie, niewłaściwe ciśnienie w oponach może znacznie zwiększyć drogę hamowania. Standardy branżowe, takie jak normy zawarte w dokumentach dotyczących bezpieczeństwa ruchu drogowego, zalecają regularne sprawdzanie ciśnienia w ogumieniu w celu zapewnienia maksymalnego bezpieczeństwa i osiągów pojazdu. Przykładowo, w przypadku samochodów osobowych, ciśnienie w oponach powinno być dostosowane do wartości zalecanych przez producenta, co jest szczególnie ważne przed przystąpieniem do dalszych testów diagnostycznych, jak np. test hamulców.

Pytanie 10

Jaki jest minimalny poziom efektywności hamowania hamulca roboczego, który pozwala na dalsze użytkowanie pojazdu osobowego?

A. 60%
B. 50%
C. 80%
D. 70%
Wybór wskaźnika skuteczności hamowania wyższego niż 50% może wynikać z nieporozumienia dotyczącego podstawowych standardów bezpieczeństwa. Odpowiedzi takie jak 60%, 70% czy 80% sugerują, że skuteczność hamowania powinna być na wyższym poziomie, co może prowadzić do błędnych interpretacji wymagań dotyczących eksploatacji pojazdów. W rzeczywistości, choć wyższe wskaźniki hamowania mogą być pożądane, to jednak normy określają, że minimalny wskaźnik efektywności hamulców roboczych ustalony na poziomie 50% jest wystarczający dla zapewnienia bezpieczeństwa na drodze. Wybierając wyższe wartości, użytkownicy mogą myśleć, że zapewnia to większe bezpieczeństwo, co w praktyce nie jest zgodne z przyjętymi normami. Taki błąd myślowy może wynikać z braku zrozumienia, że nadmierne wymagania dotyczące efektywności mogą prowadzić do nieuzasadnionych kosztów związanych z naprawami lub modyfikacjami pojazdów. Kluczowym aspektem jest, aby pojazdy były sprawne i spełniały określone normy, a niekoniecznie dążyły do osiągnięcia idealnych, ale niepraktycznych wskaźników efektywności. W praktyce, skuteczne zarządzanie stanem technicznym pojazdu powinno koncentrować się na regularnych przeglądach oraz bieżącej konserwacji hamulców, aby utrzymać ich efektywność na poziomie wymaganym przez przepisy prawa.

Pytanie 11

Podczas montażu suchych tulei cylindrowych w korpusie silnika powinno się

A. ostrożnie wbijać tuleję gumowym młotkiem
B. umieścić uszczelki pomiędzy dolną częścią tulei a korpusem
C. wciskać tuleję przy użyciu prasy lub specjalnego narzędzia
D. nasmarować olejem miejsca styku tulei z korpusem
Założenie uszczelek między dolną częścią tulei a kadłubem jest praktyką, która nie jest zgodna z zasadami montażu tulei cylindrowych. W rzeczywistości, uszczelki te mogą wprowadzać dodatkowe luz i nieprawidłowe napotkanie tulei na kadłub, co negatywnie wpłynie na właściwości pracy silnika. W przypadku wciskania tulei przy użyciu młotka gumowego, może to prowadzić do nierównomiernego rozłożenia siły, co z kolei zwiększa ryzyko uszkodzenia tulei oraz kadłuba, a także nie zapewnia odpowiedniej szczelności, co jest kluczowe dla prawidłowego funkcjonowania silnika. Nasmarowanie olejem powierzchni styku tulei z kadłubem nie jest zalecane, ponieważ może prowadzić do zmniejszenia tarcia, co w konsekwencji utrudnia osiągnięcie odpowiedniego dopasowania i stabilności tulei. W przypadku stosowania prasy lub przyrządów do montażu, nie tylko zapewnia się odpowiednią kontrolę nad procesem, ale również zachowuje się standardy jakości i bezpieczeństwa w przemysłowych praktykach montażowych. Zachowanie tych zasad jest istotne z perspektywy długoterminowej niezawodności silnika oraz zapobiegania problemom, które mogą wystąpić w wyniku niewłaściwego montażu.

