Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 20 maja 2025 22:58
  • Data zakończenia: 20 maja 2025 23:10

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby połączyć dwie stalowe rury o identycznej średnicy z gwintem zewnętrznym, jakie złącze należy zastosować?

A. złączki nakrętnej, określanej jako mufy.
B. łącznika zaprasowywano-gwintowanego.
C. złączki wkrętnej, znanej jako nypl.
D. łącznika zaprasowywanego.
Złączka nakrętna, czyli mufa, jest idealnym rozwiązaniem do łączenia dwóch stalowych rur o tej samej średnicy, które zakończone są gwintem zewnętrznym. Mufa dysponuje wewnętrznymi gwintami, co pozwala na ich nakręcenie na zewnętrzne gwinty rur. Tego rodzaju połączenie jest niezwykle trwałe i pozwala na uzyskanie szczelności, co jest kluczowe w instalacjach hydraulicznych i grzewczych. W praktyce, mufa jest często stosowana w systemach wodociągowych oraz w instalacjach gazowych, gdzie bezpieczeństwo i szczelność są niezbędne. Dobrą praktyką jest również stosowanie odpowiednich smarów lub uszczelek podczas montażu, aby zminimalizować ryzyko nieszczelności. Warto zaznaczyć, że zgodnie z normami branżowymi, zastosowanie mufy w takich sytuacjach jest powszechnie akceptowane i rekomendowane przez specjalistów w dziedzinie hydrauliki. Dzięki temu połączenie jest nie tylko funkcjonalne, ale również spełnia wysokie standardy bezpieczeństwa.

Pytanie 2

Na podstawie danych zawartych w tabeli określ, jakiego typu palenisko należy zastosować do spalania zrębków o dużej wilgotności.

UwagiTypZakres mocyPaliwaPopiółWilgoć
Dozowanie paliwa manualnePiece2÷10 kWPolana drzewne< 25÷20%
Kotły5÷50 kWPolana, szczapy< 25÷30%
GranulatyPiece i kotły2÷25 kWGranulaty< 28÷10%
Dozowanie paliwa automatycznePaleniska podsuwowe20 kW÷2,5 MWZrębki, odpady drzewne< 25÷50%
Paleniska z rusztem mechanicznym150 kW÷15 MWWszystkie rodzaje biomasy< 5%5÷60%
Przedpalenisko20 kW÷1,5 MWDrewno, trociny< 5%5÷35%
Palenisko obrotowe podsuwowe2÷5 MWZrębki< 5%40÷65%
Palenisko cygarowe3÷5 MWBaloty słomy< 5%20%
Palenisko do spalania całych balotów3÷5 MWBaloty słomy< 5%20%

A. Obrotowe podsuwowe.
B. Podsuwowe.
C. Cygarowe.
D. Z rusztem mechanicznym.
Palenisko obrotowe podsuwowe jest idealnym wyborem do spalania zrębków o dużej wilgotności, ponieważ jego konstrukcja pozwala na efektywne zarządzanie paliwem, które charakteryzuje się wilgotnością w przedziale 40%-65%. Dzięki temu, możliwe jest osiągnięcie optymalnej temperatury spalania oraz minimalizacja emisji szkodliwych substancji. W praktyce, zastosowanie tego typu paleniska zapewnia lepsze spalanie, co prowadzi do uzyskania większej ilości energii z danego paliwa. W branży energetycznej, obrotowe podsuwowe paleniska są szeroko stosowane w instalacjach przemysłowych, gdzie efektywność energetyczna i redukcja emisji są kluczowe. Ponadto, zgodnie z normami europejskimi, odpowiednia wilgotność paliwa jest istotnym czynnikiem wpływającym na sprawność procesów spalania. Dlatego wybór paleniska obrotowego podsuwowego przyczynia się do realizacji standardów dotyczących ochrony środowiska oraz efektywności energetycznej.

Pytanie 3

Do kotła, który spala zrębki, można za jednym razem załadować 0,5 m3 paliwa. W ciągu 24 godzin kocioł powinien być załadowany 3 razy. Jaki będzie tygodniowy koszt paliwa, jeśli jego cena za 1 m3 wynosi 50,00 zł?

A. 525,00 zł
B. 50,00 zł
C. 25,00 zł
D. 150,00 zł
Obliczenie tygodniowego kosztu paliwa jest kluczowe w kontekście zarządzania efektywnością energetyczną kotłów. W przypadku przedstawionego pytania, najpierw obliczamy, ile paliwa kocioł potrzebuje w ciągu jednego dnia. Kiedy załadujemy 0,5 m³ paliwa trzy razy dziennie, otrzymujemy 1,5 m³ dziennie. Aby przeanalizować zużycie w ciągu tygodnia, należy pomnożyć tę wartość przez 7 dni, co daje 10,5 m³. Następnie, aby obliczyć koszt, pomnożono tę ilość przez cenę jednostkową paliwa, wynoszącą 50,00 zł za 1 m³. W ten sposób uzyskujemy tygodniowy koszt paliwa wynoszący 525,00 zł. Takie obliczenia są przydatne nie tylko w kontekście zarządzania kosztami, ale również w procesach planowania budżetu i efektywności energetycznej. W branży energetycznej kluczowe jest monitorowanie zużycia paliwa oraz kosztów, co pozwala na optymalizację procesów grzewczych i podejmowania świadomych decyzji dotyczących inwestycji w efektywne źródła energii.

Pytanie 4

Zanim instalacja kotłowni spalającej biomasę zostanie oddana do użytku, jaki dokument jest niezbędny?

A. protokół odbioru końcowego
B. ocena wpływu inwestycji na środowisko
C. decyzja o wprowadzaniu zanieczyszczeń do powietrza atmosferycznego
D. pozytywna opinia straży miejskiej
Protokół odbioru końcowego jest kluczowym dokumentem w procesie oddawania do eksploatacji instalacji kotłowni spalającej biomasę. Stanowi on formalne potwierdzenie, że instalacja została zbudowana zgodnie z projektem, spełnia wymagania techniczne oraz bezpieczeństwa, a także jest gotowa do użytkowania. W praktyce, protokół ten powinien być sporządzony przez odpowiednie organy nadzoru budowlanego lub inżynierów, którzy przeprowadzają inspekcję instalacji. Protokół powinien zawierać informacje o wykonanych pracach, zastosowanych materiałach oraz zgodności z obowiązującymi normami prawnymi i technicznymi. Przykładowo, zgodnie z normą PN-EN 303-5, która dotyczy kotłów na paliwa stałe, protokół odbioru powinien potwierdzać, że kotłownia spełnia wymogi dotyczące emisji zanieczyszczeń. Dobre praktyki branżowe zalecają również, aby protokół był dokumentowany w formie pisemnej, co ułatwia przyszłe audyty oraz kontrole. Odpowiedni protokół odbioru jest nie tylko wymogiem prawnym, ale również kluczowym elementem dla zapewnienia bezpieczeństwa i efektywności energetycznej kotłowni.

