Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 maja 2025 00:15
  • Data zakończenia: 19 maja 2025 00:27

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
B. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
C. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
D. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
Wszystkie podane odpowiedzi, które nie wskazują na właściwą kolejność elementów, wynikają z nieporozumień dotyczących funkcji poszczególnych składowych oraz ich wpływu na ogólne działanie układu pneumatycznego. W przypadku układu, w którym najpierw znajduje się zawór sterujący, reduktor ciśnienia lub układ smarowania, może to prowadzić do nieodpowiedniego ciśnienia lub zanieczyszczenia powietrza, co z kolei negatywnie wpływa na wydajność i trwałość silnika pneumatycznego. Przykładowo, zainstalowanie reduktora ciśnienia przed filtrem może skutkować zanieczyszczeniem mechanizmu redukcyjnego, co doprowadzi do jego uszkodzenia. Dodatkowo, umiejscowienie układu smarowania na początku, bez uprzedniego oczyszczenia powietrza, prowadzi do wprowadzenia do układu zanieczyszczeń, które mogą zatykać smarownice, a tym samym obniżać efektywność smarowania. Właściwa kolejność montażu nie tylko zwiększa bezpieczeństwo operacyjne, ale również jest zgodna z normami branżowymi, które podkreślają znaczenie odpowiedniego przygotowania mediów roboczych w systemach pneumatycznych. Typowym błędem myślowym jest założenie, że elementy te mogą być montowane w dowolnej kolejności, co jest sprzeczne z zasadami inżynierii pneumatycznej.

Pytanie 5

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Brązowym
B. Czarnym
C. Niebieskim
D. Żółtym
W przypadku wyboru czarnego, brązowego lub żółtego koloru dla przewodu neutralnego, należy zwrócić uwagę na to, że każdy z tych kolorów jest zarezerwowany dla innych funkcji w instalacji elektrycznej. Kolor czarny jest zazwyczaj stosowany dla przewodów fazowych, a jego użycie w roli przewodu neutralnego mogłoby prowadzić do mylenia z przewodem fazowym, co stanowi poważne zagrożenie bezpieczeństwa. Z kolei brązowy, podobnie jak czarny, również identyfikuje przewody fazowe. Przewód brązowy w połączeniu z czarnym mógłby wprowadzać w błąd podczas wykonywania prac serwisowych, co zwiększa ryzyko błędów i potencjalnych wypadków. Zastosowanie koloru żółtego, który w połączeniu z zielonym jest przeznaczony dla przewodu ochronnego, również jest nieprawidłowe, ponieważ mogłoby prowadzić do niejednoznaczności w identyfikacji ochrony przeciwporażeniowej. Właściwe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z obowiązującymi normami. W związku z tym, nieprzestrzeganie tych zasad prowadzi do niebezpiecznych sytuacji, które mogą skutkować poważnymi konsekwencjami zdrowotnymi oraz materialnymi.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Towot
B. Pastę
C. Silikon
D. Olej
Odpowiedź "Olej" jest jak najbardziej w porządku, bo smarownice sprężonego powietrza właśnie do olejów są stworzone. Używa się ich, żeby dobrze smarować i chronić różne części układów pneumatycznych. Dzięki olejowi, ruchome elementy współpracują lepiej, a ich żywotność jest dłuższa. Na przykład oleje mineralne i syntetyczne to popularne wybory w urządzeniach pneumatycznych, bo poprawiają działanie narzędzi, takich jak młoty udarowe czy wkrętarki. Zgodnie ze standardem ISO 8573, odpowiednie smarowanie jest kluczowe, żeby sprzęt działał długo i nie generował wysokich kosztów utrzymania. Ważne, żeby regularnie uzupełniać olej w smarownicy, bo jego brak może prowadzić do większego zużycia części i awarii. Dobrze jest sprawdzać poziom oleju i dbać o smarownicę według wskazówek producenta.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. zmianę fazy impulsu
B. amplitudy impulsu
C. zmianę szerokości impulsu
D. częstotliwości
Odpowiedzi związane z zmianą fazy impulsu, częstotliwości czy amplitudy impulsu nie pasują do PWM. Zmiana fazy impulsu to bardziej sprawa synchronizacji sygnałów, co znajduje zastosowanie np. w komunikacji, a to nie ma związku z regulowaniem mocy czy średniego prądu w PWM. Częstotliwość w PWM właściwie zostaje taka sama, gdy zaczynasz regulować szerokość impulsu; można nią trochę bawić się, ale to nie jest kluczowa sprawa w tym temacie. Co do amplitudy impulsu, to też nie jest coś, na czym PWM się opiera - tu chodzi głównie o czas, w którym sygnał jest w stanie wysokim w odnoszeniu do całego okresu sygnału. To też błąd, jeśli mylone są różne techniki modulacji z PWM, bo każda ma swoje zasady. Fajnie by było, jakbyś rozróżniał PWM od innych metod, bo jego prawdziwą zaletą jest zarządzanie mocą bez strat, które powstają przy ciągłym włączaniu i wyłączaniu. To bardzo ważne w bardziej zaawansowanych systemach, które muszą być wydajne oraz elastyczne.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Okulary ochronne
B. Odzież ochronna
C. Rękawice ochronne
D. Buty ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.

