Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 16 maja 2025 23:58
  • Data zakończenia: 17 maja 2025 00:12

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste do badań
B. czyste
C. czyste chemicznie
D. spektralnie czyste
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 2

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 1%
B. 100%
C. 0,1%
D. 10%
Błąd względny ważenia określa stosunek błędu pomiaru do wartości mierzonej, wyrażony w procentach. W przypadku wagi o dokładności 0,1 g, oznacza to, że maksymalny błąd pomiaru przy ważeniu próbki o masie 1 g wynosi 0,1 g. Aby obliczyć błąd względny, stosujemy wzór: (błąd pomiaru / wartość mierzona) * 100%. Wstawiając dane: (0,1 g / 1 g) * 100% = 10%. Taki błąd względny jest szczególnie istotny w laboratoriach, gdzie precyzyjność pomiarów jest kluczowa, na przykład w analizach chemicznych, gdzie nawet niewielkie odchylenia mogą prowadzić do błędnych wyników. W praktyce, znajomość błędu względnego pozwala ocenić jakość pomiaru oraz dostosować metodykę ważenia do wymogów analizy. Przy wyborze wagi, warto zwrócić uwagę na jej dokładność oraz na to, w jaki sposób błąd względny wpływa na wyniki końcowe, co jest kluczowe w kontekście standardów jakości, takich jak ISO 17025.

Pytanie 3

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 ml
B. 20 dm3
C. 200 dm3
D. 200 cm3
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 4

Transportuje się pobrane próbki wody do analiz fizykochemicznych

A. w temperaturze 20±3°C, bez dostępu światła
B. w temperaturze 15±3°C, z dostępem światła
C. w temperaturze 10±3°C, z dostępem światła
D. w temperaturze 5±3°C, bez dostępu światła
Prawidłowa odpowiedź, czyli transportowanie próbek wody w temperaturze 5±3°C, bez dostępu światła, jest zgodna z najlepszymi praktykami oraz standardami laboratoryjnymi. Niska temperatura jest kluczowa, ponieważ spowalnia procesy biologiczne i chemiczne, które mogą prowadzić do zmian w składzie chemicznym próbki. Na przykład, w przypadku próbek wód powierzchniowych, wyższa temperatura może sprzyjać rozwojowi mikroorganizmów, co zafałszowałoby wyniki analizy. Dodatkowo, brak dostępu światła jest istotny dla ochrony próbek przed fotoutlenianiem i degradacją substancji organicznych, co również mogłoby wpłynąć na wiarygodność wyników. Standardy takie jak ISO 5667-3 dotyczące pobierania próbek wody zalecają właśnie takie warunki transportu, aby zminimalizować ryzyko zafałszowania wyników analiz. Stosowanie tych zasad w praktyce laboratoryjnej jest niezbędne dla uzyskania rzetelnych i powtarzalnych wyników analiz fizykochemicznych, co ma kluczowe znaczenie w monitorowaniu jakości wód. W sytuacjach, gdy próbki są transportowane na dłuższe odległości, stosuje się również odpowiednie pojemniki, które izolują próbki od wpływu czynników zewnętrznych, co w połączeniu z optymalną temperaturą i brakiem światła, zapewnia ich integralność.

Pytanie 5

Aby przygotować 500 g roztworu o stężeniu 10% (m/m), ile substancji należy odważyć?

A. 50 g substancji
B. 10 g substancji
C. 100 g substancji
D. 5 g substancji
Aby sporządzić roztwór o stężeniu 10% (m/m), należy zrozumieć, że stężenie to oznacza, że na każde 100 g roztworu przypada 10 g substancji rozpuszczonej. W przypadku przygotowywania 500 g roztworu, można obliczyć potrzebną ilość substancji, stosując proporcję. 10% z 500 g to 50 g substancji: 500 g * 0,10 = 50 g. Taki sposób obliczenia jest zgodny z zasadami chemii analitycznej, gdzie dokładność i precyzja są kluczowe. W praktyce, przygotowując roztwory, należy zawsze stosować odpowiednie wagi analityczne oraz zapewnić odpowiednie warunki do ich mieszania, aby uzyskać jednorodny roztwór. Ważne jest również, aby znać właściwości substancji, które są wykorzystywane do sporządzania roztworów, aby uniknąć niebezpieczeństw związanych z ich stosowaniem, co jest zgodne z dobrą praktyką laboratoryjną.

