Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 marca 2025 08:54
  • Data zakończenia: 19 marca 2025 09:14

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jak nazywa się jednostka danych PDU w warstwie sieciowej modelu ISO/OSI?

A. bit
B. pakiet
C. segment
D. ramka
Chociaż segment, bit i ramka są terminami używanymi w kontekście przesyłania danych, to nie odnoszą się one do warstwy sieciowej modelu ISO/OSI, co czyni je niepoprawnymi odpowiedziami. Segment odnosi się do warstwy transportowej modelu, gdzie dane są dzielone na mniejsze kawałki, aby zapewnić ich niezawodną transmisję. Protokół TCP (Transmission Control Protocol) operuje na poziomie segmentów, dodając nagłówki zarządzające kontrolą błędów i porządkiem przesyłania. Bit to najmniejsza jednostka informacji w systemie komputerowym, ale nie jest specyficzny dla żadnej warstwy modelu ISO/OSI i nie może być traktowany jako jednostka PDU. Ramka natomiast jest jednostką danych w warstwie łącza danych, gdzie dane są opakowane w ramki zawierające adresy MAC oraz inne informacje potrzebne do przesyłu w sieci lokalnej. Niezrozumienie, które jednostki danych są przypisane do odpowiednich warstw modelu OSI, może prowadzić do błędnego pojmowania struktury komunikacji sieciowej. Ważne jest, aby zrozumieć, że każda z warstw modelu OSI pełni określoną funkcję, i błędne przypisanie terminów do niewłaściwych warstw może skutkować nieefektywnym projektowaniem sieci oraz problemami w diagnostyce i zarządzaniu komunikacją. Dlatego kluczowe jest przyswojenie sobie tych podstawowych koncepcji, aby lepiej zrozumieć, jak działa cały system komunikacji w sieciach komputerowych.

Pytanie 2

Kable światłowodowe nie są szeroko używane w lokalnych sieciach komputerowych z powodu

A. znacznych strat sygnału podczas transmisji
B. niskiej przepustowości
C. wysokich kosztów elementów pośredniczących w transmisji
D. niskiej odporności na zakłócenia elektromagnetyczne
Kable światłowodowe są uznawane za zaawansowane rozwiązanie w zakresie transmisji danych, jednak ich zastosowanie w lokalnych sieciach komputerowych bywa ograniczone z powodu dużych kosztów elementów pośredniczących w transmisji. Elementy te, takie jak przełączniki światłowodowe, konwertery mediów oraz panele krosowe, są droższe niż ich odpowiedniki dla kabli miedzianych. W praktyce, przy niewielkim zasięgu i ograniczonej liczbie urządzeń w lokalnych sieciach, inwestycja w światłowody nie zawsze jest uzasadniona ekonomicznie. Niemniej jednak, w przypadkach wymagających wysokiej przepustowości i niskich opóźnień, takich jak centra danych czy sieci szkieletowe, kable światłowodowe wykazują swoje zalety. Stanowią one standard w projektowaniu nowoczesnych rozwiązań telekomunikacyjnych, zapewniając nie tylko odpowiednią przepustowość, ale również znacznie mniejsze straty sygnału na dużych odległościach, co czyni je nieprzecenionym elementem infrastruktury IT.

Pytanie 3

Jaką maksymalną liczbę adresów można przypisać urządzeniom w sieci 10.0.0.0/22?

A. 1024 adresy
B. 512 adresów
C. 510 adresów
D. 1022 adresy
W sieci o masce /22, mamy do dyspozycji 2^(32-22) = 2^10 = 1024 adresy IP. Jednakże, w każdej sieci IP, dwa adresy są zarezerwowane: jeden dla adresu sieci (w tym przypadku 10.0.0.0) oraz jeden dla adresu rozgłoszeniowego (broadcast) (10.0.3.255). Z tego powodu liczba dostępnych adresów dla hostów wynosi 1024 - 2 = 1022. W praktyce oznacza to, że w tak skonfigurowanej sieci można przydzielić 1022 urządzenia, co jest przydatne w wielu zastosowaniach, takich jak większe organizacje, gdzie potrzeba komunikacji w ramach lokalnych podsieci jest istotna. Używanie właściwej klasy adresów IP oraz odpowiedniego maskowania jest kluczowe w planowaniu sieci, co zapobiega marnotrawieniu adresów i pozwala na lepsze zarządzanie zasobami w sieciach o różnych rozmiarach.

Pytanie 4

Które polecenie w systemie Windows Server 2008 pozwala na przekształcenie serwera w kontroler domeny?