Pytanie 13

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmniejszenia składowej stałej
B. zmiany przebiegu jednopulsowego na dwupulsowy
C. redukcji tętnień
D. zmiany przebiegu dwupulsowego na jednopulsowy
Dołączenie kondensatora równolegle do obciążenia w wyjściu jednofazowego prostownika pracującego w układzie mostka Graetza ma na celu zmniejszenie tętnień napięcia wyjściowego. Kondensator działa jak filtr, magazynując energię elektryczną podczas szczytów napięcia i oddając ją w czasie, gdy napięcie spada, co prowadzi do bardziej stabilnego poziomu napięcia. W praktyce, zmniejszenie tętnień jest kluczowe w aplikacjach, gdzie wymagane są stałe wartości napięcia, takich jak zasilanie urządzeń elektronicznych, w których wahania napięcia mogą powodować uszkodzenia komponentów. Użycie kondensatora jest zgodne z najlepszymi praktykami inżynieryjnymi, które wskazują na znaczenie filtracji w układach zasilających. Dodatkowo, zastosowanie kondensatorów o odpowiednich parametrach pojemnościowych i napięciowych, zgodnych z normami IEC 61000, przyczynia się do poprawy jakości energii elektrycznej i stabilności systemów zasilających.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
B. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
C. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
D. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
Zrozumienie zasady całkowitej zamienności w montażu jest fundamentalne dla uzyskania wysokiej jakości produktów. Wiele osób błędnie interpretuje, że montaż może opierać się na tolerancjach wymiarowych, które są zbyt szerokie, co jest odzwierciedlone w jednym z podejść, które sugeruje, że pewien procent części składowych może mieć większe tolerancje, co prowadzi do obniżenia kosztów wykonania. W rzeczywistości, taka strategia może skutkować problemami z kompatybilnością i wymiennością elementów, co narusza zasadę całkowitej zamienności. Niewłaściwe podejście do podziału obrobionych części według ich rzeczywistych wymiarów, jak sugeruje inna odpowiedź, również nie jest zgodne z najlepszymi praktykami w obszarze montażu. Każda część powinna być projektowana z myślą o tym, aby pasować do innych w zespole bez dodatkowej obróbki. Zasada ta zakłada, że części muszą być produkowane zgodnie z określonymi normami tolerancyjnymi, co zapewnia ich wymienność. Kolejna niepoprawna koncepcja dotyczy uzyskiwania wymagań dotyczących wymiarów montażowych poprzez dopasowanie jednej z części w czasie montażu. Takie podejście jest niewłaściwe, ponieważ wprowadza niepotrzebny czas i koszty oraz ryzyko błędów montażowych. Kluczowym elementem skutecznego montażu jest standaryzacja wymiarów, co pozwala na uniknięcie sytuacji wymagających dostosowań. Zrozumienie wymagań stawianych przez zasady całkowitej zamienności oraz ich zastosowanie w praktyce to krok ku zwiększeniu efektywności produkcji oraz jakości finalnych wyrobów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16