Pytanie 6

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. żółtym
B. niebieskim
C. czerwonym
D. jasnozielonym
Butle gazowe zawierające wodór są oznaczane kolorem czerwonym zgodnie z międzynarodowymi standardami dotyczącymi oznakowania gazów. Kolor ten ma na celu poprawne identyfikowanie rodzaju gazu oraz zwiększenie bezpieczeństwa podczas jego transportu i przechowywania. W przypadku wodoru, który jest gazem łatwopalnym i wybuchowym, prawidłowe oznakowanie jest kluczowe dla minimalizacji ryzyka wypadków. Przykładem zastosowania tej wiedzy jest praca w przemyśle chemicznym oraz podczas transportu gazów, gdzie pracownicy muszą być w stanie szybko rozpoznać rodzaj gazu, z którym mają do czynienia. W praktyce, znajomość kolorów butli pozwala na skuteczne unikanie niebezpieczeństw, takich jak nieodpowiednie łączenie gazów lub ich niewłaściwe przechowywanie. Dobre praktyki w zakresie zarządzania gazami obejmują również regularne szkolenia dla pracowników oraz stosowanie systemów monitorowania, co zwiększa bezpieczeństwo operacji związanych z gazami niebezpiecznymi.

Pytanie 7

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną i wodociągowo-kanalizacyjną
B. wodociągową i grzewczą
C. elektryczną oraz chłodniczą
D. elektryczną, próżniową oraz hydrantową
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
B. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
C. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
B. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
C. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
D. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego. Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze C1V1 = C2V2, gdzie C1 i V1 to stężenie i objętość stężonego kwasu, a C2 i V2 – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 12

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. częściowy
B. średni
C. miękki
D. twardy
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. destylacja
B. filtracja
C. dekantacja
D. krystalizacja
Destylacja to proces separacji składników mieszaniny cieczy oparty na różnicy w ich temperaturach wrzenia. W wyniku tego procesu, ciecz podgrzewana do temperatury wrzenia paruje, a następnie para jest skraplana w chłodnicy, uzyskując czysty składnik. Jest to kluczowa metoda stosowana w przemyśle chemicznym, petrochemicznym oraz w produkcji napojów alkoholowych, gdzie celem jest otrzymanie wysokiej czystości składników. Na przykład, w produkcji whisky lub wina, destylacja pozwala na oddzielenie etanolu od innych substancji, co wpływa na smak i jakość finalnego produktu. W przemyśle chemicznym, destylacja jest wykorzystywana do oczyszczania rozpuszczalników oraz produkcji chemikaliów. Stosowanie destylacji zgodnie z normami, takimi jak ISO 9001, zapewnia wysoką jakość procesów i gotowych produktów, co jest kluczowe dla bezpieczeństwa i efektywności produkcji.

Pytanie 15

W urządzeniu Soxhleta wykonuje się

A. ługowanie
B. krystalizację
C. sublimację
D. dekantację
Aparat Soxhleta jest narzędziem wykorzystywanym w laboratoriach chemicznych do procesu ługowania, czyli ekstrakcji substancji rozpuszczalnych w cieczy z materiałów stałych. Jego działanie opiera się na cyklicznym procesie, w którym rozpuszczalnik, najczęściej ciecz organiczna, jest wielokrotnie przepuszczany przez próbkę materiału. Dzięki temu można efektywnie wydobyć związek chemiczny, który jest rozpuszczalny w danym rozpuszczalniku. W praktyce, metodyka Soxhleta jest szczególnie przydatna w analizie tłuszczy, olejów, a także innych substancji organicznych. Przykładowo, w analizach żywnościowych, użycie aparatu Soxhleta pozwala na skuteczne oznaczenie zawartości tłuszczu w próbkach, co jest zgodne z normami, takimi jak ISO 6492. Dobrze przeprowadzony proces ługowania w aparacie Soxhleta charakteryzuje się wysoką efektywnością, co czyni go standardem w wielu laboratoriach zajmujących się analizą chemiczną.