Pytanie 5

Jaki jest maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 r. przy t1 ≥ 16°C?

A. 0,20 W/m2 · K
B. 0,28 W/m2 · K
C. 0,23 W/m2 · K
D. 0,25 W/m2 · K
Nieprawidłowe odpowiedzi na pytanie dotyczące maksymalnego współczynnika przenikania ciepła dla ścian zewnętrznych nowych budynków często wynikają z nieaktualnych informacji lub niezrozumienia zmieniających się przepisów budowlanych. Warto zauważyć, że współczynniki przenikania ciepła, takie jak 0,20 W/m² · K czy 0,25 W/m² · K, są zbyt niskie lub zbyt wysokie w kontekście obowiązujących norm. W przypadku wartości 0,20 W/m² · K, można myśleć, że jest to wymóg stricte energetyczny, jednak takie wartości mogą dotyczyć starszych regulacji, które nie uwzględniają najnowszych standardów. Z kolei wartość 0,25 W/m² · K jest również mylna, ponieważ wprowadza niepotrzebną mylność co do wymagań technicznych. Odpowiedź 0,28 W/m² · K jest całkowicie niezgodna z aktualnymi normami, gdyż taka wartość wskazuje na znacznie gorsze właściwości izolacyjne, co może prowadzić do znacznego wzrostu kosztów ogrzewania i obniżenia komfortu cieplnego mieszkańców. Zrozumienie aktualnych przepisów jest kluczowe dla projektowania budynków, które są nie tylko energooszczędne, ale także komfortowe w użytkowaniu. Wartości współczynnika U są określane na podstawie obliczeń opartych na materiałach budowlanych, a ich poprawne dobranie pozwala na osiągnięcie efektywności energetycznej budynku, co jest niezbędne w kontekście zrównoważonego rozwoju oraz ochrony środowiska.

Pytanie 6

Jaką wartość ma 1 roboczogodzina przy montażu 1 szt. kolektora słonecznego, jeśli koszt robocizny za zamontowanie 10 kolektorów słonecznych wynosi 5 000,00 zł, a ustalona stawka za roboczogodzinę to 25,00 zł?

A. 1000 r-g/szt.
B. 500 r-g/szt.
C. 20 r-g/szt.
D. 100 r-g/szt.
To jest 20 roboczogodzin na montaż jednego kolektora słonecznego. Żeby to obliczyć, musimy na początku ustalić, ile czasu zajmie nam montaż 10 kolektorów. Mamy koszt robocizny na poziomie 5000 zł, a stawka za roboczogodzinę to 25 zł. Jak podzielimy te 5000 zł przez 25 zł za godzinę, dostajemy 200 roboczogodzin. Potem dzielimy te 200 roboczogodzin przez 10 kolektorów, co daje nam 20 roboczogodzin na jeden kolektor. Ważne, żeby zrozumieć, jak to działa, bo w zarządzaniu projektami budowlanymi i tworzeniu kosztorysów precyzyjne obliczenia naprawdę mają znaczenie. Dzięki nim lepiej planujemy zasoby i harmonogramy pracy, co jest naprawdę istotne w tej branży.

Pytanie 7

Naturalną wentylacją nie jest

A. przewietrzanie
B. wentylacja grawitacyjna
C. aeracja
D. wentylacja przeciwpożarowa
W kontekście wentylacji, wiele osób mylnie kojarzy różne systemy z wentylacją naturalną, co prowadzi do nieporozumień. Wentylacja grawitacyjna, często uznawana za formę wentylacji naturalnej, polega na wykorzystaniu różnicy temperatur i ciśnień do wymiany powietrza w budynku. Jest to proces, który działa szczególnie dobrze w klimatach, gdzie występują znaczące wahania temperatury między porami roku. Przewietrzanie, rozumiane jako krótkotrwałe otwieranie okien, również należy do metod naturalnych, ale nie jest to zorganizowany system wentylacji. Aeracja, w kontekście napowietrzania wody, jest procesem zupełnie niezwiązanym z wentylacją powietrza w budynkach. W przypadku wentylacji przeciwpożarowej, warto zauważyć, że jest to system zaprojektowany z myślą o bezpieczeństwie, który korzysta z mechanizmów aktywnych, aby kontrolować i usuwać dym, co odróżnia go od wentylacji naturalnej. Typowym błędem jest mylenie tych dwóch koncepcji, co może prowadzić do nieprawidłowego zaprojektowania systemu wentylacji w budynkach oraz zagrożeń dla bezpieczeństwa użytkowników. Aby uniknąć tych pomyłek, istotne jest zrozumienie różnic między rodzajami wentylacji oraz ich praktycznym zastosowaniem w budownictwie, co jest kluczowe dla zapewnienia zdrowego i bezpiecznego środowiska wewnętrznego.

Pytanie 8

Grupę pompową w systemie solarnym należy zainstalować na rurze

A. zbiornika wzbiorczego
B. powrotnym
C. instalacji podłogowej
D. zasilającym
Montaż grupy pompowej w niewłaściwych miejscach, takich jak przewód zasilający, naczynie wzbiorcze czy instalacja podłogowa, prowadzi do istotnych nieprawidłowości w funkcjonowaniu systemu solarnego. Umiejscowienie pompy na przewodzie zasilającym może powodować, że pompa będzie tłoczyć gorący czynnik grzewczy bezpośrednio do kolektorów, co jest nieefektywne z punktu widzenia termodynamiki. Ponadto, takie umiejscowienie może zwiększyć ryzyko wystąpienia kawitacji, co następuje, gdy ciśnienie spada poniżej ciśnienia parowania i powietrze tworzy pęcherzyki, które mogą uszkodzić pompę oraz inne elementy instalacji. Z kolei montaż grupy pompowej na naczyniu wzbiorczym wiąże się z nieodpowiednim zarządzaniem ciśnieniem w instalacji, co jest kluczowe dla zapewnienia jej bezpieczeństwa i efektywności. Naczynie wzbiorcze pełni rolę kompensacyjną dla zmian objętości cieczy w systemie, a nie miejsca na montaż elementów aktywnych. Instalacje podłogowe mają z kolei swoją specyfikę i wymagają odrębnych rozwiązań hydraulicznych, które są dostosowane do niskotemperaturowego źródła ciepła. Niewłaściwe podejście do montażu grupy pompowej może prowadzić do obniżenia efektywności całego systemu, zwiększenia kosztów eksploatacyjnych oraz skrócenia jego żywotności.