Pytanie 12

Wartość luzu zmierzonego w zamku pierścienia tłokowego umieszczonego w cylindrze silnika po naprawie wynosi 0,6 mm. Producent wskazuje, że luz ten powinien mieścić się w zakresie od 0,25 do 0,40 mm. Ustalony wynik wskazuje, że

A. luz jest zbyt duży
B. luz jest zbyt mały
C. luz zamka pierścienia powinien być powiększony
D. luz mieści się w podanych zaleceniach
To, że luz jest za duży, to rzeczywiście dobra ocena. Zmierzony luz 0,6 mm wyraźnie przekracza to, co zaleca producent, który mówi, że powinno być od 0,25 mm do 0,40 mm. Wiesz, że luz w zamku pierścienia tłokowego jest mega ważny dla tego, jak silnik działa? Zbyt duży luz może sprawić, że pierścień się nie osadzi dobrze, co prowadzi do utraty kompresji i do większego zużycia paliwa. No i jeszcze pierścień może się szybciej zużywać. W silnikach spalinowych często korzysta się z różnych metod pomiaru luzu, takich jak feeler gauge, żeby wszystko pasowało idealnie. Różne firmy w branży samochodowej zalecają, żeby regularnie sprawdzać te luzki, żeby silnik działał jak najlepiej i długo. Zbyt duży luz to także wibracje i hałas, co psuje komfort jazdy i może zniszczyć inne elementy silnika. Dlatego przed uruchomieniem silnika trzeba sprawdzić, czy wszystko jest w normie.

Pytanie 13

Który z warsztatowych instrumentów pomiarowych nie jest wyposażony w tradycyjną skalę do odczytu zmierzonego wymiaru?

A. Suwmiarka
B. Mikrometr
C. Szczelinomierz
D. Kątomierz
Szczelinomierz jest przyrządem pomiarowym, który nie posiada tradycyjnej podziałki służącej do odczytu mierzonego wymiaru. Jego konstrukcja opiera się na zestawie metalowych lub plastikowych blaszek o różnych grubościach. Użytkownik wybiera odpowiednią blachę, aby zmierzyć szczelinę, taką jak przestrzeń między częściami mechanizmu, co czyni go niezwykle pomocnym w diagnostyce i regulacji w przemyśle, na przykład w motoryzacji. Szczelinomierz jest kluczowym narzędziem w precyzyjnych pomiarach, umożliwiającym określenie tolerancji w montażu części, co jest zgodne z normami ISO 2768, które dotyczą tolerancji wymiarowych i geometrycznych. W praktyce, dzięki jego zastosowaniu, inżynierowie mogą zapewnić, że elementy mechaniczne będą działać poprawnie w zadanym zakresie tolerancji, co bezpośrednio wpływa na wydajność i niezawodność maszyn.

Pytanie 14

Wysokie zadymienie spalin w silniku o zapłonie samoczynnym może wynikać z

A. zamykania filtra DPF
B. nadmiaru podawanego powietrza
C. wadliwości świecy żarowej
D. niewystarczającego ciśnienia wtrysku
Zatkany filtr DPF w dieslu może faktycznie powodować większe opory w układzie wydechowym, co może wpływać na wydobywanie spalin, ale nie jest to bezpośrednia przyczyna zwiększonego zadymienia. Filtr DPF ma za zadanie łapanie cząstek stałych, a nie wpływanie na ciśnienie wtrysku czy spalanie. Jeśli świeca żarowa jest uszkodzona, to nie musi to od razu oznaczać większego zadymienia. Jej rola to podgrzewanie mieszanki powietrzno-paliwowej, co jest szczególnie ważne przy rozruchu, zwłaszcza w zimnych warunkach. Takie uszkodzenie może utrudnić start silnika, ale nie ma wpływu na ciśnienie wtrysku w trakcie normalnej pracy. Za dużo powietrza w silniku raczej nie spowoduje zwiększonego zadymienia, bo nadmiar powietrza prowadzi do ubogiej mieszanki, co na ogół zmniejsza emisję cząstek. Kluczowe jest zrozumienie, że odpowiednie ciśnienie wtrysku jest super ważne dla efektywności spalania i mniejszych emisji. Warto korzystać z norm i standardów w diagnostyce układów wtryskowych, żeby silnik działał jak należy i spełniał normy ekologiczne.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jak powinno odbywać się przetransportowanie osoby poszkodowanej z podejrzeniem urazu kręgosłupa?