Pytanie 16

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości chemicznej
B. spektralnej czystości
C. czystości drugorzędnej analitycznej
D. czystości
Odpowiedź 'cz.d.a.' oznacza 'czystość do analizy', co jest kluczowe w kontekście przygotowania roztworu wzorcowego. Użycie odczynnika chemicznego o czystości co najmniej cz.d.a. zapewnia, że jego skład chemiczny jest znany i dobrze określony, co jest fundamentalne dla uzyskania wiarygodnych wyników analiz chemicznych. W praktyce, zastosowanie reagentów o tej czystości jest powszechnie wymagane w laboratoriach analitycznych, ponieważ wszelkie zanieczyszczenia mogą prowadzić do błędnych wyników pomiarów. Na przykład w titracji, gdzie miano substancji analitycznej jest określane na podstawie reakcji z roztworem wzorcowym, jakiekolwiek zanieczyszczenie może wpływać na ilość środka titrującego potrzebnego do reakcji. Dodatkowo, standardy takie jak ISO czy ASTM podkreślają znaczenie użycia reagentów wysokiej czystości dla zapewnienia powtarzalności i dokładności analiz, co jest niezbędne w badaniach jakościowych i ilościowych. Dlatego stosowanie reagentów o czystości cz.d.a. jest nie tylko praktyką laboratoryjną, ale również wymogiem zgodności z międzynarodowymi standardami jakości.

Pytanie 17

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
B. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
C. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
D. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera co najmniej 0,05% zanieczyszczeń
B. zawiera maksymalnie 0,1% zanieczyszczeń
C. zawiera maksymalnie 0,05% zanieczyszczeń
D. zawiera co najmniej 0,1% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera maksymalnie 0,1% zanieczyszczeń jest poprawny, ponieważ termin "cz.d.a." oznacza "czystość do analizy". Standardy analityczne, takie jak te określone przez European Pharmacopoeia oraz American Chemical Society, wskazują, że substancje oznaczone jako cz.d.a. spełniają wymogi czystości, które ograniczają zawartość zanieczyszczeń. W praktyce oznacza to, że odczynniki te mogą być wykorzystywane w analizach laboratoryjnych, gdzie niska zawartość zanieczyszczeń jest kluczowa dla uzyskania dokładnych wyników. Na przykład, w chemii analitycznej, zanieczyszczenia mogą wpływać na wyniki pomiarów spektroskopowych, dlatego istotne jest, aby stosowane odczynniki były wysokiej czystości. Właściwe zrozumienie oznaczeń na etykietach odczynników chemicznych jest zatem niezbędne dla każdego, kto pracuje w laboratoriach, aby zapewnić wiarygodność wyników badań.

Pytanie 20

Wskaż definicję fiksanali?

A. Małe ampułki ze ściśle określoną masą substancji chemicznej
B. Kapsułki zawierające niewielkie ilości substancji chemicznej
C. Małe ampułki z nieokreśloną masą substancji chemicznej
D. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. piasku
B. gaśnicy pianowej
C. wody
D. gaśnicy śniegowej
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 23

Na opakowaniu fenolu umieszcza się przedstawiony na rysunku znak ostrzegawczy, który oznacza, że jest to substancja