A. Steruje kierunkiem przepływu cieczy.
B. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
C. Otwiera i zamyka przepływ cieczy roboczej.
D. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
Odpowiedź jest prawidłowa, ponieważ wskazuje na podstawową funkcję urządzenia hydraulicznego, jakim jest pompa. Tabela dostarcza kluczowych informacji, takich jak wydajność oraz zakres ciśnienia, które są charakterystyczne dla pomp hydraulicznych. Wydajność 47 dm³/min przy 1450 obr/min sugeruje, że pompa jest w stanie wytwarzać odpowiednią ilość oleju, co jest niezbędne w układach hydraulicznych do zapewnienia ich właściwego działania. Przykładem zastosowania tych pomp jest ich użycie w maszynach budowlanych, takich jak koparki czy dźwigi, gdzie potrzebne jest stałe wytwarzanie strumienia oleju do napędu siłowników hydraulicznych. Zastosowanie tego typu urządzeń podlega standardom branżowym, na przykład normom ISO, które definiują parametry wydajności i bezpieczeństwa. Ponadto, w kontekście modernizacji układów hydraulicznych, wybór odpowiednich pomp jest kluczowy dla efektywności energetycznej oraz trwałości systemów hydraulicznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. membrana
B. tłumik
C. magnes stały
D. zawór dławiący
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termopary K
B. Termistora PTC
C. Termistora NTC
D. Termopary J

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Termistory NTC (Negative Temperature Coefficient) to elementy, których rezystancja maleje w miarę wzrostu temperatury. Działa to na zasadzie, że wzrost temperatury powoduje zwiększenie energii kinetycznej nośników ładunku, co prowadzi do większej przewodności elektrycznej. Przykłady zastosowania termistorów NTC obejmują czujniki temperatury w termostatach oraz systemy monitorowania temperatury w elektronice. Są one szczególnie popularne w aplikacjach wymagających precyzyjnego pomiaru temperatury oraz w obwodach zabezpieczających, gdzie mogą ograniczać prąd w przypadku przegrzania. Dobre praktyki branżowe zalecają stosowanie termistorów NTC w systemach, gdzie wymagana jest szybka reakcja na zmiany temperatury, co czyni je idealnym rozwiązaniem dla automatyki przemysłowej i systemów HVAC. Termistory NTC są również zgodne z wieloma standardami dotyczącymi pomiaru temperatury, co podnosi ich wiarygodność jako czujników.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. przełącznik obiegu
B. zawór podwójnego sygnału
C. zawór szybkiego spustu
D. zawór dławiąco zwrotny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Smarownica, filtr powietrza, reduktor
B. Reduktor, smarownica, filtr powietrza
C. Filtr powietrza, reduktor, smarownica
D. Reduktor, filtr powietrza, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 30

