Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 25 lutego 2025 19:27
  • Data zakończenia: 25 lutego 2025 19:45

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. separatora sygnałów
B. odchylania poziomego i pionowego
C. wielkiej i pośredniej częstotliwości
D. wzmacniacza obrazu
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 4

Która z podanych metod łączenia radiatora z obudową procesora gwarantuje najwyższą efektywność w odprowadzaniu ciepła?

A. Powierzchnia styku jest pokryta warstwą pasty termoprzewodzącej
B. Radiator został zamocowany bez użycia żadnych przekładek oraz past
C. Między radiatorem a obudową znajduje się przekładka mikowa
D. Powierzchnie styku pokrywane są warstwami pasty termoprzewodzącej oraz oddzielone przekładką mikową
Choć istnieją różne metody łączenia radiatora z obudową procesora, nie wszystkie zapewniają skuteczne odprowadzanie ciepła. Użycie radiatora zamocowanego bez przekładek i pasty jest jedną z najgorszych opcji, ponieważ nie eliminuje nierówności powierzchni, co prowadzi do powstawania pustek powietrznych i zwiększonego oporu termicznego. Taki układ znacząco ogranicza efektywność transferu ciepła, co może prowadzić do przegrzewania się procesora. Z kolei umieszczenie przekładki mikowej pomiędzy radiatorem a obudową może niekorzystnie wpłynąć na efektywność odprowadzania ciepła, ponieważ mikowe przekładki, mimo że są dobrym izolatorem, mogą ograniczać przewodnictwo cieplne. Chociaż mogą one pełnić funkcję ochronną, lepszym rozwiązaniem jest zastosowanie materiałów termoprzewodzących, takich jak pasta, która skutecznie wypełnia wszystkie dostępne mikroszczeliny. To prowadzi do typowego błędu w rozumieniu budowy układów chłodzenia, gdzie pomija się znaczenie, jakie ma kontakt powierzchniowy i odpowiednie materiały na wydajność chłodzenia. W praktyce, aby osiągnąć wysoką efektywność odprowadzania ciepła, kluczowe jest zapewnienie maksymalnego kontaktu między powierzchniami styku oraz zastosowanie odpowiednich materiałów termoprzewodzących.

Pytanie 5

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. ołówek i poziomica
B. gwoździe oraz młot
C. śruby i śrubokręt
D. wiertarka i kołki rozporowe
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 6

Standard karty bezstykowej używanej w systemach zarządzania dostępem to

A. HDMI
B. FIREWARE
C. RCP
D. MIFARE
MIFARE to bezdotykowy standard kart, który jest szeroko stosowany w systemach kontroli dostępu, a także w aplikacjach takich jak płatności zbliżeniowe, transport publiczny i programy lojalnościowe. MIFARE operuje na technologii RFID (Radio Frequency Identification), co umożliwia użytkownikom korzystanie z kart bez potrzeby fizycznego kontaktu z czytnikiem. Karty MIFARE są dostępne w różnych wersjach, takich jak MIFARE Classic, MIFARE DESFire, i MIFARE Ultralight, co pozwala na zastosowanie ich w różnych scenariuszach. Na przykład, MIFARE Classic jest często wykorzystywana w systemach biletowych, gdzie niskie koszty produkcji są kluczowe, natomiast MIFARE DESFire oferuje wyższy poziom bezpieczeństwa i możliwość programowania, co czyni ją idealnym rozwiązaniem dla zaawansowanych systemów kontroli dostępu. Standard ten jest zgodny z międzynarodowymi normami ISO/IEC 14443, co zapewnia interoperacyjność z różnymi urządzeniami i systemami. Dzięki tym właściwościom, MIFARE stał się de facto standardem w branży, zapewniając nie tylko wygodę użytkowania, ale także wysoki poziom bezpieczeństwa, co jest kluczowe w kontekście ochrony danych osobowych i zapobiegania oszustwom.