Ilustracja do pytania
A. utleniająca.
B. drażniąca.
C. wybuchowa.
D. toksyczna.
Odpowiedź 'toksyczna' jest poprawna, ponieważ znak ostrzegawczy przedstawiający czaszkę z kośćmi skrzyżowanymi informuje o substancji, która może być niebezpieczna dla zdrowia. Fenol, jako substancja chemiczna, wykazuje wysoką toksyczność, co może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia narządów wewnętrznych oraz zagrażających życiu skutków po kontakcie z organizmem. Oznakowanie substancji chemicznych zgodnie z normami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy, laboratorjach oraz w gospodarstwach domowych. Znak ten ma na celu ostrzeżenie użytkowników o konieczności zachowania szczególnej ostrożności, stosowania odpowiednich środków ochrony osobistej, takich jak rękawice czy maski, oraz przestrzegania zaleceń dotyczących przechowywania i używania fenolu. Zrozumienie tych informacji jest niezbędne dla każdego, kto ma do czynienia z takimi substancjami w codziennej pracy lub badaniach.

Pytanie 24

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 3:2
B. 3:5
C. 2:3
D. 5:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 375,0 g lodu i 125,0 g chlorku sodu.
B. 384,6 g lodu i 115,4 g chlorku amonu.
C. 250,0 g wody i 250,0 g rodanku amonu.
D. 384,6 g wody i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. wtórna
B. średnia laboratoryjna
C. jednostkowa
D. pierwotna laboratoryjna
Odpowiedź 'średnia laboratoryjna' jest poprawna, ponieważ odnosi się do próbki, która jest reprezentatywna dla większej partii produktu. W kontekście badań laboratoryjnych, średnia laboratoryjna to zestaw próbek, które zostały pobrane z partii, a następnie połączone w celu uzyskania jednego, reprezentatywnego wyniku. Tego typu próbki są kluczowe w zapewnieniu, że wyniki analizy będą miały zastosowanie do całej partii, a nie tylko do pojedynczego elementu. Przykładowo, w przemyśle spożywczym, podczas badania jakości produktu, laboratoryjna średnia może dostarczyć informacji na temat ogólnych właściwości partii, takich jak zawartość substancji odżywczych czy obecność zanieczyszczeń. Używanie średnich laboratoryjnych jest zgodne z normami takimi jak ISO 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych oraz poprawności i wiarygodności wyników. W praktyce, stosowanie średnich laboratoryjnych pozwala na lepsze zrozumienie i kontrolę procesów produkcyjnych oraz zwiększa pewność co do jakości finalnych produktów.

Pytanie 29

Próbka laboratoryjna posiadająca cechy higroskopijne powinna być pakowana

A. w skrzynie drewniane
B. w torby jutowe
C. w torby papierowe
D. w szczelne opakowania
Odpowiedź "w hermetyczne opakowania" jest prawidłowa, ponieważ próbki laboratoryjne o właściwościach higroskopijnych wykazują silną tendencję do absorbcji wilgoci z otoczenia, co może prowadzić do ich degradacji lub zmian w składzie chemicznym. Hermetyczne opakowania zapewniają skuteczną barierę przed wilgocią, co jest kluczowe dla zachowania integralności takich próbek. Przykładem zastosowania hermetycznych opakowań są próbki soli, które muszą być przechowywane w suchym środowisku, aby uniknąć ich aglomeracji lub rozpuszczenia. Zgodnie z wytycznymi ISO 17025 dotyczącymi akredytacji laboratoriów, zaleca się stosowanie hermetycznych pojemników jako standardowej praktyki w celu zapewnienia, że wyniki analizy są wiarygodne i powtarzalne. Ponadto, hermetyczne opakowania mogą być również stosowane w transporcie próbek, co zmniejsza ryzyko ich kontaminacji i utraty właściwości.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. stapianiem
B. rozpuszczaniem
C. sublimacją
D. roztwarzaniem
Rozpuszczanie to proces, w którym substancja stała, zwana solutem, ulega rozkładowi w rozpuszczalniku, tworząc jednorodną mieszaninę, znaną jako roztwór. W czasie tego procesu, cząsteczki lub jony solutu odrywają się od sieci krystalicznej i są otaczane przez cząsteczki rozpuszczalnika. Przykładem może być rozpuszczanie soli kuchennej (NaCl) w wodzie, gdzie jony sodu i chlorkowe oddzielają się i są stabilizowane przez cząsteczki wody. Zjawisko to jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, gdzie przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzania reakcji chemicznych i analiz. Ponadto, zrozumienie rozpuszczania ma zastosowanie w technologii, farmacji, a także biotechnologii, gdzie przygotowanie odpowiednich roztworów jest niezbędne do badań i produkcji. Znajomość procesów rozpuszczania oraz czynników wpływających na ten proces, takich jak temperatura, pH czy obecność innych substancji, jest fundamentalna dla wielu praktycznych zastosowań oraz badań naukowych.

