Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 25 maja 2025 05:37
  • Data zakończenia: 25 maja 2025 05:46

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. gwiazdkowym
B. krzyżowym
C. płaskim
D. czworokątnym
Wkręty z łbem oznaczonym symbolem PH nie nadają się do użycia z wkrętakami płaskimi, ponieważ ich konstrukcja jest całkowicie niezgodna z profilem łba wkrętu. Wkrętaki płaskie mają prostą, płaską końcówkę, co ogranicza kontakt z rowkiem łba wkrętu i prowadzi do poślizgu narzędzia, a w efekcie do uszkodzenia zarówno wkrętu, jak i materiału, w którym jest osadzony. W kontekście wkrętów czworokątnych, które wymagają zupełnie innego typu wkrętaka, błędne jest stosowanie wkrętaka krzyżowego. Wkrętaki czworokątne mają inny kształt, który nie pasuje do standardu PH, co mogłoby prowadzić do zwiększonego ryzyka uszkodzenia narzędzia i elementów złącznych. Z kolei wkrętaki gwiazdkowe, choć mogą wyglądać podobnie do krzyżowych, różnią się budową, a ich końcówki są przystosowane do innych łbów wkrętów. Użycie niewłaściwego wkrętaka nie tylko zwiększa ryzyko uszkodzenia wkrętów, ale także prowadzi do marnotrawienia czasu i zasobów. W praktyce, stosowanie odpowiednich narzędzi zgodnych z typem wkrętu jest kluczowe dla efektywności i jakości pracy, a także dla unikania problemów związanych z nieodpowiednim doborem narzędzi.

Pytanie 2

Podczas instalacji kabla krosowego w przyłączach gniazd nie można pozwolić na rozkręcenie par przewodów na odcinku większym niż 13 mm, ponieważ

A. może to prowadzić do obniżenia odporności na zakłócenia
B. nastąpi wzrost jego impedancji
C. kabel stanie się źródłem intensywniejszego pola elektromagnetycznego
D. zredukowana zostanie jego impedancja
Odpowiedź prawidłowa wskazuje, że rozkręcanie par przewodów na odcinku większym niż 13 mm może doprowadzić do zmniejszenia odporności na zakłócenia. W przypadku kabli krosowych, które są stosowane w systemach telekomunikacyjnych i sieciach komputerowych, ważne jest, aby zachować odpowiednią długość skręcenia przewodów w parze. Skręcenie przewodów w parze ma na celu zminimalizowanie wpływu zakłóceń elektromagnetycznych, które mogą pochodzić z otoczenia lub innych urządzeń. Dobre praktyki zalecają, aby długość rozkręcenia nie przekraczała 13 mm, ponieważ dłuższe odcinki mogą prowadzić do zwiększenia indukcyjności i zmniejszenia zdolności do tłumienia zakłóceń. W kontekście standardów, takich jak TIA/EIA-568, istotne jest, aby stosować się do takich wytycznych, aby zapewnić wysoką jakość transmisji danych i zminimalizować ryzyko utraty sygnału. Przykładem zastosowania tych zasad jest instalacja sieci LAN w biurze, gdzie właściwe skręcenie przewodów zapewnia stabilny i szybki transfer danych.

Pytanie 3

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. podnapięciowy
B. nadprądowy
C. różnicowoprądowy
D. czasowy
Wyłącznik nadprądowy jest kluczowym elementem ochrony instalacji elektrycznej przed skutkami przeciążenia. Działa on na zasadzie detekcji prądu przekraczającego nominalną wartość, co może prowadzić do przegrzewania się przewodów, a w konsekwencji do pożaru lub uszkodzenia urządzeń elektrycznych. Wyłączniki nadprądowe są zaprojektowane zgodnie z normami IEC 60898 oraz IEC 60947, co zapewnia ich niezawodność w zastosowaniach domowych i przemysłowych. W praktyce, wyłącznik nadprądowy można spotkać w rozdzielniach elektrycznych budynków, gdzie zabezpiecza obwody zasilające gniazda i oświetlenie. Jego działanie jest szczególnie istotne w sytuacjach, gdy do obwodu podłączane są urządzenia o dużym poborze mocy, takie jak grzejniki elektryczne czy urządzenia AGD. Właściwe dobranie wyłącznika nadprądowego do charakterystyki obciążenia jest istotne dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 4

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
B. Oscyloskopem o podstawie czasu 100 ns/cm
C. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
D. Częstościomierzem o maksymalnym zakresie 50 MHz
Odpowiedź dotycząca oscyloskopu o podstawie czasu 100 ns/cm jest prawidłowa, ponieważ oscyloskop jest urządzeniem zaprojektowanym do analizy sygnałów czasowych i ich amplitudy w bardzo wysokich częstotliwościach. W przypadku sygnału o częstotliwości 25 MHz, czas trwania jednego okresu wynosi 40 ns. Podstawa czasu 100 ns/cm pozwala na uchwycenie co najmniej dwóch pełnych cykli sygnału, co jest niezbędne do dokładnej analizy jego kształtu oraz amplitudy. Oscyloskopy umożliwiają również pomiar parametrów takich jak pik-pik, co jest kluczowe przy badaniu sygnałów cyfrowych. W praktyce, oscyloskop jest często używany w laboratoriach elektronicznych i podczas testowania układów cyfrowych, co czyni go standardowym narzędziem w branży. Zastosowanie oscyloskopu przy pomiarze sygnałów o wysokiej częstotliwości jest zgodne z najlepszymi praktykami inżynieryjnymi, zapewniając precyzyjny i wiarygodny pomiar, który jest nieoceniony w procesie projektowania i diagnozowania układów elektronicznych. Warto również zaznaczyć, że oscyloskopy są wyposażone w różne tryby analizy, co pozwala na monitorowanie sygnałów w czasie rzeczywistym oraz ich zapisanie do późniejszej analizy.

Pytanie 5

Jakiego typu modulacja jest używana w paśmie UKF?