A. na wózku inwalidzkim
B. na materacu piankowym
C. z użyciem twardych noszy
D. z użyciem miękkich noszy
Transport poszkodowanego z podejrzeniem urazu kręgosłupa powinien być przeprowadzany z wykorzystaniem twardych noszy, ponieważ zapewniają one stabilizację i unieruchomienie kręgosłupa w trakcie transportu. W przypadku urazów kręgosłupa niezwykle istotne jest minimalizowanie ruchów, które mogą pogorszyć stan poszkodowanego lub prowadzić do dodatkowych obrażeń. Twarde nosze są zaprojektowane tak, aby równomiernie rozkładać ciężar ciała oraz skutecznie blokować wszelkie ruchy w obrębie kręgosłupa. Przykładem zastosowania twardych noszy jest ich wykorzystywanie w sytuacjach wypadków komunikacyjnych, gdzie konieczne jest szybkie, ale bezpieczne przeniesienie osoby poszkodowanej do szpitala. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz standardami ratownictwa medycznego, użycie twardych noszy jest najlepszą praktyką, gdy istnieje ryzyko urazu kręgosłupa. Ponadto, stosowanie tych noszy ułatwia również dalszą diagnostykę oraz interwencje medyczne, ponieważ pacjent pozostaje w stabilnej pozycji do momentu podjęcia odpowiednich działań przez personel medyczny.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Obecność kropel płynu chłodzącego w misce olejowej może wskazywać

A. na uszkodzenie uszczelki głowicy
B. na uszkodzenie termostatu
C. na użycie niewłaściwego oleju
D. na uszkodzenie pompy oleju
Występowanie kropel płynu chłodzącego w misce olejowej jest istotnym wskaźnikiem, który może sugerować uszkodzenie uszczelki głowicy. Uszczelka głowicy jest kluczowym elementem silnika, odpowiedzialnym za szczelne połączenie pomiędzy głowicą a blokiem silnika. Jej uszkodzenie może prowadzić do mieszania się płynów – oleju silnikowego i płynu chłodzącego. W praktyce, jeśli zauważysz płyn chłodzący w oleju, jest to znak, że należy niezwłocznie przeprowadzić diagnostykę silnika, aby uniknąć poważniejszych uszkodzeń. Konsekwencje zignorowania tego problemu mogą obejmować przegrzewanie się silnika, a w skrajnych przypadkach nawet jego zatarcie. W standardach motoryzacyjnych kładzie się duży nacisk na regularne kontrole uszczelki głowicy oraz monitorowanie jakości płynów eksploatacyjnych, co jest niezbędne dla utrzymania silnika w dobrym stanie.

Pytanie 19

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. zregenerować, gdy uległy zniszczeniu
B. pozostawić w oryginalnych gniazdach
C. wymienić na nowe
D. zamienić miejscami
Wymiana pierścieni uszczelniających Simmera na nowe jest niezbędna, ponieważ te elementy są kluczowe dla zapewnienia szczelności układów mechanicznych, w tym skrzyń biegów. Uszczelnienia te często narażone są na działanie wysokich temperatur, ciśnień oraz substancji chemicznych, co prowadzi do ich zużycia i degradacji. Nowe uszczelnienia zapewniają optymalną funkcjonalność i minimalizują ryzyko wycieków oleju lub innych płynów eksploatacyjnych, co mogłoby prowadzić do poważnych uszkodzeń mechanicznych. Stosowanie nowych pierścieni jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie używania oryginalnych lub wysokiej jakości zamienników. Na przykład, w przypadku wymiany uszczelnień w samochodach, producenci zalecają stosowanie elementów zgodnych z ich specyfikacjami, co ma na celu zapewnienie długotrwałej i niezawodnej pracy pojazdu. Oprócz tego, wymiana starych uszczelnień na nowe w trakcie przeglądów technicznych lub napraw zwiększa bezpieczeństwo i efektywność urządzeń, co jest niezbędne w kontekście utrzymania właściwego stanu technicznego pojazdów.