Pytanie 9

Aby uzyskać optymalną wydajność instalacji słonecznej do podgrzewania wody w basenie w trakcie lata, kolektory powinny być ustawione pod kątem względem poziomu

A. 60o
B. 45o
C. 90o
D. 30o
Ustawienie kolektorów słonecznych pod kątem 30 stopni jest optymalne do maksymalizacji efektywności w sezonie letnim, zwłaszcza w krajach o umiarkowanym klimacie. Kąt ten zapewnia, że kolektory są skierowane bardziej bezpośrednio w stronę słońca, co zwiększa ich zdolność do absorbowania promieniowania słonecznego. Pod kątem 30 stopni kolektory są w stanie osiągnąć wyższą wydajność, zwłaszcza gdy słońce jest wysoko na niebie w letnich miesiącach. Praktyczne zastosowanie tego kąta można zobaczyć w wielu nowoczesnych instalacjach, które stosują go jako standard, co potwierdzają badania dotyczące wydajności energetycznej. Warto również zauważyć, że dostosowanie kąta do lokalnych warunków geograficznych oraz pory roku jest kluczowe dla uzyskania maksymalnych korzyści. Zgodnie z normami branżowymi, dobrze zainstalowane systemy solarne powinny być projektowane z myślą o optymalizacji kąta nachylenia, co w efekcie prowadzi do zwiększenia oszczędności energii i redukcji kosztów eksploatacyjnych.

Pytanie 10

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. suwmiarka
B. anemometr
C. dalmierz
D. kątomierz
Suwmiarka to narzędzie pomiarowe, które pozwala na precyzyjne mierzenie zarówno zewnętrznych, jak i wewnętrznych średnic różnych obiektów, takich jak rury, zawory czy kształtki. W praktyce, suwmiarka wykorzystywana jest w wielu branżach, w tym w mechanice, budownictwie oraz inżynierii, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości wykonywanych prac. Suwmiarki mogą być analogowe lub cyfrowe, co umożliwia łatwe odczytywanie wyników. Dobre praktyki zalecają użycie suwmiarek z funkcją zerowania oraz z dokładnością pomiaru wynoszącą co najmniej 0,02 mm, co jest szczególnie istotne w precyzyjnych zastosowaniach. Ponadto, obsługa suwmiarek jest dosyć intuicyjna, co czyni je narzędziem dostępnym dla szerokiego kręgu użytkowników, nawet tych początkujących w dziedzinie pomiarów. Dlatego suwmierz jest uważany za niezbędne narzędzie w każdym warsztacie czy laboratorium, gdzie wymagane są dokładne pomiary liniowe.

Pytanie 11

W trakcie konserwacji instalacji centralnego ogrzewania do czynnika grzewczego wprowadza się inhibitory w celu

A. oczyszczenia czynnika grzewczego z zanieczyszczeń
B. poprawy przewodności cieplnej czynnika grzewczego
C. pozbycia się kamienia kotłowego z systemu
D. zmniejszenia korozji instalacji
Inhibitory korozji są substancjami chemicznymi dodawanymi do czynnika grzewczego w instalacjach centralnego ogrzewania w celu ograniczenia korozji elementów metalowych systemu. Korozja jest naturalnym procesem, który może prowadzić do intensywnego zużycia sprzętu, a w skrajnych przypadkach - do jego awarii. Inhibitory działają na zasadzie tworzenia ochronnej warstwy na powierzchni metalu, co zmniejsza kontakt z agresywnymi substancjami chemicznymi w wodzie. Przykłady zastosowania to dodawanie inhibitorów takich jak azotany czy fosforany, które są zgodne z normami takimi jak PN-EN 14731, które dotyczą jakości wody w instalacjach grzewczych. Działanie inhibitorów jest kluczowe dla wydłużenia żywotności instalacji, co przekłada się na mniejsze koszty konserwacji oraz zwiększoną efektywność energetyczną systemu.

Pytanie 12

Wybór lokalizacji dla elektrowni wiatrowej wymaga analizy miejscowego planu zagospodarowania przestrzennego, który można znaleźć w

A. Urzędzie Marszałkowskim
B. Urzędzie Wojewódzkim
C. Starostwie Powiatowym
D. Urzędzie Miasta (lub Gminy)
Lokalizacja elektrowni wiatrowej wymaga dokładnej analizy miejscowego planu zagospodarowania przestrzennego, który jest kluczowym dokumentem określającym przeznaczenie terenów w danej gminie. Miejscowy plan zagospodarowania przestrzennego, znajdujący się w Urzędzie Miasta (lub Gminy), jest podstawowym źródłem informacji o dopuszczalnych formach wykorzystania terenu, w tym inwestycji związanych z energetyką odnawialną, taką jak elektrownie wiatrowe. Przykładem zastosowania tej wiedzy jest sytuacja, w której inwestor planuje budowę elektrowni wiatrowej i musi upewnić się, że teren, na którym ma być zrealizowana inwestycja, jest zgodny z zapisami w planie. W praktyce, przed podjęciem decyzji o inwestycji, inwestorzy często zasięgają informacji w Urzędzie Miasta, aby ocenić, czy projekt jest zgodny z planem i jakie są ewentualne ograniczenia, takie jak strefy ochronne, odległości od zabudowy czy inne regulacje lokalne. Zgodnie z dobrymi praktykami branżowymi, analiza taka jest niezbędna dla zminimalizowania ryzyk związanych z niewłaściwą lokalizacją inwestycji, co może prowadzić do poważnych problemów prawnych oraz finansowych.

Pytanie 13

Zestaw paneli słonecznych składa się z panelu fotowoltaicznego, regulatora ładowania oraz dwóch akumulatorów połączonych równolegle, każdy o napięciu 12 V. Jakie urządzenie należy zastosować, aby dostosować ten zestaw do zasilania odbiornika prądu zmiennego 230V/50Hz?

A. Inwerter 12V DC / 230V AC
B. Inwerter 24V DC / 230V AC
C. Prostownik dwupołówkowy 230V
D. Prostownik jednopołówkowy 230V
Inwerter 12V DC / 230V AC jest odpowiednim urządzeniem do zasilania odbiornika prądu zmiennego z zestawu fotowoltaicznego, który operuje na napięciu stałym 12 V. W zestawie znajduje się panel fotowoltaiczny, regulator ładowania oraz dwa akumulatory połączone równolegle, co oznacza, że cała instalacja pracuje na napięciu 12 V. Inwerter konwertuje napięcie stałe (DC) z akumulatorów na napięcie zmienne (AC) o standardowej wartości 230 V, co pozwala na zasilanie typowych domowych urządzeń elektrycznych. Przykłady zastosowania obejmują zasilanie sprzętu AGD, oświetlenia czy urządzeń elektronicznych w miejscach, gdzie dostęp do sieci energetycznej jest ograniczony lub niemożliwy. Zastosowanie inwertera 12 V DC / 230 V AC jest zgodne z normami i dobrymi praktykami branżowymi, gdzie dobór odpowiedniego inwertera jest kluczowy dla efektywności oraz bezpieczeństwa całej instalacji elektrycznej. Warto również przyjrzeć się parametrom technicznym inwertera, takim jak moc wyjściowa oraz wydajność, aby zapewnić, że spełni on wymagania zasilania wszystkich podłączonych urządzeń.