A. Amplitudy
B. Częstotliwości
C. Fazy
D. Cyfrowej
Modulacja częstotliwości (FM) jest podstawowym rodzajem modulacji stosowanym w paśmie UKF (Ultra High Frequency), a jej zastosowanie w telekomunikacji radiofonicznej jest szeroko rozpowszechnione. FM polega na zmianie częstotliwości nośnej w odpowiedzi na sygnał audio, co skutkuje poprawą jakości dźwięku i odpornością na zakłócenia. Praktyczne zastosowanie FM można zaobserwować w transmisji radiowej, gdzie sygnał jest modulated w zakresie 88-108 MHz. W porównaniu do modulacji amplitudy (AM), FM oferuje lepszą jakość dźwięku, mniejsze zniekształcenia oraz większą odporność na szumy. Standardy takie jak ITU-R BS.412-9 określają wymagania dla systemów FM, zapewniając wysoką jakość odbioru. W kontekście nowoczesnych technologii, modulacja częstotliwości znajduje zastosowanie nie tylko w radiofonii, ale także w transmisji danych, telewizji oraz systemach komunikacji bezprzewodowej, co czyni ją kluczowym elementem współczesnej telekomunikacji.

Pytanie 6

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 10% wartości mocy sygnału przychodzącego
B. 90% wartości mocy sygnału przychodzącego
C. 80% wartości mocy sygnału przychodzącego
D. 20% wartości mocy sygnału przychodzącego
Widzę, że wybrałeś odpowiedź, w której mówisz, że na 10 km światłowodu rozprasza się 80%, 20% czy 10% mocy sygnału. To trochę pomyłka, bo nie do końca ogarnąłeś, jak to jest z tłumiennością i mocą sygnału. Tłumienność 1 dB/km znaczy, że na każdy kilometr moc sygnału spada o 1 dB. W praktyce na 10 km to daje 10 dB straty mocy, ale łatwo się pomylić, licząc, że jest to liniowe. Jak myślisz, że to procenty, a nie decybele, to można sobie głupotę wytłumaczyć, jak byś sądził, że 20% sygnału to dużo, a w rzeczywistości na końcu zostaje tylko 10%. Rozumienie tego tematu jest istotne, szczególnie przy projektowaniu sieci światłowodowych, gdzie dobre obliczenia tłumienia są kluczowe do przewidywania, jak daleko sygnał dojdzie i jak dobrze będzie działać. Jeśli nie weźmiesz tego pod uwagę, to mogą być kłopoty z jakością usług.

Pytanie 7

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. DRAM
B. EEPROM
C. EPROM
D. SDRAM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 8

Rezystor podciągający, który jest połączony z wyjściem bramki TTL w cyfrowych układach, stosuje się w celu

A. sprzęgania układów CMOS→TTL
B. sprzęgania układów TTL→CMOS
C. dopasowania impedancji w układach TTL
D. eliminacji hazardu statycznego w układach TTL
Rezystor podciągający, podłączony do wyjścia bramki TTL, pełni kluczową rolę w zapewnieniu kompatybilności pomiędzy układami TTL i CMOS. Jego głównym zadaniem jest podciąganie napięcia na wyjściu do poziomu logicznego '1', co jest istotne w sytuacji, gdy bramka TTL nie jest aktywna. W praktyce oznacza to, że kiedy bramka TTL nie generuje wyjścia, rezystor podciągający zapobiega swobodnemu unoszeniu się napięcia, co mogłoby prowadzić do niepewnych stanów na wyjściu. Przykładem zastosowania tego rozwiązania jest projektowanie układów scalonych, gdzie wyjście TTL jest używane do sterowania wejściem CMOS. W takich aplikacjach stosowanie rezystorów podciągających jest uważane za dobrą praktykę, ponieważ przyczynia się do stabilności całego systemu, minimalizując ryzyko wystąpienia błędów logicznych. W kontekście standardów, rozwiązanie to jest powszechnie zalecane w dokumentacji technicznej dotyczącej integracji układów TTL i CMOS, co czyni je nieodłącznym elementem inżynierii cyfrowej.

Pytanie 9

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Wydłużenie przewodu oraz obniżenie jego rezystancji
B. Skrócenie przewodu oraz obniżenie jego rezystancji
C. Wydłużenie przewodu oraz podwyższenie jego rezystancji
D. Skrócenie przewodu oraz podwyższenie jego rezystancji
Jasne, wpływ temperatury na przewody miedziane to dość skomplikowany temat. Niektórzy mogą myśleć, że jak się temperatura podnosi, to przewody się skracają, ale to jest zupełnie nieprawda. Miedź się wydłuża, a nie kurczy, gdy się ją podgrzewa. Często też ludzie myślą, że rezystancja spada, gdy temperatura rośnie, ale to błąd. W rzeczywistości rezystancja miedzianych przewodników rośnie z ciepłem, co może być problematyczne przy doborze odpowiednich komponentów. Jeśli tego nie zrozumiesz, to możesz źle dobrać przewody i to może prowadzić do przegrzewania się instalacji czy nawet pożaru. Normy takie jak IEC 60364 mówią, jak powinno się projektować instalacje, więc warto mieć to na uwadze, żeby uniknąć kłopotów.

Pytanie 10

Jaką funkcję pełni PTY w radiu?

A. Odbiór informacji drogowych
B. Odbiór wiadomości tekstowych
C. Automatyczną "regulację głośności"
D. Wybieranie i przeszukiwanie typu programu
Funkcja PTY, czyli Program Type, jest kluczowym elementem standardu RDS (Radio Data System), który pozwala na identyfikację i klasyfikację programów radiowych. Główna rola PTY polega na umożliwieniu słuchaczom łatwego wyszukiwania stacji radiowych na podstawie ich rodzaju programowego, co znacząco ułatwia odbiór audycji odpowiadających ich zainteresowaniom. Na przykład, użytkownik może ustawić odbiornik tak, aby automatycznie wyszukiwał stacje nadające muzykę pop lub wiadomości. Dzięki temu, w sytuacji, gdy słuchacz chce zmienić stację, nie musi przeszukiwać wszystkich dostępnych sygnałów ręcznie. PTY jest stosowane w praktyce przez wiele stacji radiowych, które nadają programy o różnych typach. Wspiera to również standardy jakości dźwięku i dostępu do informacji, które są obowiązujące w branży radiowej, a także zwiększa komfort użytkowania odbiorników. Użytkownicy powinni zwrócić uwagę na dostępność tej funkcji w swoich odbiornikach radiowych, ponieważ może to być istotny atut przy wyborze sprzętu.