Pytanie 20

Analizując jakość naprawy systemu wtrysku w silniku wysokoprężnym, co należy zweryfikować?

A. obecność kodów błędów kategorii B
B. obecność kodów błędów kategorii P
C. poziom emisji tlenków azotu
D. poziom emisji dwutlenku węgla
Występowanie kodów usterek typu B, emisja dwutlenku węgla oraz emisja tlenków azotu to kwestie, które mogą być istotne w kontekście ogólnej diagnostyki silnika, ale nie są one właściwymi wskaźnikami do oceny jakości naprawy układu wtryskowego silnika o zapłonie samoczynnym. Kody usterek typu B koncentrują się głównie na systemach nadwozia i są mniej związane z parametrami silnika, co czyni je mniej użytecznymi w kontekście układu wtryskowego. Emisja dwutlenku węgla, który jest naturalnym produktem spalania, może wskazywać na ogólną efektywność silnika, ale nie dostarcza bezpośrednich informacji o stanie układu wtryskowego. Z kolei emisja tlenków azotu, będąca wynikiem spalania paliwa w wysokotemperaturowych warunkach, może być analizowana w kontekście norm ekologicznych, ale nie jest wskaźnikiem na poziomie diagnostycznym dla samego układu wtryskowego. Typowym błędem myślowym jest skupienie się na ogólnych wskaźnikach emisji, które mogą być efektem wielu czynników, nie tylko jakości naprawy, zamiast na specyficznych kodach usterek, które są kluczowe dla diagnostyki i naprawy. Właściwe zrozumienie różnicy między tymi kategoriami kodów i emisji jest istotne dla skutecznej diagnostyki i zachowania standardów jakości w naprawach motoryzacyjnych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 520,2 cm3
B. 693,6 cm3
C. 346,8 cm3
D. 173,4 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 23

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt wysoki poziom oleju
B. uszkodzenie zaworów silnikowych
C. zbyt bogatą mieszankę paliwową
D. zbyt ubogą mieszankę paliwową
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 24

Jaki będzie łączny koszt wymiany 6 bezpieczników topikowych, których cena wynosi 2,00 zł za sztukę, jeśli czas wymiany jednego bezpiecznika to 5 minut, a stawka za roboczogodzinę wynosi 120,00 zł?

A. 132,00 zł
B. 30,00 zł
C. 60,00 zł
D. 72,00 zł
Odpowiedź 30,00 zł jest niestety błędna, bo widać, że nie uwzględniłeś kosztów robocizny. Sam koszt materiału, czyli te 12,00 zł za 6 bezpieczników, to za mało, żeby mieć pełny obraz. A odpowiedź 132,00 zł wygląda na pomyłkę, bo wymiana 6 bezpieczników zajmuje tylko 30 minut, nie godzinę. Wydaje mi się, że koszt robocizny w tej odpowiedzi został zawyżony, więc to może oznaczać, że nie do końca zrozumiałeś stawkę godzinową. Jeśli chodzi o 60,00 zł, to też nie pokazuje całkowitego kosztu materiałów. Musisz pamiętać, że koszty robocizny i materiałów sumuje się, tak? To ważne, żeby dobrze planować budżety i unikać nieporozumień, bo mogą się pojawić kłopoty finansowe.

Pytanie 25

Mierzenie suwmiarką uniwersalną z noniuszem nie pozwala na osiągnięcie precyzji pomiaru do

A. 0,10 mm
B. 0,05 mm
C. 0,02 mm
D. 0,01 mm
Odpowiedź 0,01 mm jest poprawna, ponieważ suwmiarki uniwersalne noniuszowe są zaprojektowane do pomiarów z precyzją do 0,01 mm. Precyzja ta wynika z konstrukcji noniusza, który pozwala na odczytanie wartości z dokładnością, jakiej nie osiągną inne narzędzia pomiarowe, na przykład linijki. W praktyce suwmiarka noniuszowa jest niezwykle użyteczna w inżynierii i mechanice, ponieważ umożliwia dokładne pomiary średnic, grubości, a także głębokości. Przykładowo, w procesie produkcji elementów maszyn, precyzyjne pomiary są kluczowe dla zapewnienia ich odpowiedniego dopasowania i funkcjonalności. Ponadto, zgodnie z normami ISO 14405, które określają tolerancje wymiarowe, użycie narzędzi pomiarowych o wysokiej precyzji, takich jak suwmiarki noniuszowe, jest zalecane, aby sprostać wymaganiom jakościowym w branży wytwórczej. Używając suwmiarki o dokładności 0,01 mm, inżynierowie mogą pewniej podejmować decyzje o obróbce i inspekcji, co przekłada się na lepszą jakość końcowych produktów.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Rezystancję oblicza się jako