Pytanie 33

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. ciepła
B. tlenu
C. światła
D. powietrza
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 34

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Tempo sączenia
B. Wpływ przemycia osadu
C. Kolejność ważenia reagentów
D. Precyzja obliczeń wydajności
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 35

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 90 g lodu i 30 g chlorku amonu.
B. 10 g lodu i 3 g chlorku sodu.
C. 100 g lodu i 30 g chlorku amonu.
D. 150 g lodu i 50 g chlorku sodu.
Odpowiedź '150 g lodu i 50 g chlorku sodu.' jest poprawna, ponieważ odpowiada stosunkowi masowemu 3:1, co jest kluczowe przy przygotowywaniu mieszanin oziębiających. W przypadku mieszanin takich jak sól i lód, zachodzi reakcja endotermiczna, w której sól obniża temperaturę topnienia lodu, co pozwala uzyskać niską temperaturę. Zgodnie z danymi zawartymi w tabeli, dla uzyskania temperatury -21 °C, konieczne jest zastosowanie odpowiednich proporcji lodu i chlorku sodu, a 150 g lodu w połączeniu z 50 g chlorku sodu są idealnymi składnikami. Tego rodzaju mieszaniny są stosowane w różnych aplikacjach, takich jak chłodzenie w laboratoriach chemicznych, gdzie wymagana jest kontrola temperatury, a także w medycynie, gdzie stosuje się je do przechowywania próbek w niskich temperaturach. Zrozumienie tej zasady jest kluczowe w pracach laboratoryjnych i przemysłowych, gdzie kontrolowanie temperatury ma istotne znaczenie dla zachowania właściwości substancji.

Pytanie 36

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. utrwalania
B. oczyszczania
C. rozcieńczania
D. zagęszczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(V) z azotu
B. kwasu azotowego(IV) z azotu
C. kwasu azotowego(II) z azotu
D. kwasu azotowego(III) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. wytrząsarkę.
B. komplet sit.
C. krystalizator.
D. wirówkę.
W laboratoriach chemicznych oddzielanie osadu, takiego jak AgCl (chlorek srebra), od cieczy macierzystej to proces kluczowy w wielu analizach. Użycie wirówki jest najskuteczniejszym sposobem na osiągnięcie tego celu. Wirówka działa na zasadzie odśrodkowej siły, która powoduje, że cząsteczki o większej gęstości, takie jak osad AgCl, są wypychane do dołu probówki, podczas gdy ciecz, która jest mniej gęsta, pozostaje na górze. To pozwala na łatwe oddzielenie obu frakcji bez potrzeby stosowania dodatkowych metod mechanicznych. Przykładem zastosowania wirówki w laboratoriach jest przygotowanie próbek do analizy spektrofotometrycznej, gdzie precyzyjne oddzielenie osadu pozwala na dokładniejszy pomiar stężenia substancji w cieczy. Zgodnie z normami laboratoryjnymi, prawidłowe użycie wirówki zwiększa efektywność i dokładność analiz, co jest szczególnie istotne w kontekście badań jakościowych i ilościowych.