Pytanie 14

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. a-Si
B. Monokrystaliczne
C. Polikrystaliczne
D. CdTe
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 15

Jaką obudowę o oznaczeniu stopnia ochrony należy zastosować w przypadku urządzenia elektrycznego działającego w zapylonym środowisku?

A. IP 2X
B. IP 46
C. IP 65
D. IP 45
Użytkownicy często mylą znaczenie stopni ochrony klasyfikowanych wg IP, co może prowadzić do wyboru niewłaściwej obudowy dla urządzeń elektrycznych w zapylonym środowisku. Odpowiedzi takie jak IP 46, IP 45 oraz IP 2X, choć mogą wydawać się odpowiednie, nie spełniają rzeczywistych wymagań ochronnych w takich warunkach. Obudowa IP 46 zapewnia ochronę przed pyłem, ale nie gwarantuje całkowitej szczelności, co oznacza, że drobne cząsteczki mogą nadal wnikać do wnętrza urządzenia. Podobnie, IP 45 oferuje jedynie ograniczoną ochronę przed pyłem i cieczą, co sprawia, że nie jest wystarczająca w trudnym, zapylonym otoczeniu. IP 2X z kolei odnosi się do ochrony przed dostępem do części niebezpiecznych, ale nie odnosi się do ochrony przed pyłem ani cieczą, co czyni ją nieodpowiednią dla takich zastosowań. Wybór niewłaściwego stopnia ochrony może prowadzić do poważnych uszkodzeń urządzeń, a także zwiększać ryzyko awarii i przestojów produkcyjnych. Dlatego kluczowe jest, aby przy wyborze obudowy kierować się nie tylko oznaczeniem IP, ale również zrozumieniem specyficznych potrzeb środowiskowych danego zastosowania, co powinno być podparte odpowiednimi normami, takimi jak IEC 60529.

Pytanie 16

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 720,00 zł
B. 560,00 zł
C. 960,00 zł
D. 90,00 zł
Kosztorysowa wartość robocizny wynosi 720,00 zł, co wynika z obliczenia całkowitych kosztów pracy instalatora i pomocników przy montażu kolektorów słonecznych. Instalator, którego stawka wynosi 50,00 zł za roboczogodzinę, pracował przez 8 godzin, co daje 400,00 zł (50,00 zł x 8 h). Dodatkowo, dwóch pomocników, zarabiających po 20,00 zł za roboczogodzinę, pracowało również przez 8 godzin. Każdy pomocnik zarobił 160,00 zł (20,00 zł x 8 h), więc dla dwóch pomocników łączny koszt wynosi 320,00 zł (160,00 zł x 2). Suma kosztów wynosi zatem 400,00 zł (instalator) + 320,00 zł (pomocnicy) = 720,00 zł. Taki sposób obliczania kosztów robocizny jest standardem w branży budowlanej i instalacyjnej, gdzie ważne jest uwzględnienie różnorodnych stawek wynagrodzenia oraz czasu pracy wszystkich zaangażowanych pracowników.

Pytanie 17

Która z poniższych turbin wodnych znajduje zastosowanie przy spadzie wody przekraczającym 500 m?

A. Francisa
B. Peltona
C. Deriaza
D. Kaplana
Turbina Peltona jest właściwym wyborem w przypadku elektrowni wodnych, gdzie spad wody przekracza 500 m. Jej konstrukcja, która wykorzystuje energię kinetyczną wody poprzez dysze kierujące strumień wody na łopatki turbiny, sprawia, że jest ona niezwykle efektywna w takich warunkach. Przykładem zastosowania turbiny Peltona są elektrownie górskie, które wykorzystują duży spad wody, co pozwala na produkcję znacznych ilości energii elektrycznej. W praktyce, turbina Peltona jest często wybierana w projektach, gdzie transport wody z dużych wysokości do turbin jest kluczowy, umożliwiając osiągnięcie wysokiej sprawności konwersji energii. Warto także zauważyć, że turbiny Peltona są zgodne z najlepszymi praktykami w projektowaniu hydroelektrowni, które podkreślają znaczenie dopasowania rodzaju turbiny do warunków hydroenergetycznych, co w efekcie przyczynia się do optymalizacji wydajności energetycznej.

Pytanie 18

Aby zapewnić długotrwałe i bezpieczne używanie zasobnika c.w.u. z ceramiczną emalią, ważne jest regularne

A. wymiana grzałki elektrycznej
B. wymiana anody magnezowej
C. konserwacja powłoki ceramicznej
D. kontrola chlorowania wody użytkowej
Wymiana anody magnezowej jest kluczowym działaniem, które zapewnia długotrwałą ochronę zasobnika c.w.u. pokrytego emalią ceramiczną. Anoda magnezowa działa na zasadzie katodowej ochrony, co oznacza, że jest bardziej podatna na korozję niż metalowy materiał zasobnika. W wyniku tego procesu anoda, będąca mniej szlachetnym metalem, ulega stopniowemu zużyciu, chroniąc w ten sposób powłokę ceramiczną przed uszkodzeniami. Zgodnie z dobrą praktyką, zaleca się przeprowadzanie kontroli anody co 1-2 lata, a jej wymiana powinna nastąpić w momencie, gdy jest już znacznie zredukowana. Przykładem zastosowania tej praktyki może być użytkowanie zasobników w obszarach o wysokiej twardości wody, gdzie korozja jest bardziej intensywna. Przestrzeganie tego zalecenia pozwala znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest zgodne z zaleceniami producentów oraz normami branżowymi.

Pytanie 19

W dokumentacji dotyczącej montażu zasobnika c.w.u. wskazano, że należy go zainstalować w sposób, który pozwala na jego odłączenie. Zasobnik wyposażony jest w króćce z gwintem wewnętrznym. Do realizacji takiego połączenia trzeba zastosować

A. śrubunek
B. nypla
C. złączkę prostą z gwintem zewnętrznym
D. złączkę prostą z gwintem wewnętrznym
Wybór śrubunku jako odpowiedzi jest poprawny, ponieważ jest to element, który umożliwia połączenie dwóch rur w sposób, który jednocześnie pozwala na ich rozłączenie i ponowne podłączenie. Śrubunek składa się z dwóch części: nakrętki i złączki, które mogą być łatwo odkręcone, co ułatwia konserwację i naprawy instalacji. Dodatkowo, śrubunki są powszechnie stosowane w instalacjach wodociągowych oraz grzewczych, gdzie wymagane jest elastyczne podejście do montażu i demontażu. W praktyce, zastosowanie śrubunków pozwala na łatwą wymianę zasobników c.w.u. w przypadku ich awarii lub modernizacji systemu. Warto również zaznaczyć, że stosowanie odpowiednich materiałów i standardów (np. PN-EN 10088-1) przy produkcji śrubunków zapewnia ich trwałość i niezawodność, co przekłada się na bezpieczeństwo eksploatacji instalacji.