Pytanie 11

Podstawowym zadaniem czaszy w antenie satelitarnej jest

A. umożliwienie odbioru określonych częstotliwości sygnału
B. odbicie fal i skierowanie ich ku konwerterowi
C. umożliwienie zamontowania konwertera pod odpowiednim kątem
D. ukierunkowanie konwertera na wybrany satelita
Głównym zadaniem czaszy anteny satelitarnej jest odbicie fal radiowych z satelity i skierowanie ich do konwertera, co jest kluczowe dla efektywnego odbioru sygnału. Czasza działa jak zwierciadło, które zbiera fale elektromagnetyczne i skupia je w jednym punkcie, gdzie znajduje się konwerter. Dzięki temu, sygnał jest poprawnie przetwarzany i przesyłany do odbiornika. Przykładem zastosowania tego rozwiązania może być antena paraboliczna, która jest powszechnie stosowana w telekomunikacji satelitarnej, umożliwiając odbiór wysokiej jakości sygnału telewizyjnego. Warto zauważyć, że odpowiednie ustawienie kąta nachylenia czaszy oraz jej średnicy mają znaczący wpływ na jakość sygnału. W standardach branżowych, takich jak ITU-R, podkreśla się znaczenie precyzyjnego montażu anteny oraz jej dopasowania do parametrów satelity, co zapewnia optymalną wydajność systemu. Wiedza o roli czaszy w antenie satelitarnej jest zatem fundamentalna dla każdej osoby zajmującej się instalacją i konserwacją systemów satelitarnych.

Pytanie 12

Technik zajmował się naprawą odbiornika radiowego bez odłączania zasilania i doznał porażenia prądem elektrycznym. W udzielaniu mu pierwszej pomocy, co powinno być zrobione w pierwszej kolejności?

A. usunąć poszkodowanego spod wpływu prądu
B. położyć poszkodowanego na brzuchu z głową odchyloną na bok
C. ustawić poszkodowanego w stabilnej pozycji bocznej
D. ocenić parametry życiowe poszkodowanego
W sytuacji, gdy pracownik uległ porażeniu prądem elektrycznym, najważniejszym krokiem jest jak najszybsze uwolnienie go spod działania prądu. To jest kluczowe działanie, które powinno być wykonane jako pierwsze. Porażenie prądem elektrycznym może prowadzić do groźnych konsekwencji zdrowotnych, w tym do zatrzymania akcji serca, dlatego natychmiastowe odłączenie źródła prądu jest niezbędne. W praktyce, jeśli to możliwe, należy wyłączyć zasilanie w obwodzie elektrycznym, z którego korzystał poszkodowany. W przypadku, gdy wyłączenie zasilania jest niemożliwe, należy zastosować materiały izolacyjne (np. drewniane lub gumowe) do usunięcia poszkodowanego z miejsca porażenia. Po uwolnieniu z działania prądu, możemy przystąpić do oceny stanu poszkodowanego i udzielania dalszej pomocy, w tym ewentualnego wykonania resuscytacji krążeniowo-oddechowej. Zgodnie z wytycznymi organizacji zajmujących się bezpieczeństwem pracy, takie jak OSHA, kluczowe jest przestrzeganie zasad BHP i podejmowanie działań zgodnie z ustalonymi procedurami.

Pytanie 13

Podczas hibernacji komputera zachodzi

A. zamknięcie systemu.
B. zapisanie zawartości pamięci na dysku twardym.
C. reset systemu.
D. przełączanie na zasilanie z UPS.
Hibernacja systemu komputerowego to proces, w którym zawartość pamięci operacyjnej (RAM) jest zapisywana na dysku twardym w celu oszczędzania energii, a następnie system może zostać wyłączony. Ta metoda jest szczególnie przydatna w laptopach oraz urządzeniach mobilnych, gdzie długotrwałe użytkowanie na baterii ma kluczowe znaczenie. Po wznowieniu pracy, system odtworzy stan, w jakim został wstrzymany, przywracając wszystkie otwarte aplikacje i dokumenty. Hibernacja różni się od usypiania, gdzie dane w pamięci są zachowywane tylko na czas aktywnego stanu, przy minimalnym zużyciu energii. W standardach zarządzania energią, taki jak ACPI (Advanced Configuration and Power Interface), hibernacja jest zalecana jako efektywne rozwiązanie do zarządzania mocą, które pozwala na długotrwałe przechowywanie stanu systemu bez potrzeby ciągłego zasilania. Przykładem zastosowania hibernacji może być moment, gdy użytkownik planuje dłuższą przerwę od pracy i chce wrócić do tego samego miejsca w systemie bez utraty postępów.

Pytanie 14

Ile żył powinien mieć kabel łączący komputer z modemem, zakończony na obu końcach wtykami RJ-45?

A. 2
B. 9
C. 8
D. 4
Jeśli łączysz komputer z modemem, to pamiętaj, że przewód powinien mieć 8 żyłek i końcówkę RJ-45. To zgodne ze standardem Ethernet, który teraz wszędzie króluje w sieciach komputerowych. Te wtyczki są zaprojektowane tak, żeby działały z kablami kategorii 5 i wyższymi, a to oznacza, że wykorzystujemy wszystkie 8 żyłek, co daje nam pełną funckjonalność. W praktyce, standardy 10BASE-T i 100BASE-TX korzystają z czterech par przewodów, co jest super ważne do przesyłania danych. Gdy używasz wszystkich 8 żył, masz szansę na szybszą transmisję, bo w dzisiejszych czasach przepustowość to kluczowa sprawa. Jak włożysz przewody z mniejszą ilością żył, to może być kiepsko z wydajnością. Warto też znać zasady cabling standards, jak TIA/EIA-568, bo one mówią, jak poprawnie prowadzić i kończyć kable, żeby sieć działała jak należy.