A. iloraz napięcia do natężenia prądu elektrycznego
B. sumę natężenia oraz napięcia prądu elektrycznego
C. iloczyn napięcia oraz natężenia prądu elektrycznego
D. różnicę natężenia oraz napięcia prądu elektrycznego
Rezystancja, jako wielkość elektryczna, jest ściśle związana z zachowaniem się prądu w obwodach. Nieprawidłowe odpowiedzi w pytaniu opierają się na błędnych założeniach dotyczących podstawowych zasad obwodów elektrycznych. Na przykład, twierdzenie, że rezystancja jest iloczynem napięcia i natężenia prądu, jest fundamentalnie błędne. Taki związek sugeruje, że im większe napięcie i natężenie, tym większa rezystancja, co stoi w sprzeczności z rzeczywistymi obserwacjami. Rezystancja jest z definicji miarą oporu, jaki dany materiał stawia przepływającemu przez niego prądowi, a nie wartością wynikającą z mnożenia dwóch innych wielkości. Podobnie, inne odpowiedzi, które sugerują, że rezystancja to różnica lub suma napięcia i natężenia, także są niepoprawne. Prawo Ohma jednoznacznie określa, że to właśnie iloraz napięcia do natężenia jest właściwą definicją rezystancji. Często błędy te wynikają z niepełnego zrozumienia jednostek miary oraz relacji między nimi. Zrozumienie tych podstawowych pojęć jest kluczowe dla dalszego rozwoju w dziedzinie elektroniki i elektrotechniki, ponieważ wpływa na sposób analizy obwodów oraz projektowania systemów elektrycznych. Wiedza na temat rezystancji jest nie tylko teoretyczna, ale ma praktyczne zastosowanie w budowie i diagnostyce urządzeń elektrycznych, co czyni ją podstawą dla każdego inżyniera w tej dziedzinie.

Pytanie 29

Podczas pracy z elektryczną szlifierką ręczną konieczne jest noszenie

A. rękawic ochronnych
B. okularów ochronnych
C. fartucha ochronnego
D. obuwia roboczego
Użycie okularów ochronnych podczas pracy ze szlifierką ręczną z napędem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa oczu. Prace szlifierskie generują wiele niebezpiecznych odpadów, takich jak pył, iskry oraz drobne cząstki materiału, które mogą łatwo trafić do oczu pracownika. Okulary ochronne są zaprojektowane tak, aby skutecznie chronić przed tymi zagrożeniami. Przykłady zastosowania obejmują zarówno prace w przemyśle, jak i w warsztatach hobbystycznych, gdzie użytkownicy często nie zdają sobie sprawy z ryzyka spowodowanego niewłaściwym zabezpieczeniem oczu. Zgodnie z normą PN-EN 166:2002, która dotyczy środków ochrony indywidualnej oczu, okulary muszą być odpowiednio oznaczone i dopasowane do warunków pracy. Warto zwrócić uwagę na to, aby wybierać modele z odpowiednimi filtrami, które chronią przed promieniowaniem UV, gdyż długotrwałe narażenie na takie promieniowanie może prowadzić do poważnych uszkodzeń wzroku. Bezpieczeństwo powinno być zawsze priorytetem, dlatego noszenie okularów ochronnych jest nie tylko dobrym nawykiem, ale i obowiązkiem.