Pytanie 20

W którym kosztorysie realizacji budowy elektrowni wiatrowej zawarte są przewidywane wydatki na materiały, wyposażenie oraz prace, a także narzuty?

A. Dodatkowym
B. Ślepym
C. Inwestorskim
D. Powykonawczym
Kosztorys inwestorski to mega ważny dokument w budowlance. Określa, ile wszystko będzie kosztować, zarówno materiały, jak i robocizna czy sprzęt. Dzięki niemu inwestor ma jasny obraz wydatków związanych z projektem, co jest super istotne, żeby dobrze zarządzać budżetem. Przed rozpoczęciem budowy, na etapie planowania, ten kosztorys jest sporządzany i stanowi bazę do dalszych działań. Na przykład, przy budowie elektrowni wiatrowej, taki kosztorys mógłby zawierać analizy wydatków na turbiny, instalację elektryczną i prace montażowe. Warto też pamiętać, że ceny materiałów mogą różnić się w czasie, dlatego dobrze jest to uwzględniać w kosztorysie. Z mojego doświadczenia, umiejętność tworzenia takich dokumentów jest kluczowa, bo może uratować projekt przed nieprzyjemnymi niespodziankami.

Pytanie 21

Co oznacza przewód o symbolu YDY 2×1,5?

A. okrągły o średnicy żyły 3,0 mm², każda żyła miedziana w formie drutu jednożyłowego
B. płaski trójżyłowy o średnicy żyły 1,0 mm², gdzie każda żyła jest miedziana i ma formę drutu jednożyłowego
C. okrągły dwużyłowy o średnicy żyły 1,5 mm², przy czym każda żyła jest miedziana i ma postać drutu jednożyłowego
D. o średnicy żyły 1,5 mm² w postaci linek złożonych z wielu cienkich drucików miedzianych
Odpowiedź "okrągły dwużyłowy o przekroju żyły 1,5 mm², każda żyła miedziana w postaci drutu jednożyłowego" jest poprawna, ponieważ oznaczenie "YDY 2×1,5" dokładnie opisuje specyfikę przewodu. W tym przypadku, litera "Y" informuje o rodzaju izolacji, która jest wykonana z PVC, co jest powszechnie stosowane w przewodach elektrycznych ze względu na swoje właściwości dielektryczne oraz odporność na działanie różnych czynników atmosferycznych. Element "D" w oznaczeniu wskazuje na przewód dwużyłowy, co oznacza, że zawiera dwie żyły, co jest standardowym rozwiązaniem w instalacjach elektrycznych jedno- i trójfazowych. Przekrój "1,5 mm²" oznacza, że każda żyła ma przekrój 1,5 mm², co jest powszechnie stosowane w instalacjach o średnim obciążeniu, takich jak oświetlenie czy gniazda elektryczne. Użycie drutu jednożyłowego zamiast linki ma swoje uzasadnienie w łatwości instalacji i wygodzie w wielu zastosowaniach. W praktyce przewody YDY 2×1,5 są szeroko stosowane w budownictwie, co czyni je kluczowym elementem w projektowaniu instalacji elektrycznych według norm PN-IEC 60364.

Pytanie 22

Do kotła na biogaz nie można zainstalować centralnego ogrzewania z rur

A. z twardej miedzi.
B. z czarnej stali przewodowej.
C. z ocynkowanej stali.
D. z czarnej stali ze szwem.
Wybór stalowych rur czarnych ze szwem, rur z miedzi twardej oraz stalowych czarnych przewodowych do instalacji centralnego ogrzewania w systemach z kotłami na biogaz niesie ze sobą szereg zagrożeń, które mogą znacząco wpłynąć na żywotność systemu i bezpieczeństwo jego użytkowania. Rury stalowe czarne ze szwem, choć powszechnie stosowane w różnych systemach, nie są odpowiednie w kontekście biogazu z uwagi na ich podatność na korozję oraz utlenianie. Biogaz, jako medium, zawiera różne substancje, które mogą przyspieszać procesy degradacyjne materiałów, co skutkuje powstawaniem uszkodzeń strukturalnych i przecieków. Rury z miedzi twardej, mimo że są odporne na korozję, mogą ulegać reakcji z kwasami organicznymi obecnymi w biogazie, co prowadzi do ich osłabienia i ewentualnych awarii. Z kolei stalowe rury czarne przewodowe, które nie są ocynkowane, również nie są zalecane w aplikacjach z biogazem z uwagi na ich niską odporność na korozję. Wybór niewłaściwych materiałów może powodować nie tylko problemy techniczne, ale także zwiększone koszty eksploatacyjne, związane z koniecznością częstszych przeglądów i napraw. Przede wszystkim, przy projektowaniu instalacji centralnego ogrzewania, należy kierować się wytycznymi dostarczanymi przez normy branżowe oraz aktualnymi badaniami dotyczącymi właściwości materiałów w kontakcie z biogazem. Zrozumienie tych zagadnień jest kluczowe dla zapewnienia długotrwałej i bezpiecznej eksploatacji systemów grzewczych.

Pytanie 23

Na jakiej głębokości układa się rury gruntowego wymiennika ciepła w instalacji pompy cieplnej?

A. 1,0-1,6 m
B. 1,6-2,2 m
C. 0,6-1,2 m
D. 2,2-2,8 m
Rury gruntowego wymiennika ciepła w instalacjach pomp ciepła układa się zazwyczaj na głębokości od 1,0 do 1,6 m. Taki zakres głębokości jest preferowany, ponieważ zapewnia optymalne warunki do wymiany ciepła pomiędzy gruntem a płynem roboczym w systemie. Grunt na tej głębokości ma stabilną temperaturę, co jest kluczowe dla efektywności działania pompy ciepła. W praktyce, głębokość układania rur wpływa na wydajność systemu, zwłaszcza w kontekście lokalnych warunków geotermalnych oraz właściwości gruntu. Zbyt płytkie ułożenie rur może prowadzić do nieefektywnej wymiany ciepła, szczególnie w okresach dużego zapotrzebowania na energię grzewczą. Z kolei zbyt głębokie ułożenie może wiązać się z większymi kosztami inwestycyjnymi oraz trudnościami w instalacji. Warto zaznaczyć, że normy budowlane oraz najlepsze praktyki branżowe sugerują uwzględnienie lokalnych warunków geologicznych i klimatycznych przy projektowaniu systemów gruntowych wymienników ciepła.

Pytanie 24

Jakie narzędzie powinno być zastosowane do eliminacji zadziorów powstających po przecięciu rury polietylenowej o średnicy 40 mm?