Pytanie 15

Układ DMA stosowany w mikrokomputerach pozwala na

A. używanie pamięci RAM bez pośrednictwa CPU
B. wstrzymywanie CPU w każdym momencie
C. podwójne zwiększenie częstotliwości zegara systemu
D. realizowanie podwójnych poleceń
Pierwsza odpowiedź dotyczy podwajania częstotliwości zegara systemowego, co jest koncepcją błędną, ponieważ DMA nie ma żadnego wpływu na częstotliwość pracy procesora. Częstotliwość zegara jest determinowana przez parametry sprzętowe oraz ustawienia systemowe, a nie przez technologię dostępu do pamięci. Zatrzymywanie CPU w dowolnym momencie, jak sugeruje kolejna odpowiedź, jest również nieprawidłowe. DMA działa równolegle do CPU, ale nie przerywa jego pracy; zamiast tego efektywnie zarządza dostępem do pamięci w sposób, który nie wymaga zatrzymywania procesora. Ponadto, wykonanie podwójnych rozkazów jest terminologią, która nie odnosi się do funkcji DMA. DMA nie jest zaprojektowane do realizowania rozkazów, lecz do transferowania danych między urządzeniami bez angażowania CPU. Typowym błędem myślowym jest mylenie funkcji DMA z operacjami, które są stricte związane z architekturą procesora. Pojęcie DMA dotyczy uproszczenia i optymalizacji procesów I/O, a nie wpływania na samą architekturę CPU czy jego taktowanie. W związku z powyższym, rozumienie specyfiki funkcji DMA jest kluczowe dla właściwego podejścia do projektowania systemów komputerowych i ich wydajności. Znajomość tego mechanizmu pomaga uniknąć powszechnych nieporozumień dotyczących interakcji między CPU a pamięcią.

Pytanie 16

Oznaczenie wiązki przewodów na schemacie elektrycznym 2xYDY3xl,5 mm2 sugeruje, że w skład tej wiązki wchodzą

A. dwa przewody dwużyłowe o średnicy 1,5 mm2
B. dwa przewody trzyżyłowe o średnicy 1,5 mm2
C. trzy przewody trzyżyłowe o średnicy 1,5 mm2
D. trzy przewody dwużyłowe o średnicy 1,5 mm2
Odpowiedź, że w wiązce przewodów 2xYDY3x1,5 mm2 znajdują się dwa przewody trzyżyłowe o średnicy 1,5 mm2, jest poprawna z kilku powodów. Oznaczenie '2x' wskazuje na to, że mamy do czynienia z dwiema wiązkami przewodów, z kolei 'YDY' to typ przewodników, który często stosuje się w instalacjach elektrycznych. Liczba '3' przed 'x' oznacza, że każdy z tych przewodów jest trzyżyłowy, co wskazuje na obecność trzech żył w każdym przewodzie, np. fazy, neutralnego i ochronnego. Przewody o średnicy 1,5 mm2 są powszechnie stosowane w instalacjach elektrycznych do zasilania urządzeń o mniejszym poborze mocy, co czyni je odpowiednimi do zastosowań domowych oraz w budownictwie. Przykładem zastosowania tych przewodów mogą być instalacje oświetleniowe lub zasilające gniazda wtykowe. Warto pamiętać, że odpowiednie oznaczenie przewodów i ich właściwe użycie jest kluczowe dla zapewnienia bezpieczeństwa i właściwej funkcjonalności instalacji elektrycznych, co jest zgodne z normami PN-IEC 60364.

Pytanie 17

W zainstalowanym wideodomofonie nie ma obrazu, jednak dźwięk działa poprawnie. Która z wymienionych usterek nie może wystąpić w tym urządzeniu?

A. Zniszczenie przewodu łączącego bramofon z monitorem
B. Usterka kamery bramofonu
C. Uszkodzenie monitora
D. Awaria zasilacza zestawu wideodomofonowego
Awaria kamery bramofonu, uszkodzenie przewodu łączącego bramofon z monitorem oraz uszkodzenie monitora mogą prowadzić do sytuacji, w której nie ma wizji w wideodomofonie, ale dźwięk działa prawidłowo. Zaczynając od kamery, jeżeli ulegnie awarii, nie będzie w stanie przesyłać obrazu do monitora, co skutkuje brakiem wizji, podczas gdy system audio może wciąż działać, ponieważ dźwięk przesyłany jest inną ścieżką sygnału. Uszkodzenie przewodu łączącego bramofon z monitorem również może prowadzić do problemów z przesyłaniem obrazu, podczas gdy dźwięk pozostanie nienaruszony, jeśli przewód audio działa poprawnie. W przypadku uszkodzenia monitora, jego komponenty odpowiedzialne za odbiór i wyświetlanie sygnału wideo mogą być uszkodzone, co również skutkuje brakiem wizji, mimo że dźwięk może być odbierany bez przeszkód. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia działania systemów wideodomofonowych oraz ich interakcji. Ważne jest, aby zrozumieć, że problemy z obrazem i dźwiękiem w systemach wideodomofonowych mogą manifestować się niezależnie, co może prowadzić do mylnych diagnoz. W praktyce należy zawsze przeprowadzać dokładną diagnostykę, aby wykluczyć wszystkie możliwe przyczyny problemów z obu sygnałami.

Pytanie 18

Podczas kontroli czujki czadu stwierdzono, że emituje ona co 30 sekund dwa krótkie sygnały dźwiękowe i czerwona dioda LED miga dwukrotnie. Oznacza to, że

FunkcjaCo to oznaczaJakie działanie należy podjąć
Zielona dioda LED miga co 30 sekundNormalne działanieBrak
Czujnik emituje krótki sygnał dźwiękowy co 60 sekund i miga czerwona dioda LEDNiski poziom bateriiNiezwłocznie wymienić baterie
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga dwukrotnieKoniec okresu eksploatacyjnego czujnikaWymienić czujnik
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga co 30 sekundNieprawidłowe działanieWymienić czujnik
Czerwona dioda LED świeci się i ciągły dźwięk alarmowyAwariaWymienić czujnik
Głośny, ciągły alarm i świecąca się czerwona dioda LEDWykryto niebezpieczne stężenie COPostępować zgodnie z procedurą awaryjną