Pytanie 30

W nowoczesnych systemach zasilania silnika z zapłonem samoczynnym typu Common rail, paliwo jest poddawane sprężaniu do ciśnienia

A. 10 kPa
B. 2000 bar
C. 1000 atm
D. 18 MPa
Każda z pozostałych odpowiedzi zawiera poważne nieporozumienia dotyczące ciśnienia sprężania paliwa w systemach Common Rail. Odpowiedź sugerująca ciśnienie wynoszące 1000 atm jest daleka od rzeczywistości, ponieważ 1 atm to około 1013 hPa, co przekłada się na zaledwie 101 kPa. Tego typu pomyłka może wynikać z mylnego postrzegania jednostek ciśnienia, ponieważ 1000 atm byłoby równowartością 101325000 kPa, co jest niewykonalne w praktycznych zastosowaniach motoryzacyjnych. Kolejna odpowiedź, wskazująca ciśnienie na poziomie 10 kPa, jest również nieadekwatna, jako że takie ciśnienie jest zbyt niskie i nie wystarczyłoby do osiągnięcia skutecznego wtrysku paliwa. W rzeczywistości, ciśnienia w systemach Common Rail kształtują się w przedziale 1000-2000 bar, co odpowiada 100-200 MPa, a nie 10 kPa. Odpowiedź mówiąca o 18 MPa również nie odzwierciedla rzeczywistości, gdyż choć 18 MPa to 180 bar, co znajduje się w bliskim zakresie, nie jest to wartość optymalna dla standardowych systemów Common Rail. W praktyce, błędne podejścia do pojęcia ciśnienia mogą prowadzić do niewłaściwych wniosków na temat wydajności silników oraz ich technologii. Dlatego ważne jest, aby zrozumieć, jak wysokie ciśnienie wpływa na proces spalania oraz jakie są wymagania producentów dotyczące tych systemów.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h

A. 3,5 h
B. 5,0 h
C. 4,0 h
D. 4,5 h
Odpowiedź 4,5 h jest poprawna, ponieważ czas wymiany uszczelnień tłoczków hamulcowych w samochodzie Polonez 1500 został dokładnie określony w taryfikatorze czasochłonności napraw. Wymiana uszczelnień tłoczków hamulcowych z przodu zajmuje 1,5 h, a z tyłu 2 h, co razem daje 3,5 h. Dodatkowo, odpowietrzenie układu hamulcowego to kolejny proces, który wymaga dodatkowej godziny. Sumując te czasy, otrzymujemy całkowity czas naprawy wynoszący 4,5 h. W praktyce, właściwe oszacowanie czasu naprawy jest kluczowe dla efektywności pracy warsztatu, umożliwiając lepsze planowanie zadań oraz obliczanie kosztów usług. Zrozumienie taryfikatorów oraz umiejętność ich stosowania w codziennej praktyce jest niezbędne dla mechaników, by móc świadczyć usługi zgodnie z przyjętymi standardami branżowymi.

Pytanie 33

Funkcjonowanie hydraulicznego podnośnika pojazdów opiera się na zasadzie

A. Coulomba
B. Archimedesa
C. Pascala
D. Jonie'a-Lenza
Działanie hydraulicznego podnośnika samochodowego opiera się na prawie Pascala, które mówi, że ciśnienie w zamkniętym płynie roznosi się równomiernie we wszystkich kierunkach. W praktyce oznacza to, że niewielka siła aplikowana na mały tłok powoduje wzrost ciśnienia w całym układzie hydraulicznym, co z kolei pozwala na podniesienie znacznie większego obciążenia na większym tłoku. Taki mechanizm jest powszechnie stosowany w różnych aplikacjach, takich jak podnośniki samochodowe, maszyny budowlane czy systemy hydrauliczne w pojazdach. Dzięki zastosowaniu tego prawa, możliwe jest efektywne i bezpieczne podnoszenie ciężkich przedmiotów przy użyciu stosunkowo niewielkiej siły. W branży motoryzacyjnej, przestrzeganie zasad działania hydrauliki jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Przykładowo, podnośnik hydrauliczny umożliwia mechanikom szybkie i skuteczne podnoszenie pojazdów w celu przeprowadzania napraw czy przeglądów.