A. gpresult
B. nslookup
C. dcpromo
D. gpedit
Wybór innych opcji, takich jak gpedit, gpresult i nslookup, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowania w kontekście zarządzania domenami w systemie Windows Server. Narzędzie gpedit (Group Policy Editor) służy do zarządzania politykami grupowymi, które definiują ustawienia konfiguracyjne dla systemu operacyjnego i aplikacji w sieci. Chociaż przydatne w zarządzaniu politykami, nie jest odpowiednie do promowania serwera do roli kontrolera domeny, ponieważ nie oferuje możliwości konfiguracji Active Directory. Z kolei gpresult (Group Policy Result) jest używane do zbierania informacji na temat polityk grupowych, które zostały zastosowane do określonego użytkownika lub komputera, ale również nie ma związku z promowaniem serwera. Z kolei narzędzie nslookup jest wykorzystywane do diagnozowania problemów związanych z systemem DNS (Domain Name System) poprzez zapytania o rekordy DNS, co jest istotne w kontekście rozwiązywania problemów z dostępnością zasobów, ale nie ma zastosowania w procesie promowania serwera. Zrozumienie tych narzędzi jest ważne, ponieważ ich mylne stosowanie w kontekście promowania serwera do roli kontrolera domeny może prowadzić do nieefektywnego zarządzania infrastrukturą oraz błędów, które mogą wpłynąć na bezpieczeństwo i wydajność całej sieci.

Pytanie 5

Czym jest procesor Athlon 2800+?

A. procesor marki Intel pracujący z częstotliwością 2,8 GB
B. procesor stworzony przez firmę AMD, którego wydajność jest zbliżona do wydajności procesora Pentium 4 o częstotliwości 2,8 GHz
C. procesor wyprodukowany przez firmę AMD o częstotliwości 2,8 GB
D. procesor marki Intel, którego wydajność przypomina procesor Pentium 4 o częstotliwości 2,8 GHz
Nieprawidłowe odpowiedzi sugerują nieścisłości dotyczące producenta procesora oraz jego specyfikacji. Przykładem jest mylne przypisanie procesora Athlon 2800+ do firmy Intel. To fundamentalny błąd, ponieważ Athlon jest produktem AMD, a nie Intela. Takie nieporozumienie może wynikać z ogólnej nieznajomości architektury procesorów, a także ich ewolucji na rynku. Dodatkowo, stwierdzenie o taktowaniu 2,8 GB jest technicznie błędne, ponieważ typowe taktowanie procesora wyrażane jest w gigahercach (GHz), a nie w gigabajtach (GB), co wskazuje na podstawowy brak zrozumienia jednostek miary używanych w kontekście technologii komputerowej. Kolejnym typowym błędem jest nieprawidłowe porównywanie wydajności procesorów bez uwzględnienia różnic w architekturze i technologii produkcji. Procesory AMD i Intel, mimo że mogą mieć podobne oznaczenia, różnią się znacznie w sposobie działania i architekturze, co wpływa na ich rzeczywistą wydajność w aplikacjach. Zrozumienie tych różnic jest kluczowe dla wyboru odpowiedniego rozwiązania sprzętowego w kontekście konkretnych zastosowań, takich jak gry, obróbka wideo czy aplikacje biurowe. W rezultacie, wiedza na temat producentów, architektur oraz specyfikacji procesorów jest niezbędna dla prawidłowego doboru komponentów komputerowych, co jest zgodne z dobrymi praktykami w branży IT.

Pytanie 6

Kiedy podczas startu systemu z BIOSu firmy AWARD komputer wyemitował długi dźwięk oraz dwa krótkie, to oznacza, że wystąpił błąd?

A. karty graficznej
B. kontrolera klawiatury
C. płyty głównej
D. pamięci FLASH - BIOS
Odpowiedzi związane z błędami płyty głównej, pamięci FLASH - BIOS oraz kontrolera klawiatury są niepoprawne. Problemy związane z płytą główną mogą objawiać się różnorodnymi sygnałami, ale długi sygnał i dwa krótkie sygnały najczęściej nie są z nimi związane. Odpowiedzi te odzwierciedlają typowe błędy myślowe, takie jak mylenie symptomów. Płyta główna, chociaż kluczowym komponentem, nie sygnalizuje problemów w taki sposób. Co więcej, błędy pamięci FLASH - BIOS nie są sygnalizowane przez długie i krótkie sygnały; te są bardziej związane z uszkodzeniem BIOS-u, które zazwyczaj objawia się innymi sygnałami, takimi jak ciągłe piszczenie. Również kontroler klawiatury, który ma swoje własne sygnały diagnostyczne, nie jest powiązany z długim sygnałem i dwoma krótkimi. Zrozumienie, jak BIOS interpretuje i sygnalizuje problemy, jest kluczowe w diagnostyce komputerowej, co pozwala na skuteczniejsze rozwiązywanie problemów sprzętowych. Warto zatem dokładnie zaznajomić się z dokumentacją dotyczącą sygnalizacji POST oraz standardami diagnostycznymi, aby uniknąć pomyłek w przyszłości.