A. baterie są rozładowane i należy je wymienić.
B. okres użytkowania czujki przewidziany przez producenta dobiegł końca i należy ją wymienić.
C. czujka działa poprawnie i jest w stanie czuwania.
D. czujka działa poprawnie i wykryła niebezpieczne stężenie tlenku węgla.
Odpowiedź jest prawidłowa, ponieważ sygnały emitowane przez czujkę czadu wskazują na koniec jej okresu funkcjonowania. W przypadku czujników tlenku węgla, producenci zazwyczaj przewidują określony czas eksploatacji, zazwyczaj od 5 do 10 lat, po którym czujnik powinien zostać wymieniony, nawet jeśli nie wykrywa on zagrożeń. Emitowanie co 30 sekund dwóch krótkich sygnałów dźwiękowych oraz migająca dioda LED to standardowy sygnał ostrzegawczy używany przez większość producentów, co potwierdzają normy branżowe, takie jak EN 50291. Dlatego w przypadku takiego sygnału należy jak najszybciej wymienić czujkę na nową, aby zapewnić bezpieczeństwo domowników. Przykładowo, po wymianie czujnika warto przeprowadzić regularne kontrole, aby upewnić się, że nowy czujnik działa prawidłowo i jest w stanie skutecznie identyfikować niebezpieczne stężenia czadu.

Pytanie 19

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. brakiem zmian w czasie regulacji
B. wydłużeniem czasu regulacji
C. zmniejszeniem stabilności układu
D. wzrostem amplitudy oscylacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 20

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. symetryzatorów
B. linii rezonansowych równoległych
C. falowodów
D. linii nierezonansowych typu delta
Odpowiedź 'symetryzatorów' jest poprawna, ponieważ symetryzator jest urządzeniem stosowanym do przekształcania sygnałów z linii asymetrycznych, takich jak przewody współosiowe, na sygnały symetryczne. W kontekście połączeń antenowych, symetryzatory są kluczowe do efektywnego przesyłania sygnału do odbiornika telewizyjnego, który często ma wejście symetryczne. Użycie symetryzatora pozwala na eliminację problemów związanych z niedopasowaniem impedancji, co może prowadzić do strat sygnału lub odbić. Przykładem zastosowania symetryzatorów są instalacje antenowe, gdzie stosuje się je do podłączenia anteny o wyjściu symetrycznym do odbiornika telewizyjnego. Standardy branżowe, takie jak te dotyczące instalacji antenowych, podkreślają znaczenie stosowania symetryzatorów w celu uzyskania optymalnej jakości odbioru, co jest szczególnie istotne w przypadku sygnałów telewizyjnych wymagających wysokiej integralności i niskiego poziomu zakłóceń. Warto również wspomnieć, że symetryzatory mogą występować w różnych formach, w tym jako transformatorów, i są projektowane tak, aby spełniały konkretne wymagania dotyczące pasma przenoszenia i tłumienia sygnału.

Pytanie 21

W procesie technologicznym konieczne jest, aby w pomieszczeniu o objętości 18 m3 utrzymywana była temperatura 40 st. C +- 5 st. C. Najczęściej wybieranym urządzeniem do sterowania elementami grzejnymi będzie

A. system sterowania czasowego
B. system sterowania manualnego
C. regulator dwustawny
D. regulator tyrystorowy mocy
Układ sterowania ręcznego, regulator tyrystorowy mocy i układ sterowania czasowego to metody, które w określonych warunkach mogą być użyteczne, jednak nie odpowiadają one wymaganiom opisanym w pytaniu, gdzie kluczowe jest skuteczne i precyzyjne zarządzanie temperaturą w wąskim zakresie. Układ sterowania ręcznego polega na manualnym ustawianiu grzewania, co nie tylko nie zapewni automatyzacji, ale także zwiększy ryzyko nieefektywnego ogrzewania lub przegrzewania pomieszczenia. Regulator tyrystorowy mocy, choć stosowany w aplikacjach wymagających regulacji mocy, nie zapewnia takiej precyzji w zakresie włączania i wyłączania, jak regulator dwustawny, co może prowadzić do wahań temperatury. Z kolei układ sterowania czasowego jest używany głównie do programowania pracy urządzeń w określonych przedziałach czasowych, co nie jest wystarczające w sytuacji wymagającej stałej regulacji temperaturowej. Typowym błędem myślowym jest założenie, że każda z tych metod może automatycznie dostosować się do zmieniających się warunków, co w rzeczywistości nie jest prawdą. W przypadku wymaganej precyzji w utrzymaniu temperatury, zastosowanie regulatora dwustawnego jest jedynym odpowiednim rozwiązaniem, które spełnia kryteria stabilności i efektywności energetycznej.

Pytanie 22

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BT138-500F
B. BT136-500
C. BT138-800
D. BTA16-800B
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 23

Jakie zabezpieczenie przed uszkodzeniem lutowanego elementu powinno być użyte podczas przyłączenia tranzystora CMOS do płyty głównej telewizora?

A. Noszenie okularów ochronnych
B. Założenie opaski uziemiającej na rękę
C. Wykorzystanie spoiwa o niższej temperaturze topnienia do lutowania
D. Pokrycie końcówek tranzystora pastą termoprzewodzącą
Założenie opaski uziemiającej na rękę to naprawdę ważna sprawa, kiedy lutujemy tranzystory CMOS. Te elementy są mega wrażliwe na wyładowania elektrostatyczne, więc lepiej nie ryzykować. Użycie opaski zmniejsza ryzyko zgromadzenia ładunku, który może zniszczyć układy scalone. Nawet małe ładunki mogą spowodować ESD i to zazwyczaj kończy się zniszczeniem tranzystora lub sprawia, że działa on nie tak, jak powinien. W branży mówi się o standardach, takich jak IEC 61340-5-1, które podkreślają, jak ważna jest ochrona przed ESD w miejscach, gdzie mamy do czynienia z wrażliwymi komponentami. Takie opaski powinny być na stałe w procedurach roboczych w laboratoriach i na liniach produkcyjnych, żeby zapewnić bezpieczeństwo sprzętu i sprawność pracy. A no i jeszcze warto pamiętać o matach ESD oraz odpowiedniej odzieży roboczej – to wszystko razem tworzy system ochronny przed złymi ładunkami.

Pytanie 24

Jakie urządzenie jest łączone za pomocą interfejsu SATA?