Pytanie 34

Aby ustalić przyczynę braku maksymalnych wydajności silnika przy całkowicie otwartej przepustnicy, gdy nie stwierdza się innych symptomów, należy w pierwszej kolejności przeprowadzić pomiar

A. ciśnienia sprężania
B. ciśnienia smarowania
C. ciśnienia paliwa
D. napięcia ładowania
Napięcie ładowania, ciśnienie smarowania oraz ciśnienie sprężania to elementy, które choć są istotne w ogólnej diagnostyce silnika, nie powinny być pierwszymi parametrami do zbadania w przypadku braku maksymalnych osiągów silnika. Napięcie ładowania skupia się na wydajności alternatora i stanie akumulatora, co nie ma bezpośredniego wpływu na ciśnienie paliwa, a tym samym na wydajność silnika przy pełnym otwarciu przepustnicy. Zbyt niskie napięcie może powodować problemy z zasilaniem elektroniki, ale nie jest główną przyczyną braku mocy. Ciśnienie smarowania dotyczy smarowania ruchomych części silnika, co jest ważne dla jego długowieczności, lecz nie wpływa bezpośrednio na jego osiągi przy pełnym obciążeniu. Ciśnienie sprężania jest krytyczne dla właściwego spalania mieszanki paliwowo-powietrznej, ale nie jest to kluczowy parametr w diagnostyce osiągów w sytuacji, gdy inne objawy nie są obecne. W takich przypadkach, koncentrowanie się na ciśnieniu paliwa, które dostarcza odpowiednią ilość paliwa do komory spalania, jest znacznie bardziej trafne. Zrozumienie, że każdy z tych parametrów pełni określoną rolę, ale nie wszystkie są równie istotne w danym kontekście, jest kluczowe dla skutecznej diagnostyki i naprawy silników spalinowych.

Pytanie 35

Jakie jest jedno z komponentów silnika spalinowego?

A. półoś napędowa
B. sprzęgło
C. skrzynia biegów
D. rozrusznik
Rozrusznik jest kluczowym elementem układu uruchamiającego silnik spalinowy. Jego podstawową funkcją jest generowanie obrotowego momentu siły, który pozwala na uruchomienie silnika przez obracanie wału korbowego. W praktyce, rozrusznik współpracuje z akumulatorem oraz systemem elektrycznym pojazdu, co czyni go integralną częścią każdego silnika spalinowego. W momencie uruchomienia pojazdu, rozrusznik pobiera prąd z akumulatora, co pozwala na zainicjowanie procesu spalania w cylindrze. Bez sprawnego rozrusznika, silnik nie byłby w stanie rozpocząć pracy, co podkreśla jego fundamentalne znaczenie w kontekście eksploatacji i konserwacji pojazdów. W standardach branżowych, takich jak SAE J1171, uwzględnia się parametry techniczne rozruszników, co zapewnia ich odpowiednią wydajność oraz niezawodność.

Pytanie 36

Aby zweryfikować bicia czopów głównych wału korbowego, należy zastosować

A. mikrometru
B. średnicówki mikrometrycznej
C. średnicówki czujnikowej
D. czujnika zegarowego
Czujnik zegarowy jest narzędziem pomiarowym, które jest powszechnie stosowane w mechanice do precyzyjnego pomiaru luzu i bicia czopów głównych wału korbowego. Jego działanie opiera się na zjawisku wskazywania upływu czasu na zegarze, co pozwala na dokładne odczytywanie niewielkich przemieszczeń. W przypadku wału korbowego, ważne jest, aby sprawdzić, czy czopy są odpowiednio osadzone w łożyskach, co ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika. Pomiar bicia czopów za pomocą czujnika zegarowego daje możliwość zmierzenia odchylenia od idealnej osi, co jest niezbędne dla zapewnienia długotrwałej i niezawodnej pracy silnika. W praktyce, czujnik zegarowy ustawia się na powierzchni czopu, a następnie obraca wał, co pozwala na obserwację wahań wskazówki czujnika, które odzwierciedlają ewentualne niedoskonałości w osadzeniu wału. Zgodnie z normami branżowymi, akceptowalne wartości bicia nie powinny przekraczać określonych limitów, co również potwierdza zastosowanie czujnika zegarowego jako standardowego narzędzia w warsztatach mechanicznych i zakładach produkcyjnych.