Pytanie 7

Gdy zachodzi potrzeba połączenia światłowodu z przewodem skrętkowym, powinno się użyć

A. koncentrator.
B. konwerter.
C. router.
D. wzmacniak.
Konwerter to urządzenie, które pozwala na łączenie różnych typów mediów transmisyjnych, jak światłowód i skrętka. W kontekście sieci, konwertery światłowodowe są naprawdę ważne, bo integrują różne technologie. Właściwie to, ich głównym zadaniem jest zmiana sygnału optycznego z światłowodu na sygnał elektryczny, który można przesłać przez skrętkę, i odwrotnie. To jest istotne, kiedy chcemy rozbudować lokalną sieć, korzystając z już istniejących połączeń, jak sieci Ethernet. Przykład? Jeśli mamy budynek, który potrzebuje internetu, to możemy połączyć go z centralą przez światłowód, ale w samej budowli kontynuować transmisję sygnału przez skrętkę. To jest zgodne z najlepszymi praktykami w budowie sieci, a także z normami IEEE 802.3, które określają metody przesyłu w lokalnych sieciach. Dlatego konwerter to kluczowy element nowoczesnych architektur sieciowych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Klient zgłasza problem z zamontowanym systemem alarmowym, który składa się z 4 czujników PIR umieszczonych na wysokości 2,5 m, centrali alarmowej zainstalowanej na poddaszu oraz syreny zewnętrznej umieszczonej na wysokości 4 m. Jakie narzędzia są niezbędne do identyfikacji usterki systemu alarmowego w obiekcie?

A. Multimetr, wiertarka, lutownica, zestaw wkrętaków, szczypce boczne
B. Drabina, multimetr, zestaw wkrętaków, zestaw szczypiec
C. Wiertarka, lutownica, zestaw wkrętaków, zestaw szczypiec, szukacz par przewodów
D. Drabina, multimetr, wiertarka, ściągacz izolacji
Odpowiedź jest naprawdę trafiona. Do prawidłowej diagnostyki usterek w systemie alarmowym koniecznie potrzebne są odpowiednie narzędzia. Drabina to super pomocna rzecz, bo pozwala sięgnąć do czujek PIR, które często są zamontowane wysoko, a także do syreny, która jest jeszcze wyżej. Multimetr to też must-have, bo przy jego pomocy można zmierzyć napięcie, prąd czy oporność – dzięki temu można sprawdzić, czy wszystkie elementy elektroniczne działają jak należy. Zestaw wkrętaków jest niezbędny, bo zdarza się, że trzeba odkręcić jakieś złączki czy obudowy, co jest mega ważne podczas diagnostyki czy napraw. A zestaw szczypiec? Pomaga przy manipulacji przewodami, co jest kluczowe, gdy coś nie działa w połączeniach. Używając tych narzędzi zgodnie z dobrą praktyką, można szybko zlokalizować usterki i je naprawić, co w efekcie podnosi bezpieczeństwo obiektu.

Pytanie 11

W instrukcji technicznej zasilacza impulsowego podano, że amplituda napięcia wyjściowego nie przekracza 50 mVpp. Co oznacza, że wartość nieprzekraczająca 50 mV to

A. skuteczna wartość napięcia tętnień
B. średnia wartość napięcia tętnień
C. międzyszczytowa wartość napięcia tętnień
D. maksymalna wartość napięcia tętnień
Wybór odpowiedzi dotyczącej skutecznej, maksymalnej lub średniej wartości napięcia tętnień jest mylący i nieadekwatny w kontekście opisanego problemu. Skuteczna wartość napięcia odnosi się do napięcia zmiennego, które dostarcza taką samą moc do obciążenia jak napięcie stałe. W przypadku tętnień, skuteczna wartość nie jest miarodajnym wskaźnikiem jakości napięcia, ponieważ nie uwzględnia ona zmienności sygnału w czasie, a jedynie jego efektywną moc. Z kolei maksymalna wartość odnosi się do najwyższego punktu napięcia w danym cyklu, co nie pozwala na pełne zrozumienie dynamiki sygnału. Średnia wartość napięcia również nie jest adekwatna, ponieważ nie odzwierciedla wahań napięcia, które mogą mieć negatywny wpływ na działanie urządzeń. W praktyce, projektując zasilacze impulsowe, kluczowe jest skupienie się na międzyszczytowej wartości tętnień, aby zapewnić ich stabilność i minimalizować wpływ na inne elementy układu. Często błędne wnioski wynikają z mylnego interpretowania definicji parametrów elektrycznych, co może prowadzić do niewłaściwego projektowania i nieoptymalnych rozwiązań w systemach zasilania.