A. dysk twardy
B. drukarka
C. karta graficzna
D. napęd dyskietek
Interfejs SATA (Serial ATA) jest standardem używanym do podłączania urządzeń pamięci masowej, głównie dysków twardych oraz dysków SSD, do płyty głównej komputera. Dzięki swojej architekturze, SATA oferuje znaczące zalety w porównaniu do starszych rozwiązań, takich jak PATA (Parallel ATA). Prędkość transferu danych za pomocą SATA jest znacznie wyższa, co jest kluczowe w przypadku nowoczesnych dysków o dużej pojemności. Na przykład, SATA III, który jest najnowszą wersją tego standardu, pozwala na transfer danych z prędkością do 6 Gb/s. W praktyce oznacza to szybsze ładowanie systemu operacyjnego i aplikacji, a także efektywniejszą pracę z dużymi plikami multimedialnymi. Dobre praktyki branżowe zalecają stosowanie interfejsu SATA w większości nowoczesnych systemów komputerowych, zarówno w komputerach stacjonarnych, jak i laptopach. Warto również zauważyć, że standard SATA jest szeroko stosowany nie tylko w komputerach osobistych, ale także w serwerach i systemach nas, co potwierdza jego uniwersalność i niezawodność.

Pytanie 25

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
B. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
C. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
D. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
Właściwym podejściem do wymiany modułu klawiatury w systemach kontroli dostępu jest wyłączenie zasilania systemu przed rozpoczęciem jakichkolwiek prac. Praktyka ta jest zgodna z zasadami bezpieczeństwa, aby uniknąć uszkodzenia komponentów elektronicznych oraz zabezpieczyć personel przed porażeniem prądem. Po wyłączeniu zasilania można bezpiecznie otworzyć moduł klawiatury, co pozwala na wymianę uszkodzonego elementu. Po zakończeniu wymiany, zasilanie systemu należy ponownie włączyć, aby sprawdzić poprawność działania nowego modułu. W codziennej praktyce techników zajmujących się systemami zabezpieczeń, kluczowe jest przestrzeganie kolejności działań i zapewnienie, że zasilanie jest odłączone, zanim podejmie się jakiekolwiek fizyczne czynności. Przykładem może być sytuacja, gdy w systemie znajduje się wiele klawiatur rozproszonych. W takim przypadku, stosowanie tej procedury minimalizuje ryzyko błędów i uszkodzeń, jednocześnie zapewniając, że system będzie działał niezawodnie po dokonaniu wymiany.

Pytanie 26

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. uziemienie ochronne
B. uziemienie robocze
C. zerowanie
D. wyłącznik różnicowoprądowy
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które ma na celu automatyczne odłączenie zasilania w przypadku wystąpienia nadmiernego prądu doziemnego. Działa na zasadzie monitorowania różnicy między prądem wpływającym a wpływającym do obwodu. W momencie, gdy ta różnica przekroczy ustalony próg (zazwyczaj 30 mA dla obwodów ochrony), wyłącznik natychmiast przerywa obwód, co znacząco redukuje ryzyko porażenia prądem elektrycznym. RCD jest szczególnie istotny w miejscach, gdzie używane są urządzenia elektryczne w wilgotnym lub mokrym otoczeniu, takich jak łazienki czy kuchnie. W stosunku do standardów, takich jak norma PN-EN 61008, wyłączniki różnicowoprądowe są zalecane do stosowania w instalacjach elektrycznych jako element zwiększający bezpieczeństwo użytkowników. W praktyce montaż RCD może być również wymagany podczas przeglądów technicznych i modernizacji instalacji elektrycznych, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa elektrycznego.

Pytanie 27

Woltomierz analogowy wskazał 30 działek. Urządzenie jest ustawione na zakres 100 V, a cała skala ma 100 działek. Jaką wartość napięcia odczytał woltomierz?

A. 3,33 V
B. 33,3 V
C. 3 V
D. 30 V
Woltomierz analogowy przedstawia wskazanie w oparciu o skalę, na której 100 działek odpowiada maksymalnemu zakresowi pomiarowemu, czyli 100 V. W tym przypadku, każda działka skali reprezentuje 1 V (100 V / 100 działek = 1 V/działkę). Jeśli wskazówka wychyliła się na 30 działek, oznacza to, że woltomierz wskazuje 30 V (30 działek * 1 V/działkę = 30 V). Ta zasada obliczeń jest szczególnie przydatna w praktyce, ponieważ umożliwia szybkie oszacowanie wartości napięcia na podstawie wskazania miernika. W branży elektrycznej precyzyjne pomiary napięcia są kluczowe do zapewnienia poprawności instalacji oraz bezpieczeństwa urządzeń. Na przykład, w zastosowaniach przemysłowych, takich jak kontrola zasilania maszyn, dokładne odczyty napięcia są niezbędne do monitorowania parametrów pracy urządzeń oraz ochrony przed uszkodzeniami. Zrozumienie, jak interpretować wartości wskazywane przez woltomierz, jest fundamentalne dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 28

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. to, że instalacja ma tylko jeden sygnalizator
B. ich umiejscowienie na suficie
C. ich natychmiastowe działanie
D. to, że działają na tej samej częstotliwości
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 29

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. NO
B. NC
C. 2EOL
D. EOL
Obwód sabotażowy z konfiguracją NC (Normally Closed) oznacza, że urządzenie jest domyślnie zamknięte. Gdy obwód jest przerwany (np. przez otwarcie drzwi), sygnał jest wysyłany do systemu alarmowego, co pozwala na wykrycie sabotażu. Użycie konfiguracji NC jest standardową praktyką w instalacjach alarmowych, ponieważ zapewnia, że w przypadku awarii (np. uszkodzenia przewodu) obwód zostanie przerwany, co wywoła alarm. W praktyce oznacza to, że wszystkie czujniki, takie jak kontaktrony lub czujniki ruchu, powinny być skonfigurowane w trybie NC, aby skutecznie monitorować stany i sygnalizować nieautoryzowany dostęp lub usunięcie elementów z systemu. Dodatkowo, dzięki temu podejściu system jest odporniejszy na fałszywe alarmy, ponieważ jakiekolwiek działanie niezgodne z normalnym funkcjonowaniem obwodu wywoła reakcję alarmową, co jest kluczowe w zabezpieczeniach.