A. Frezu
B. Gratownika
C. Tarnika
D. Nażynki
Gratownik jest narzędziem zaprojektowanym specjalnie do usuwania zadziorów oraz nierówności na krawędziach materiałów, w tym rur z polietylenu. Jego zastosowanie jest kluczowe w procesie obróbki rur, ponieważ zadzior to ostry, wystający fragment materiału, który może prowadzić do uszkodzeń podczas dalszej instalacji lub eksploatacji. W praktyce, gratownik umożliwia uzyskanie gładkiej krawędzi, co jest istotne z punktu widzenia bezpieczeństwa i funkcjonalności systemów rurociągowych. Zgodnie z normami branżowymi, takim jak PN-EN 1555, zaleca się stosowanie gratowników po każdej operacji cięcia, aby zminimalizować ryzyko przecieków i awarii. Dobre praktyki wskazują, że prawidłowe użycie gratownika poprawia nie tylko estetykę wykonania, ale również wydłuża żywotność instalacji. Warto również zaznaczyć, że gratowanie powinno być częścią standardowego procesu przygotowania przed montażem rur, co pozwala na uniknięcie potencjalnych problemów w przyszłości.

Pytanie 25

Jakie jest minimalne pole przekroju przewodu ochronnego PE w instalacji odbiorczej budynku, jeśli przewody fazowe mają przekrój do 16 mm2?

A. Jest równy połowie przekroju przewodu fazowego
B. 4 mm2
C. Jest równy przekrojowi przewodu fazowego
D. 8 mm2
Przewód ochronny PE (ochronny) w instalacjach elektrycznych pełni kluczową rolę, zapewniając bezpieczeństwo użytkowników oraz minimalizując ryzyko uszkodzeń urządzeń elektrycznych. Zgodnie z obowiązującymi normami, minimalny przekrój przewodu ochronnego powinien być równy przekrojowi przewodu fazowego, gdy przekrój tego ostatniego nie przekracza 16 mm2. Umożliwia to skuteczną ochronę przed awariami i porażeniem prądem. Takie podejście jest zgodne z przepisami zawartymi w normie PN-IEC 60364, która określa zasady dotyczące instalacji elektrycznych w budynkach. Praktycznym przykładem może być instalacja w budynkach mieszkalnych, gdzie przewody fazowe mają przekrój do 16 mm2, co oznacza, że przewód PE również powinien posiadać taki sam przekrój, aby zapewnić odpowiednie zabezpieczenie w przypadku zwarcia. Taki dobór przekroju przewodu ochronnego pozwala na efektywne odprowadzenie ewentualnych prądów zwarciowych do ziemi, co jest niezwykle istotne dla bezpieczeństwa użytkowników.

Pytanie 26

Kosztorys, który nie zawiera danych o cenach, nazywamy kosztorysem

A. ślepym.
B. powykonawczym.
C. wstępnym.
D. ofertowym.
Kosztorys ślepy to specyficzny rodzaj dokumentu, który nie zawiera szczegółowych informacji o cenach poszczególnych elementów, a jedynie wskazuje na zakres prac oraz ich ilość. Taki kosztorys jest często stosowany na etapie planowania projektów budowlanych, ponieważ pozwala inwestorom i wykonawcom zrozumieć, jakie prace są przewidziane, bez konieczności podawania konkretnych kwot. W praktyce, kosztorys ślepy może być użyty do oceny wykonalności projektu lub do uzyskania wstępnych ofert od potencjalnych wykonawców, które następnie można porównać. W kontekście standardów, taki kosztorys może być zgodny z normami branżowymi, które określają jak powinny być opracowywane dokumenty kosztorysowe, zapewniając przejrzystość i rzetelność informacji, co jest kluczowe w procesach inwestycyjnych.

Pytanie 27

Kluczową wartością niezbędną do przygotowania przedmiaru robót instalacji solarnej jest średnie zapotrzebowanie na wodę użytkową w trakcie

A. roku
B. doby
C. miesiąca
D. tygodnia
Średnie zapotrzebowanie na wodę użytkową w ciągu doby jest kluczową wielkością przy projektowaniu instalacji solarnych, ponieważ pozwala na określenie wymagań dotyczących pojemności zbiorników oraz mocy systemu kolektorów słonecznych. Ustalając średnią dobową konsumpcję, inżynierowie mogą precyzyjnie oszacować, ile energii będzie potrzebne do podgrzania wody, co przekłada się na efektywność systemu. Przykładowo, rodzina czteroosobowa może zużywać około 200 litrów wody na dobę. Taki parametr pozwala na dobór odpowiedniej wielkości kolektora słonecznego, który zaspokoi te potrzeby. W standardach projektowania instalacji solarnych, takich jak PN-EN 12976, podkreślana jest konieczność analizy dobowego zapotrzebowania, co wpływa na optymalizację kosztów oraz wydajności systemu. Praktycznie, dobranie odpowiednich parametrów do obliczeń może znacząco zmniejszyć koszty eksploatacyjne oraz zwiększyć komfort użytkowników, co jest niezwykle istotne w kontekście inwestycji w odnawialne źródła energii.

Pytanie 28

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. AC/DC
B. DC/AC
C. DC/DC
D. AC/AC
Odpowiedź DC/AC jest poprawna, ponieważ przetwornice DC/AC, znane również jako inwertery, są urządzeniami elektronicznymi, które konwertują napięcie stałe (DC) na napięcie zmienne (AC). Takie przetwornice są kluczowe w systemach, gdzie napięcie stałe, na przykład z baterii, musi być przekształcone do formy zmiennej do zasilania urządzeń elektrycznych, które wymagają AC. Przykładem zastosowania inwerterów są systemy fotowoltaiczne, gdzie energia słoneczna, przetwarzana na energię elektryczną w postaci DC, jest następnie konwertowana na AC, aby mogła być używana w domowych instalacjach elektrycznych lub wprowadzana do sieci energetycznej. Dobre praktyki w projektowaniu systemów z inwerterami obejmują wybór odpowiednich komponentów, takich jak tranzystory i układy scalone, które zapewniają wysoką sprawność konwersji oraz minimalizację zakłóceń w sieci elektrycznej. Zrozumienie zasady działania przetwornic DC/AC jest istotne dla inżynierów zajmujących się energią odnawialną oraz automatyzacją przemysłową.

Pytanie 29

Jakie urządzenie stosuje się do pomiaru ciśnienia atmosferycznego oraz podciśnienia?

A. manowakuometr
B. anemometr
C. mikrometr
D. wakuometr
Manowakuometr jest urządzeniem wykorzystywanym do pomiaru ciśnienia w systemach, gdzie konieczne jest monitorowanie zarówno nadciśnienia, jak i podciśnienia. Działa na zasadzie pomiaru różnicy ciśnień, co pozwala na dokładne określenie stanu medium w różnych aplikacjach inżynieryjnych. Przykłady zastosowania manowakuometru obejmują przemysł chemiczny, gdzie monitorowanie ciśnienia jest kluczowe dla bezpieczeństwa procesów, oraz w systemach HVAC do kontrolowania ciśnienia w kanałach wentylacyjnych. Zgodnie z normami ISO 5167, pomiary ciśnienia muszą być wykonywane z użyciem odpowiednich przyrządów, aby zapewnić ich dokładność i wiarygodność. Manowakuometry są często kalibrowane zgodnie z odpowiednimi standardami, co pozwala na uzyskanie wyników o wysokiej precyzji, co jest niezbędne w zastosowaniach wymagających ścisłych tolerancji.