Pytanie 12

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 320 mV
B. 100 mV
C. 32 mV
D. 10 mV
Odpowiedzi 100 mV, 32 mV oraz 320 mV są wynikiem niepoprawnych obliczeń dotyczących rozdzielczości napięciowej przetwornika 8-bitowego. Można zauważyć, że często popełnianym błędem jest mylenie jednostek oraz niewłaściwe interpretowanie zakresu przetwornika. Na przykład, rozdzielczość 100 mV sugerowałaby, że przetwornik reprezentuje tylko 25 poziomów napięcia w skali od 0 V do 2,56 V, co jest niezgodne z jego 256 poziomami. Z kolei rozdzielczość 320 mV w ogóle nie mieści się w zakresie od 0 V do 2,56 V, ponieważ jest większa od maksymalnego napięcia. Niektóre z tych odpowiedzi mogą wynikać z błędnej logiki dzielenia zakresu przez liczbę bitów, zamiast przez liczby poziomów. W praktyce, do obliczania rozdzielczości przetwornika, kluczowe jest zrozumienie, że różnice napięcia muszą być dzielone przez całkowitą liczbę poziomów, co prowadzi do dokładnych i wiarygodnych wyników. Ignorowanie tego fundamentalnego aspektu może prowadzić do poważnych błędów w projektach inżynieryjnych oraz zastosowaniach przemysłowych, gdzie precyzyjne pomiary mają bezpośredni wpływ na efektywność i jakość produkcji.

Pytanie 13

Aby zweryfikować ciągłość instalacji, należy użyć

A. woltomierza
B. watmierz
C. amperomierza
D. omomierza
Omomierz to urządzenie pomiarowe, które jest kluczowe w procesie sprawdzania ciągłości instalacji elektrycznej. Jego głównym zadaniem jest pomiar rezystancji elektrycznej, co pozwala na ocenę, czy dany przewód lub obwód są poprawnie połączone i czy nie mają przerw. W praktyce, omomierz jest używany do weryfikacji ciągłości połączeń uziemiających, a także do testowania przewodów w instalacjach elektrycznych przed ich uruchomieniem. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji oraz ciągłości przewodów jest niezbędnym krokiem w procesie odbioru instalacji elektrycznych. Użycie omomierza pozwala na wykrycie potencjalnych problemów, które mogłyby prowadzić do awarii systemów elektrycznych lub stanowić zagrożenie dla bezpieczeństwa. Dobrą praktyką jest przeprowadzanie takich pomiarów regularnie, szczególnie w instalacjach narażonych na czynniki atmosferyczne lub mechaniczne uszkodzenia. Rezultaty pomiarów powinny być dokumentowane w celu zapewnienia zgodności z obowiązującymi normami i przepisami.

Pytanie 14

Jakie urządzenia należy wykorzystać w systemie monitoringu, aby zwiększyć dystans między kamerą a rejestratorem, jeśli połączenie jest zrealizowane za pomocą kabla UTP?

A. Zwrotnice
B. Symetryzatory
C. Filtry wideo
D. Transformatory wideo
Wybór symetryzatorów może prowadzić do zamieszania, jeśli chodzi o zwiększanie odległości między kamerą a rejestratorem w systemach wideo. Tak naprawdę, symetryzatory mają na celu poprawę jakości sygnału w audio i wideo, ale głównie to chodzi o eliminację zakłóceń i wzmocnienie sygnału. Nie są one zbyt odpowiednie do przesyłania sygnału na długie odległości. Często w monitoringu wideo się ich nie stosuje, bo nie są projektowane pod kątem sygnału wideo, który potrzebuje specyficznych parametrów, jak impedancja czy pasmo przenoszenia. Filtry wideo, które usuwają niepożądane częstotliwości, też nie są idealnym rozwiązaniem, jeśli chodzi o zwiększanie odległości – raczej poprawiają jakość sygnału przy określonej długości kabla. A zwrotnice to inna sprawa, używane są w telekomunikacji do kierowania sygnałami, ale w kontekście monitoringu nie pomagają zwiększyć odległości. Często myśli się, że każde urządzenie, które poprawia sygnał, będzie też dobre do przesyłania na dużą odległość, ale to wcale nie jest takie proste. Wymagania dotyczące przesyłu sygnału wideo są dość szczegółowe i trzeba używać odpowiednich rozwiązań, jak właśnie transformatory wideo, które zapewniają lepszą jakość na długich dystansach.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką zaciskarkę oznaczoną należy zastosować do zaciśnięcia końcówek RJ-11 na przewodzie telefonicznym?