Pytanie 30

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. woltomierz
B. galwanometr
C. omomierz
D. częstościomierz
Omomierz to super przyrząd do mierzenia oporu elektrycznego, a to znaczy, że jest świetny do sprawdzania, czy żyły w przewodzie teletechnicznym działają tak, jak powinny. Z mojego doświadczenia, sprawdzanie ciągłości żył jest naprawdę ważne, bo jak będą jakieś przerwy, to cała instalacja teletechniczna może po prostu nie działać. Kiedy używasz omomierza, możesz zmierzyć opór między końcami przewodów; jeśli wartość jest bliska zeru, to wiadomo, że przewód działa jak trzeba. Warto też pamiętać, że standardy takie jak IEC 61010 mówią, jak istotny jest pomiar oporu dla bezpieczeństwa instalacji elektrycznych. Dobrze jest też robić takie pomiary przed włączeniem systemu oraz regularnie je kontrolować, żeby uniknąć problemów później. Ogólnie mówiąc, omomierz to jedno z tych narzędzi, które naprawdę szybko pomogą zdiagnozować problemy z ciągłością, a to może zaoszczędzić czas i kasę na przyszłość.

Pytanie 31

Przełącznik satelitarny pozwala na podłączenie

A. dwóch konwerterów do jednego tunera
B. jednego konwertera do dwóch tunerów
C. jednego transpondera do dwóch anten satelitarnych
D. dwóch transponderów do jednej anteny satelitarnej
Wybór opcji, która sugeruje podłączenie dwóch transponderów do jednej anteny satelitarnej, jest błędny. Transpondery są komponentami znajdującymi się bezpośrednio na satelitach, które odbierają sygnały radiowe z Ziemi i przesyłają je z powrotem. Antena satelitarna nie może obsługiwać dwóch transponderów jednocześnie, ponieważ transpondery działają na różnych częstotliwościach i mają swoje unikalne parametry sygnałowe. Podobna pomyłka występuje w przypadku opcji, która mówi o podłączeniu jednego konwertera do dwóch tunerów. Tuner to urządzenie, które odbiera sygnał od konwertera, a jeden konwerter jest w stanie obsługiwać tylko jeden tuner w danym momencie, chyba że użyje się specjalnych rozwiązań, jak multiswitch. Z kolei możliwość podłączenia jednego transpondera do dwóch anten satelitarnych jest technicznie nieosiągalna, ponieważ transponder nie wysyła sygnału w sposób, który pozwalałby na jednoczesne odbieranie przez różne anteny. Kluczowe jest zrozumienie, że każdy komponent w systemie satelitarnym ma swoje specyficzne zadania i ograniczenia, a ich błędne zestawienie może prowadzić do degradacji jakości sygnału lub całkowitej jego utraty. Takie pomyłki mogą wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu satelitarnego.

Pytanie 32

Aby zapobiec uszkodzeniom spowodowanym wyładowaniami elektrostatycznymi, układy CMOS powinny być transportowane oraz przechowywane

A. w torbach z PCV
B. w torbach ekranujących ESD
C. umieszczone w styropianie
D. w skrzynkach drewnianych
Wybór worków ekranujących ESD do transportu i przechowywania układów CMOS jest kluczowy w kontekście ochrony przed wyładowaniami elektrostatycznymi. Układy CMOS są szczególnie wrażliwe na uszkodzenia spowodowane ESD, co może prowadzić do trwałej degradacji ich funkcji. Worki ekranowane ESD wykonane są z materiałów, które nie tylko tłumią pole elektryczne, ale także zapewniają odpowiednią izolację, eliminując ryzyko gromadzenia się ładunków elektrostatycznych. Dodatkowo, stosowanie takich worków jest zgodne z normami przemysłowymi, takimi jak IEC 61340-5-1, które definiują wymagania dotyczące kontroli ESD w środowiskach produkcyjnych. Przykładowo, w branży elektroniki, gdzie zachowanie integralności komponentów jest kluczowe, stosowanie worków ESD jest standardem, który znacznie zmniejsza ryzyko uszkodzeń podczas transportu. W praktyce, przedsiębiorstwa często organizują specjalne szkolenia dla personelu, aby zapewnić, że prawidłowe procedury związane z ESD są przestrzegane, co ma na celu ochronę wartościowych komponentów elektronicznych.

Pytanie 33

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. kamer HD.
B. zasilania kamer.
C. kabelka HDMI.
D. dysku twardego.
Komunikat 'HDD Error' w rejestratorze jest jednoznacznym sygnałem, że występuje problem z dyskiem twardym. Dyski twarde, będące kluczowymi komponentami systemów rejestracji wideo, przechowują wszystkie nagrania oraz dane konfiguracyjne. Ich uszkodzenie może prowadzić do utraty danych, co jest szczególnie krytyczne w systemach monitoringu, gdzie bezpieczeństwo jest priorytetem. W przypadku wystąpienia takiego błędu zaleca się natychmiastowe sprawdzenie stanu dysku, na przykład poprzez skanowanie narzędziami diagnostycznymi, takimi jak CrystalDiskInfo, które mogą wykazać stan SMART dysku. Warto również zastanowić się nad regularnym tworzeniem kopii zapasowych danych, aby zminimalizować ryzyko ich utraty w przyszłości. Dobre praktyki w branży monitoringu wizyjnego obejmują również cykliczną wymianę dysków twardych oraz stosowanie dysków przeznaczonych specjalnie do pracy w systemach rejestracji wideo, które są bardziej odporne na naświetlenie i mają dłuższą żywotność.