Pytanie 30

Dolnym źródłem zasilającym pompę ciepła nie może być

A. grunt.
B. woda.
C. słońce.
D. powietrze.
Pompy ciepła to ciekawe urządzenia, które potrafią wykorzystywać różne źródła ciepła do ogrzewania lub chłodzenia budynków. Możemy tu mówić o gruncie, wodzie czy powietrzu jako dolnych źródłach. Słońce to na pewno energia, ale nie da się powiedzieć, że jest bezpośrednim źródłem ciepła dla pomp ciepła. Jak to działa? Generalnie, pompy ciepła transferują ciepło z jednego medium do drugiego, a w przypadku energii słonecznej, najpierw musi być zgromadzone w innym medium, jak na przykład powietrze. To właśnie to powietrze może być potem użyte przez pompę. Więc chociaż słońce ma wpływ na temperaturę powietrza i wody, to jednak sama energia solarna nie jest wykorzystywana przez te pompy. Dlatego mówi się, że odpowiedź "słońce" jest jednak niepoprawna, bo nie spełnia kryteriów dolnego źródła zgodnie z tym, jak to jest przyjęte w inżynierii.

Pytanie 31

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 32,40 m³
B. 21,60 m³
C. 6,00 m³
D. 10,80 m³
Stacja napełniająca o wydajności 3 dm³/s oznacza, że jest w stanie napełnić 3 decymetry sześcienne w każdą sekundę. Przez dwie godziny, co równa się 7200 sekund, całkowita objętość napełniona wynosi 3 dm³/s × 7200 s = 21600 dm³, co po przeliczeniu na metry sześcienne daje 21,6 m³. Zrozumienie przeliczeń jednostek objętości jest kluczowe w inżynierii i zarządzaniu projektami, gdzie precyzyjne obliczenia są niezbędne do efektywnego planowania. W praktyce, obliczenie przepływu cieczy i wydajności urządzeń jest stosowane w systemach hydraulicznych, instalacjach wodociągowych oraz wielu innych branżach, gdzie zarządzanie zasobami wodnymi jest priorytetem. Dobre praktyki inżynieryjne zalecają regularne monitorowanie wydajności systemów napełniających, aby zapewnić ich optymalną efektywność oraz zminimalizować straty. Warto również znać normy dotyczące zużycia wody i energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 32

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 9 barów
B. 2 bary
C. 1 bar
D. 6 barów
Nastawa zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła powinna wynosić 6 barów, co odpowiada standardom dla tego typu systemów. Pompy ciepła są projektowane do pracy w określonym zakresie ciśnienia, a 6 barów stanowi odpowiednią wartość zabezpieczającą przed nadmiernym wzrostem ciśnienia, co może prowadzić do uszkodzenia instalacji. W praktyce, zawór bezpieczeństwa powinien otworzyć się, gdy ciśnienie wewnętrzne przekroczy ustaloną wartość, a 6 barów jest powszechnie przyjętą normą dla większości systemów grzewczych. Przykład zastosowania to instalacje ogrzewania podłogowego, gdzie nadmiar ciśnienia może zniszczyć rury. Wybór odpowiedniej nastawy zaworu bezpieczeństwa jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności systemu. Zgodnie z normami PN-EN 12828 oraz PN-EN 12831, należy regularnie kontrolować i konserwować te urządzenia, aby zapewnić ich prawidłowe działanie, co przekłada się na efektywność energetyczną oraz długowieczność instalacji grzewczej.

Pytanie 33

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Z przykryciem ze szkła antyrefleksyjnego.
B. Z selektywną powłoką absorbera.
C. Próżniowe o bezpośrednim przepływie przez absorber.
D. Płaskie.
Próżniowe kolektory słoneczne o bezpośrednim przepływie przez absorber są najbardziej efektywne w montażu w pozycji pionowej, ze względu na swoją konstrukcję, która minimalizuje straty ciepła. Próżniowe kolektory składają się z dwóch warstw szklanych, tworzących próżnię, co ogranicza przewodnictwo cieplne i konwekcję. Przy pionowym montażu, te urządzenia mogą efektywnie zbierać energię słoneczną nawet przy niskim kącie padania promieni słonecznych, co jest kluczowe w okresach zimowych lub w regionach o ograniczonej ilości słońca. Dzięki bezpośredniemu przepływowi przez absorber, woda lub inny czynnik roboczy szybko nagrzewają się, co zwiększa efektywność systemu. Przykładem zastosowania mogą być budynki, gdzie przestrzeń na dachach jest ograniczona, a pionowy montaż pozwala na maksymalne wykorzystanie dostępnej powierzchni. Dobre praktyki branżowe wskazują, że instalacja takich kolektorów powinna uwzględniać lokalne warunki atmosferyczne oraz kąt nachylenia, aby zoptymalizować ich wydajność.

Pytanie 34

Informacje o projekcie instalacji solarnej, których nie można zobrazować w formie rysunków, znajdują się w

A. certyfikacie technicznym
B. kosztorysie
C. opisie technicznym
D. założeniach techniczno-ekonomicznych
Opis techniczny projektu instalacji solarnej jest dokumentem, który zawiera szczegółowe informacje na temat technologii, zastosowanych materiałów, parametrów systemu oraz zasad działania. W odróżnieniu od innych dokumentów, takich jak kosztorys czy certyfikat techniczny, opis techniczny kładzie nacisk na aspekty funkcjonalne i konstrukcyjne, które nie mogą być w pełni przedstawione w formie rysunków. Na przykład, opis techniczny może zawierać szczegółowe informacje dotyczące efektywności paneli słonecznych, ich wymagań dotyczących instalacji oraz interakcji z innymi systemami energetycznymi. Kluczowe jest, aby dokument ten był zgodny z normami branżowymi (np. PN-EN 61215 dotycząca wydajności modułów fotowoltaicznych) oraz zapewniał przejrzystość dla wszystkich interesariuszy projektu, w tym inwestorów i wykonawców. Dzięki temu, zrozumienie technicznych aspektów instalacji pozwala na optymalizację jej działania oraz efektywności energetycznej.

Pytanie 35

Wskaż, w oparciu o przedstawiony fragment instrukcji, na jakiej minimum głębokości poniżej lokalnej granicy przemarzania gruntu, należy montować kolektory gruntowe.

W przypadku gruntów o niskim stopniu wilgotności (grunt suchy, piaszczysty) układy spiralne mogą powodować znaczne wychłodzenie gruntu i zamarzanie parownika w pompie ciepła, wobec czego zdecydowanie bardziej bezpieczne jest stosowanie układów płaskich lub kolektorów pionowych. Kolektory poziome, w postaci pętli rur o jednakowej długości, układa się w odległości minimum 0,5÷1,0 m od siebie, na głębokości 30÷40 cm poniżej granicy przemarzania gruntu, co w Polsce stanowi w zależności od rejonu 0,8÷1,4 m.