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 200 N
B. 2000 N
C. 2 N
D. 20 N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 200 N jest prawidłowa, ponieważ w hydraulicznych systemach podnośników działa zasada Pascala, która stwierdza, że zmiana ciśnienia w cieczy rozprzestrzenia się równomiernie we wszystkich kierunkach. W tym przypadku mamy do czynienia z tłokiem roboczym o średnicy 100 mm, co daje mu promień 50 mm. Obliczając pole powierzchni tego tłoka, używamy wzoru na pole koła: A = πr², co daje A = π(50 mm)² = 7854 mm². Tłoczek pompy z średnicą 10 mm ma promień 5 mm, więc jego pole wynosi A = π(5 mm)² = 78,5 mm². Wykorzystując równanie siły F = P*A, gdzie P to ciśnienie, możemy wyznaczyć siłę na tłoczku. Siła działająca na tłok roboczy wynosi 20 kN, czyli 20000 N. Ciśnienie w układzie obliczamy jako P = F/A = 20000 N / 7854 mm² = 2,546 N/mm². Następnie obliczamy siłę na tłoczku pompy: F = P*A = P * 78,5 mm² = 2,546 N/mm² * 78,5 mm² = 200 N. Takie obliczenia są kluczowe w inżynierii hydraulicznej, ponieważ pozwalają na prawidłowe dobieranie komponentów oraz ich późniejsze eksploatowanie zgodnie z normami bezpieczeństwa.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. obr./min
B. V/(obr./min)
C. V
D. Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Najwyższa prędkość ruchu dla poszczególnych osi.
B. Gramatura wtrysku.
C. Liczba wrzecion.
D. Dokładność pozycjonowania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 35

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. -90°
B. 0°
C. 45°
D. 90°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.

Pytanie 36

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. diody pojemnościowej
B. solenoidu
C. kondensatora
D. rezystora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensator jest elementem elektronicznym, który gromadzi ładunek elektryczny, a jego zachowanie jest określane przez szereg parametrów znamionowych, takich jak napięcie probiercze, stratność dielektryczna, dopuszczalna wartość napięcia, rezystancja izolacji oraz temperaturowy współczynnik pojemności. Napięcie probiercze odnosi się do maksymalnego napięcia, które kondensator może wytrzymać bez uszkodzeń. Stratność dielektryczna jest miarą strat energii w dielektryku, co wpływa na efektywność kondensatora. Dopuszczalna wartość napięcia to maksymalne napięcie robocze, przy którym kondensator działa prawidłowo. Rezystancja izolacji jest istotna dla przewodności dielektryka, a temperaturowy współczynnik pojemności wskazuje, jak wartość pojemności zmienia się w funkcji temperatury. W praktyce kondensatory są wykorzystywane w filtrach, układach czasowych, oraz w stabilizacji napięcia w zasilaczach, co czyni je niezbędnymi w wielu zastosowaniach elektronicznych. W branży istnieją normy, takie jak IEC 60384, które definiują wymagania dotyczące jakości i bezpieczeństwa kondensatorów.

Pytanie 37

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Spawanie
B. Nitowanie
C. Zgrzewanie
D. Klejenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 38

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. drukarka laserowa
B. silnik indukcyjny klatkowy
C. odtwarzacz płyt CD oraz DVD
D. chłodziarko-zamrażarka z cyfrowym sterowaniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik indukcyjny klatkowy to nie to samo, co urządzenie mechatroniczne. Głównie dlatego, że jest to po prostu element maszyny elektrycznej, posługujący się zasadą elektromagnetyzmu. Mechatronika natomiast łączy w sobie różne dziedziny – mechanikę, elektronikę i informatykę, skupiając się na tym, jak te elementy współpracują w różnych urządzeniach. Silniki indukcyjne są ważne w automatyzacji i w robotyce, ale raczej nie mają w sobie cyfrowych komponentów czy systemów sterujących, które charakterystyczne dla mechatroniki. Przykładami mechatronics mogą być różnego rodzaju roboty przemysłowe, inteligentne systemy transportowe, a nawet automatyczne systemy kontroli jakości. Te wszystkie wykorzystują czujniki, aktuatory i algorytmy komputerowe, żeby działać. W skrócie, zrozumienie różnicy pomiędzy tradycyjnymi elementami elektromechanicznymi a nowoczesnymi urządzeniami mechatronicznymi jest mega ważne, jeśli chcesz projektować i wdrażać skomplikowane systemy automatyzacji, które mogą poprawić wydajność i precyzję produkcji.

Pytanie 39

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, manometr
B. smarownica, filtr powietrza, zawór redukcyjny, manometr
C. filtr powietrza, zawór redukcyjny z manometrem, smarownica
D. manometr, filtr powietrza, smarownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.