A. 4P4C
B. 6P2C
C. 8P8C
D. 10P10C
Odpowiedź 6P2C jest prawidłowa, ponieważ oznaczenie to odnosi się do specyfikacji końcówek stosowanych w telefonii, a konkretnie do złącza RJ-11. W terminologii 6P2C oznacza to, że złącze posiada 6 pinów, z czego 2 są aktywne w przypadku transmisji. W praktyce RJ-11 jest szeroko stosowane do podłączania telefonów do linii telefonicznych w domach oraz biurach. Użycie zaciskarki 6P2C zapewnia prawidłowe i niezawodne połączenie, co jest kluczowe dla jakości przesyłanego sygnału. Standardy, takie jak TIA/EIA-568, określają właściwe procedury instalacji i zaciśnięcia, co przekłada się na lepszą funkcjonalność urządzeń. Właściwe podejście do zaciśnięcia końcówek gwarantuje, że sygnał będzie przesyłany bez zakłóceń, co ma kluczowe znaczenie w przypadku komunikacji głosowej oraz transmisji danych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jak nazywa się program wykorzystywany do wyszukiwania błędów w kodach napisanych w asemblerze?

A. kompilatorem
B. linkerem
C. konwerterem
D. debuggerem
Debugger to narzędzie służące do analizy i diagnostyki programów komputerowych, które umożliwia programistom wykrywanie, identyfikowanie i usuwanie błędów w kodzie. Debugging to kluczowy etap w procesie rozwoju oprogramowania, szczególnie w przypadku programów napisanych w asemblerze, gdzie bliskość do sprzętu sprawia, że błędy mogą prowadzić do poważnych problemów. Przykładowo, podczas korzystania z debuggera programista może zatrzymać wykonanie programu w określonym punkcie, zbadać stan rejestrów oraz pamięci, co pozwala na precyzyjne określenie, dlaczego program nie działa tak, jak powinien. W praktyce, debugger pozwala na krokowe przechodzenie przez kod, co jest szczególnie przydatne w asemblerze, gdzie konstrukcje są niskopoziomowe i złożone. Dobre praktyki w zakresie debugowania obejmują korzystanie z takich narzędzi jak GDB dla systemów Unix, które wspierają różne architektury procesorów. Zrozumienie działania debuggera i umiejętność jego efektywnego wykorzystania jest niezbędne dla każdego programisty, który pracuje w niskopoziomowym programowaniu.

Pytanie 19

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektrostatyczne
B. dyspersja chromatyczna
C. pole elektromagnetyczne
D. dyspersja międzymodowa
Dyspersja międzymodowa jest zjawiskiem, które występuje głównie w światłowodach wielomodowych, gdzie różne tryby propagacji światła mogą podróżować różnymi ścieżkami. W kontekście światłowodów jednomodowych, dyspersja międzymodowa nie ma zastosowania, ponieważ te światłowody są zaprojektowane tak, aby prowadzić tylko jeden tryb światła, co minimalizuje ryzyko zniekształceń związanych z tym zjawiskiem. Pole elektromagnetyczne oraz pole elektrostatyczne również nie mają bezpośredniego wpływu na zniekształcenia sygnału w światłowodach. Pole elektromagnetyczne może wpływać na sygnały w różnych technologiach komunikacyjnych, ale w kontekście przesyłu światłowodowego nie jest to istotne, ponieważ światłowody działają na zasadzie propagacji światła, a nie fal elektromagnetycznych w tradycyjnym sensie. Pole elektrostatyczne, z drugiej strony, dotyczy interakcji ładunków elektrycznych, które również nie wpływają na sygnał w światłowodach. Typowe błędy myślowe mogą prowadzić do mylenia tych pojęć z dyspersją chromatyczną, której skutki są bardziej zauważalne w kontekście transmisji danych. Zrozumienie tych różnic jest kluczowe dla projektowania i optymalizacji systemów światłowodowych oraz dla efektywnego rozwiązywania problemów związanych z zniekształceniami sygnału.

Pytanie 20

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Przekazuje informacje pomiędzy satelitami
B. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
C. Odbiera programy telewizyjne
D. Nadaje sygnały z satelity
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 21

Jakiego typu modulacja jest używana w paśmie UKF?