A. 20 cm
B. 50 cm
C. 10 cm
D. 30 cm
Poprawna odpowiedź to 30 cm, co wynika z zaleceń zawartych w instrukcji dotyczącej montażu kolektorów gruntowych. Kolektory te powinny być umieszczone na głębokości od 30 do 40 cm poniżej lokalnej granicy przemarzania gruntu, aby zapewnić ich prawidłowe funkcjonowanie. W Polsce granica ta wynosi od 0,8 do 1,4 m, co oznacza, że minimalna głębokość montażu kolektorów powinna wynosić 30 cm poniżej tej granicy, co zapewnia odpowiednią ochronę przed wpływem mrozu. W praktyce oznacza to, że montując kolektory, należy zwrócić uwagę na lokalne warunki geologiczne i klimatyczne, aby dostosować głębokość ich ułożenia do specyfikacji technicznych. Przykład zastosowania to instalacje systemów ogrzewania geotermalnego, gdzie odpowiednia głębokość montażu kolektorów jest kluczowa dla efektywności energetycznej budynku. Zgodnie z najlepszymi praktykami, warto również zwrócić uwagę na rozmieszczenie kolektorów, które powinno wynosić od 0,5 do 1,0 m między poszczególnymi pętlami, aby zapewnić optymalne warunki pracy systemu.

Pytanie 36

Kiedy odbywa się odbiór instalacji solarnej?

A. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
B. przed pierwszym uruchomieniem systemu.
C. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
D. po pierwszym uruchomieniu systemu.
Odbiór instalacji solarnej po pierwszym uruchomieniu jest kluczowym etapem w zapewnieniu, że system działa zgodnie z wymaganiami projektowymi oraz spełnia normy bezpieczeństwa. Po pierwszym uruchomieniu można ocenić, jak instalacja reaguje na różne warunki operacyjne, takie jak wydajność paneli słonecznych, efektywność wymiany ciepła oraz ogólne zachowanie systemu. Warto zwrócić uwagę na monitorowanie parametrów, takich jak ciśnienie i temperatura, które powinny mieścić się w przyjętych normach. Przykładem zastosowania tego procesu może być sprawdzenie, czy pompa obiegowa działa z odpowiednią mocą, co ma kluczowe znaczenie dla efektywności całej instalacji. Praktyki te są zgodne z wytycznymi branżowymi, takimi jak normy ISO oraz lokalne regulacje dotyczące odnawialnych źródeł energii, które podkreślają znaczenie starannego odbioru technicznego w celu zapewnienia długotrwałej i niezawodnej pracy systemu.

Pytanie 37

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 24 m3
B. 36 m3
C. 48 m3
D. 15 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 38

Podczas rocznego przeglądu zaleca się przeprowadzanie inspekcji stanu płynu solarnego. Który z parametrów płynu solarnego nie podlega ocenie?

A. Ilość
B. Barwa
C. Zapach
D. Gęstość
Zapach płynu solarnego nie jest standardowym parametrem, który podlega ocenie podczas corocznego przeglądu. Kluczowe aspekty, które są monitorowane, to barwa, gęstość oraz ilość płynu, ponieważ mają one bezpośredni wpływ na wydajność systemu solarnego. Barwa płynu może wskazywać na jego czystość, natomiast gęstość jest istotna dla oceny jego właściwości termicznych. Ilość płynu jest również kluczowa, ponieważ niewłaściwy poziom może prowadzić do nieprawidłowego działania systemu. Regularne sprawdzanie tych parametrów jest zgodne z praktykami branżowymi, które zalecają również wymianę płynu co kilka lat, w zależności od jego jakości. Wiedza na temat tych parametrów pozwala na bieżąco monitorować stan systemu solarnego, co przyczynia się do jego dłuższej żywotności i efektywności energetycznej.

Pytanie 39

W celu przygotowania materiałowego zestawienia do montażu instalacji solarnej, tworzy się

A. obmiar robót
B. przedmiar robót
C. zapytanie ofertowe
D. harmonogram wykonywanych prac
Odpowiedź "przedmiar robót" jest prawidłowa, ponieważ przedmiar robót to dokument, który szczegółowo określa rodzaje i ilości materiałów, które będą potrzebne do realizacji projektu, w tym montażu instalacji solarnej. W kontekście instalacji solarnej, przedmiar robót powinien zawierać elementy takie jak panele słoneczne, inwertery, okablowanie oraz inne komponenty niezbędne do prawidłowego działania systemu. Sporządzenie przedmiaru robót jest kluczowe dla dokładnego oszacowania kosztów projektu oraz dla zapewnienia, że wszystkie niezbędne materiały zostaną uwzględnione i dostarczone na czas. Standardy branżowe, takie jak normy ISO dotyczące zarządzania projektami, podkreślają znaczenie rzetelnego przedmiaru jako podstawy do efektywnego planowania i kontroli wydatków. W praktyce, dobrze opracowany przedmiar robót umożliwia również lepsze porównanie ofert od różnych dostawców oraz ułatwia komunikację z wykonawcami, co przyczynia się do bardziej płynnego przebiegu realizacji projektu.

Pytanie 40

Minimalna przestrzeń między sąsiadującymi turbinami w elektrowniach wiatrowych, mierzona w średnicach wirnika turbiny, powinna wynosić przynajmniej

A. 10
B. 15
C. 5
D. 20
Wybór większych wartości minimalnej odległości między turbinami, takich jak 10, 15 czy 20 średnic wirnika, może wydawać się odpowiedni na pierwszy rzut oka, jednak w rzeczywistości prowadzi do wielu nieefektywności. Przede wszystkim, przy nadmiernym zwiększeniu odległości, zespół turbin traci na efektywności operacyjnej. Wiatr jest zasobem, który powinien być wykorzystywany w sposób maksymalny, a zbyt duże odległości między turbinami skutkują niepotrzebnym marnowaniem potencjału energetycznego obszaru. Dodatkowo, zbyt duża odległość zwiększa koszty instalacji i budowy farmy wiatrowej, co w dłuższej perspektywie wpływa na opłacalność inwestycji. Należy także zauważyć, że w praktyce wiele farm wiatrowych może wykazywać większą gęstość instalacji, a ich rozmieszczenie jest optymalizowane w oparciu o lokalne warunki wiatrowe. Typowym błędem myślowym jest założenie, że większa odległość automatycznie zapewni lepsze wyniki, co ignoruje fakt, że kluczowym czynnikiem jest efektywność energetyczna i odpowiednia interakcja między turbinami. Ostatecznie, zasady projektowania farm wiatrowych powinny być zgodne z aktualnymi normami branżowymi, które określają, że minimalna odległość wynosząca 5 średnic wirnika jest wystarczająca do zapewnienia zarówno optymalnej produkcji energii, jak i bezpieczeństwa operacyjnego.