Pytanie 37

Wstępna ocena organoleptyczna stanu technicznego amortyzatora, obejmuje

A. analizę stanu zużycia tulei wahaczy
B. analizę stanu zużycia drążków kierowniczych
C. analizę zużycia sprężyn zawieszenia
D. analizę wzrokową stopnia zużycia opon pojazdu
Wstępna, organoleptyczna ocena stanu technicznego amortyzatora obejmuje przede wszystkim wzrokową ocenę zużycia opon samochodu, ponieważ opony są kluczowym elementem układu zawieszenia i mają bezpośredni wpływ na bezpieczeństwo oraz komfort jazdy. Ich stan może wskazywać na problemy z amortyzacją, takie jak nierównomierne zużycie, co może być efektem niewłaściwego działania amortyzatorów. Przykładem praktycznym może być sytuacja, w której opony mają widoczne nierówności lub deformacje, co jest sygnałem, że zawieszenie i amortyzatory mogą wymagać dokładniejszej inspekcji. W branży motoryzacyjnej standardem jest regularna kontrola stanu opon oraz zawieszenia, co pozwala na wczesne wykrycie potencjalnych problemów. Technik powinien być w stanie ocenić opony pod kątem ich wieku, głębokości bieżnika oraz ewentualnych uszkodzeń. Taka ocena jest zgodna z dobrymi praktykami oraz zaleceniami producentów pojazdów, co przekłada się na bezpieczeństwo użytkowników dróg.

Pytanie 38

Lepki, czerwony płyn eksploatacyjny to

A. płyn klimatyzacji R 134a
B. olej silnikowy
C. płyn hamulcowy DOT 4
D. olej ATT
Odpowiedź na to pytanie jest prawidłowa, ponieważ olej ATT (Automatic Transmission Fluid) jest lepki i często występuje w kolorze czerwonym. Jest to specjalny płyn stosowany w automatycznych skrzyniach biegów, który zapewnia nie tylko smarowanie, ale także chłodzenie oraz przenoszenie mocy. Dzięki odpowiednim właściwościom lepkościowym, olej ATT umożliwia skuteczną pracę przekładni, a jego barwa czerwona jest standardowa w wielu producentach, aby ułatwić identyfikację. Przykładowo, w przypadku awarii skrzyni biegów, mechanicy często sprawdzają poziom i stan oleju ATT, co pozwala na szybką diagnozę problemów. W branży motoryzacyjnej istnieją również normy, takie jak DEXRON lub MERCON, które określają wymagania dotyczące właściwości olejów przekładniowych, co jest kluczowe dla bezpieczeństwa i efektywności działania pojazdów. Właściwy dobór oleju ATT jest fundamentalny, aby zapewnić długowieczność skrzyni biegów oraz zachować optymalną wydajność pojazdu.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Łączny koszt naprawy (koszt wymienianego elementu i koszt wymiany) elementu, zgodnie ze specyfikacją zamieszczoną w tabeli, przy cenie 1 rbg. 50 zł i 10% rabacie na wykonanie naprawy, wynosi

Opis czynnościMiejsceRodzajRbgCena
Reflektor kpl.LWY1300

A. 350 zł
B. 250 zł
C. 330 zł
D. 315 zł
Obliczenie łącznego kosztu naprawy jest kluczowym aspektem zarządzania kosztami w każdej branży, w której prowadzone są naprawy. W tym przypadku, aby uzyskać poprawny wynik, musimy dodać koszt wymienianego elementu do kosztu wymiany, pamiętając o uwzględnieniu rabatu. Koszt wymienianego elementu wynosi 300 zł, co jest wartością standardową w branży. Koszt wymiany wynosi 50 zł, lecz po zastosowaniu 10% rabatu (5 zł), uzyskujemy finalny koszt wymiany równy 45 zł. Zsumowanie tych wartości daje nam 345 zł, co jest poprawnym wynikiem. Niemniej jednak, jeśli chodzi o przedstawione w pytaniu wartości, żadna odpowiedź nie zgadza się z obliczeniami. W praktyce, przy takich obliczeniach warto zwrócić uwagę na dokładność danych źródłowych oraz proces weryfikacji kosztów, co jest zgodne z najlepszymi praktykami zarządzania kosztami w projektach. Uważne podejście pozwala na lepsze planowanie finansowe oraz unikanie nieprawidłowości w prognozowaniu wydatków.