A. Cyfrowej
B. Fazy
C. Częstotliwości
D. Amplitudy
Kiedy rozważamy inne rodzaje modulacji, takie jak modulacja amplitudy (AM), modulacja fazy czy modulacja cyfrowa, warto zrozumieć, dlaczego nie są one odpowiednie w kontekście pasma UKF. Modulacja amplitudy polega na zmienianiu amplitudy sygnału nośnego zgodnie z sygnałem informacji, co czyni ją bardziej podatną na zakłócenia i szumy, zwłaszcza w warunkach, gdzie jakość dźwięku jest kluczowa. Użycie AM w paśmie UKF prowadzi do degradacji sygnału i znacznego pogorszenia jakości dźwięku. Modulacja fazy, z kolei, wiąże się ze zmianą fazy sygnału nośnego, co jest bardziej skomplikowane w implementacji i nie jest powszechnie stosowane w standardowej radiofonii. Chociaż modulacja cyfrowa ma swoje miejsce w nowoczesnych systemach komunikacji, w kontekście tradycyjnej radiofonii UKF, nie jest to dominujący sposób transmisji. Często wynika to z mylnego przekonania, że różne rodzaje modulacji oferują równoważne korzyści, podczas gdy w praktyce różnice te mają kluczowe znaczenie dla jakości sygnału i niezawodności transmisji.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. zmniejszeniem stabilności układu
B. wzrostem amplitudy oscylacji
C. wydłużeniem czasu regulacji
D. brakiem zmian w czasie regulacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 29

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. układu zasilania
B. obwodów wyjściowych
C. systemu masy
D. obwodów wejściowych
Wybór odpowiedzi związanej z systemem masy może prowadzić do nieporozumień, ponieważ układ masy, choć istotny, jest drugorzędny w kontekście braku działania urządzenia. System masy pełni funkcję uziemienia i wspomaga stabilność układów, jednak w większości przypadków, jego prawidłowe działanie nie jest przyczyną problemów z zasilaniem. Wspomniałeś również o obwodach wejściowych i wyjściowych, co również jest nieprecyzyjne w kontekście diagnostyki braku reakcji urządzenia. Obwody te są odpowiedzialne za przyjmowanie sygnałów i ich przesyłanie, jednak ich funkcjonalność jest uzależniona od zasilania. Bez energii te obwody nie będą działać, co może prowadzić do mylnego wniosku, że są one źródłem usterki. Typowym błędem w myśleniu jest skupianie się na symptomach, zamiast na przyczynie. W przypadku, gdy urządzenie nie reaguje, najpierw należy upewnić się, że zasilanie jest dostępne i prawidłowe, zanim zaczniemy analizować inne elementy, które mogą być niewłaściwie interpretowane jako źródło problemu. Zgodnie z dobrymi praktykami diagnostycznymi, podejście do analizy problemów powinno być systematyczne i uporządkowane, co oznacza, że zawsze należy zaczynać od źródła zasilania.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Zwiększa i przekształca częstotliwość sygnału z anteny.
B. Dostarcza antenie napięcie przemienne.
C. Dostarcza antenie napięcie stałe.
D. Tłumi i zmienia częstotliwość sygnału antenowego.
Konwerter w instalacji antenowej TV-SAT pełni kluczową rolę, polegającą na wzmacnianiu i przetwarzaniu sygnału. Odbiera sygnały mikrofalowe z satelity, które są na bardzo wysokich częstotliwościach, a następnie przekształca je na niższe częstotliwości, które mogą być przesyłane przez kable do odbiornika. Zmiana ta jest niezbędna, ponieważ kable stosowane w instalacjach satelitarnych, takie jak kabel koncentryczny, mają ograniczenia dotyczące długości i pasma, co sprawia, że wyższe częstotliwości nie mogą być przesyłane efektywnie. W praktyce konwerter działa na zasadzie wzmocnienia sygnału, co zapewnia lepszą jakość odbioru. Dobre praktyki w instalacji konwertera obejmują jego właściwe umiejscowienie na antenie, co minimalizuje straty sygnału oraz użycie wysokiej jakości kabli, aby zredukować tłumienie. Warto również zwrócić uwagę na dobór konwertera, który odpowiada standardom DVB-S lub DVB-S2, aby zapewnić zgodność z nowoczesnymi systemami odbioru telewizyjnego.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. próby działania urządzeń różnicowoprądowych
B. pomiaru poboru mocy przez zasilane odbiorniki
C. badania ciągłości przewodów ochronnych
D. pomiaru rezystancji przewodów
Wszystkie pozostałe opcje dotyczące zakresu okresowego sprawdzania instalacji zasilającej są istotne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń. Badanie ciągłości przewodów ochronnych ma kluczowe znaczenie, ponieważ zapewnia, że wszelkie potencjalne różnice w napięciach są skutecznie eliminowane, co zapobiega porażeniom prądem. Rezystancja przewodów, z kolei, jest istotnym parametrem, który wpływa na bezpieczeństwo i stabilność systemu elektrycznego. Jej pomiar w kontekście norm PN-EN 61557 pozwala na ocenę, czy przewody ochronne działają prawidłowo. Próba działania urządzeń różnicowoprądowych również ma ogromne znaczenie w kontekście zapobiegania wypadkom. Te urządzenia, zaprojektowane w celu ochrony przed porażeniem prądem, muszą być regularnie testowane, aby upewnić się, że działają poprawnie w sytuacjach awaryjnych. Konsekwentne pomijanie tych badań może prowadzić do niebezpiecznych sytuacji oraz zagrożeń dla zdrowia użytkowników. Dlatego tak ważne jest, aby zrozumieć, że każdy z tych elementów jest integralną częścią procesu zapewnienia bezpieczeństwa w instalacjach elektrycznych, a nie tylko luksusowym dodatkiem do oceny wydajności energetycznej. Mylne jest myślenie, że pomiar poboru mocy jest kluczowym elementem okresowych sprawdzeń, ponieważ jego celem jest bardziej analiza efektywności niż bezpieczeństwa instalacji.