Pytanie 34

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. kalafonii
B. ołowiu
C. pasty lutowniczej
D. cyny
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 35

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 90 kΩ
B. 10 kΩ
C. 15 kΩ
D. 60 kΩ
Kiedy mamy rezystory połączone równolegle, całkowita rezystancja R obliczamy według wzoru: 1/R = 1/R1 + 1/R2 + 1/R3. Dla trzech rezystorów, każdy o rezystancji 30 kΩ, wygląda to tak: 1/R = 1/30k + 1/30k + 1/30k, co możemy uprościć do 1/R = 3/30k. Po przekształceniu dostajemy R = 30k/3, co daje nam 10kΩ. W praktyce, połączenie równoległe rezystorów jest często używane w układach, gdzie chcemy obniżyć całkowitą rezystancję, a więc zwiększyć przepływ prądu. Na przykład w układach audio, gdzie więcej rezystorów równolegle pomaga obniżyć impedancję, co jest super dla wzmocnienia sygnału. Dobrze jest też rozumieć, jak wartości rezystancji wpływają na charakterystykę całego obwodu, bo to kluczowa sprawa w projektowaniu systemów elektronicznych.

Pytanie 36

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. HDMI
B. USB
C. SATA
D. LAN
Złącze SATA (Serial ATA) jest standardem interfejsu, które umożliwia podłączenie dysków twardych oraz napędów SSD do systemów komputerowych. W kontekście archiwizacji materiału wideo w rejestratorze, złącze SATA jest preferowanym rozwiązaniem, ponieważ zapewnia wysoką przepustowość i niskie opóźnienia w transferze danych. Dyski twarde podłączone przez SATA mogą osiągać prędkości transferu danych rzędu 6 Gbps, co jest kluczowe przy pracy z dużymi plikami wideo, które wymagają szybkiego dostępu do przechowywanych informacji. Przykładowo, podczas nagrywania materiału w wysokiej rozdzielczości, jak 4K, niezbędne jest, aby system był w stanie szybko zapisywać i odczytywać duże ilości danych. Współczesne rejestratory wideo często wykorzystują napędy SATA, aby zapewnić optymalną wydajność oraz niezawodność w długoterminowym przechowywaniu danych. Ponadto, zgodność z tym standardem sprawia, że wymiana lub modernizacja dysków jest znacznie prostsza i tańsza, co jest zgodne z dobrymi praktykami w dziedzinie zarządzania infrastrukturą IT.

Pytanie 37

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 12 V; 9 A; 0,75 mm2
B. 230 V; 1,25 A; 0,4 mm2
C. 30 V; 9 A; 0,75 mm2
D. 30 V; 3 A; 0,5 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 38

Jak można ustalić miejsce, w którym doszło do uszkodzenia kabla przesyłającego sygnał telewizji kablowej do odbiorcy?

A. zmierzyć poziom sygnału w kanale zwrotnym
B. zmierzyć impedancję falową kabla
C. zbadać parametry kabla za pomocą reflektometru
D. analizować parametry sygnału przy użyciu analizatora widma
Reflektometria jest kluczowym narzędziem do lokalizacji przerwań w kablach sygnałowych, w tym kabli telewizji kablowej. Reflektometr mierzy czas, w jakim sygnał wraca do urządzenia po odbiciu od przeszkód lub przerw w kablu. Dzięki temu technik może zidentyfikować miejsce przerwania, analizując charakterystykę odbicia sygnału w funkcji odległości. W praktyce, stosując reflektometr, technik może szybko zlokalizować problem, co pozwala na szybszą interwencję i minimalizację przestojów w dostępie do usług telewizyjnych. Jest to standard w branży, ponieważ umożliwia dokładną diagnozę i zmniejsza koszty związane z nieefektywną naprawą. Ponadto, reflektometria pozwala na ocenę innych parametrów kabla, takich jak straty sygnału czy impedancja, co daje pełny obraz stanu infrastruktury. Właściwe stosowanie tej metody jest zgodne ze standardami branżowymi, które podkreślają znaczenie precyzyjnych pomiarów w utrzymaniu jakości usług telewizyjnych.

Pytanie 39

Multiswitch to urządzenie, które pozwala na

A. rozgałęzienie sygnału wideo, aby móc wyświetlić obraz na wielu monitorach
B. łączenie odmiennych sieci komputerowych
C. zapisywanie na twardym dysku sygnałów wideo pochodzących z różnych kamer
D. dystrybucję sygnału telewizyjnego satelitarnego i naziemnego do wielu odbiorników
Multiswitch to super ważne urządzenie w systemach telewizji satelitarnej i naziemnej. Dzięki niemu można rozdzielać sygnał do kilku odbiorników jednocześnie. Jak to działa? Multiswitch dostaje sygnały z różnych źródeł, jak satelity czy anteny naziemne, a potem dzieli to na różne wyjścia. To świetne, bo w domach, gdzie masz kilka telewizorów, każdy może oglądać coś innego. A co więcej, multiswitch dba o to, żeby sygnał był jak najlepszej jakości – tak, żebyś nie miał zakłóceń, co jest całkiem istotne. W większych instalacjach, jak w blokach, multiswitchy można łączyć, co daje jeszcze większą elastyczność. Warto pamiętać, żeby dobierać multiswitch z odpowiednią liczbą wyjść, bo za mało wyjść może prowadzić do problemów z sygnałem. Takie rzeczy są istotne, żeby telewizja działała bez zarzutu.

Pytanie 40

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. EX-OR
B. OR
C. NAND
D. NOT
Odpowiedź 'NAND' jest poprawna, ponieważ bramka NAND jest uniwersalną bramką logiczną, co oznacza, że może być użyta do realizacji każdej dowolnej funkcji logicznej. W praktyce, za pomocą kombinacji bramek NAND możemy skonstruować wszystkie inne podstawowe bramki, takie jak AND, OR, oraz NOT. Użycie bramki NAND do budowy logiki cyfrowej jest standardem w branży, ponieważ pozwala na uproszczenie procesu projektowania układów logicznych. Na przykład, w projektach układów scalonych, bramki NAND często dominują ze względu na ich prostą strukturę oraz mniejsze wymagania dotyczące zasilania w porównaniu do innych bramek. W zastosowaniach takich jak mikroprocesory czy układy FPGA, bramki NAND są często wykorzystywane do optymalizacji wydajności oraz redukcji kosztów produkcji. Warto zauważyć, że teoria bramek uniwersalnych jest kluczowym elementem w nauczaniu o logice cyfrowej oraz projektowaniu systemów cyfrowych, co czyni tę wiedzę niezbędną dla inżynierów i techników w tej dziedzinie.