Pytanie 35

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. drogą radiową
B. skretkami telefonicznymi
C. kablami koncentrycznymi
D. łączami światłowodowymi
Odpowiedzi 'skrótkami telefonicznymi', 'drogą radiową' oraz 'kabli koncentrycznymi' są nieprawidłowe, ponieważ każda z tych technologii nie jest odpowiednia do przesyłania sygnałów na duże odległości w telewizji kablowej. Skrętki telefoniczne, choć stosowane w telekomunikacji, mają ograniczoną przepustowość i są podatne na zakłócenia elektromagnetyczne. W praktyce, ich użycie w transmisji telewizyjnej na dużą skalę wiązałoby się z znacznymi stratami sygnału i nieefektywnością. Z kolei transmisja drogą radiową, mimo że może być użyteczna w niektórych zastosowaniach, wymaga silnych sygnałów i widoczności linii, co utrudnia stabilne przesyłanie sygnału w gęsto zaludnionych obszarach miejskich, gdzie przeszkody terenowe mogą prowadzić do znacznych strat jakości. Kable koncentryczne, chociaż były szeroko stosowane w telewizji kablowej, mają swoje ograniczenia w kontekście wydajności na dużych odległościach. Przesyłają sygnały analogowe lub cyfrowe, ale przy większych odległościach doświadczają znacznych spadków sygnału. Dodatkowo, kable koncentryczne są bardziej podatne na zakłócenia i interferencje w porównaniu z systemami światłowodowymi. Zrozumienie tych różnic jest kluczowe w kontekście wyboru odpowiedniej technologii dla efektywnej transmisji sygnału w nowoczesnych systemach telewizyjnych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Warystor to komponent, który zabezpiecza urządzenia elektroniczne przed skutkami działania

A. wyładowań atmosferycznych.
B. opadów deszczu.
C. niskich temperatur.
D. promieniowania X.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia na temat funkcji warystora i jego zastosowania. Promieniowanie rentgenowskie, niska temperatura oraz opady deszczu nie są związane z zasadą działania warystorów. Promieniowanie rentgenowskie to forma promieniowania elektromagnetycznego, które nie wpływa na integralność elektronicznych układów poprzez przepięcia. Niska temperatura może wpłynąć na działanie niektórych komponentów elektronicznych, ale nie jest bezpośrednim zagrożeniem, które mogłoby być neutralizowane przez warystor. Opady deszczu mogą powodować korozję lub zwarcia w urządzeniach, ale nie są powiązane z przepięciami, dla których warystory zapewniają ochronę. Typowym błędem myślowym jest mylenie skutków z przyczynami: warystory są projektowane wyłącznie do ochrony przed nadmiernym napięciem, a nie do ochrony przed innymi czynnikami zewnętrznymi. Dlatego kluczowe jest zrozumienie, że warystor działa jako element zabezpieczający przed skutkami wyładowań atmosferycznych, a nie przed innymi zagrożeniami. Zrozumienie tych różnic jest kluczowe w projektowaniu systemów zabezpieczeń w urządzeniach elektronicznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.