Pytanie 7

Jakie jest zadanie usługi DNS?

A. konwersja nazw domenowych na adresy IP
B. konwersja adresów IP na nazwy domenowe
C. weryfikacja poprawności adresów domenowych
D. weryfikacja poprawności adresów IP
Usługa DNS (Domain Name System) jest fundamentalnym elementem infrastruktury internetu, odpowiadającym za translację nazw domenowych na adresy IP. Dzięki DNS użytkownicy mogą korzystać z łatwych do zapamiętania nazw domen, takich jak www.przyklad.pl, zamiast skomplikowanych ciągów liczb, które są adresami IP (np. 192.168.1.1). Proces ten nie tylko ułatwia korzystanie z internetu, ale również zwiększa efektywność, ponieważ umożliwia szybsze i bardziej intuicyjne przeszukiwanie zasobów online. W praktycznym zastosowaniu, gdy użytkownik wpisuje adres strony w przeglądarkę, jego komputer wysyła zapytanie do serwera DNS, który następnie odpowiada odpowiednim adresem IP. W odpowiedzi zawarte jest również zarządzanie strefami DNS, co pozwala na delegowanie odpowiedzialności za różne poddomeny. Warto zaznaczyć, że standardy DNS (RFC 1034 i RFC 1035) definiują sposób działania tego systemu, co zapewnia jego interoperacyjność i stabilność. Zrozumienie roli DNS jest kluczowe dla administratorów sieci oraz specjalistów IT, ponieważ błędne skonfigurowanie usług DNS może prowadzić do problemów z dostępem do stron internetowych czy usług online.

Pytanie 8

Czym jest licencja OEM?

A. licencja, która czyni oprogramowanie własnością publiczną, na mocy której twórcy oprogramowania zrzekają się praw do jego rozpowszechniania na rzecz wszystkich użytkowników
B. licencja oprogramowania ograniczona tylko do systemu komputerowego, na którym zostało pierwotnie zainstalowane, dotyczy oprogramowania sprzedawanego razem z nowymi komputerami lub odpowiednimi komponentami
C. dokument, który umożliwia używanie oprogramowania na różnych sprzętach komputerowych w określonej w niej liczbie stanowisk, bez potrzeby instalacyjnych dyskietek czy płyt CD
D. licencja, która pozwala użytkownikowi na zainstalowanie zakupionego oprogramowania tylko na jednym komputerze, z zakazem udostępniania tego oprogramowania w sieci oraz na innych niezależnych komputerach
Wiele osób może błędnie sądzić, że licencje OEM pozwalają na dowolne wykorzystywanie oprogramowania na różnych komputerach, co jest nieprawdziwe. Licencja OEM jest ściśle związana z danym urządzeniem, co stanowi kluczową różnicę w porównaniu do bardziej elastycznych licencji, które mogą być przenoszone między różnymi systemami. Niektórzy mogą mylić licencję OEM z licencją open source, zakładając, że obie umożliwiają swobodny dostęp i instalację oprogramowania na różnych urządzeniach. W rzeczywistości licencje open source pozwalają użytkownikom na modyfikację oraz dystrybucję oprogramowania, co jest całkowicie sprzeczne z zasadami licencji OEM, która ogranicza użycie do pierwotnego komputera. Istnieje również nieporozumienie dotyczące liczby stanowisk objętych licencją. Licencje OEM nie zezwalają na instalację oprogramowania na wielu komputerach bez dodatkowych zakupów, co jest istotne w kontekście organizacji, które mogą myśleć o wdrożeniu oprogramowania na wielu stanowiskach. Dodatkowo, niektóre osoby mogą uważać, że licencje OEM są bardziej kosztowne niż inne typy licencji, co jest fałszywe, gdyż często są one tańsze. Zrozumienie różnic między różnymi rodzajami licencji, takimi jak OEM, open source, czy licencje na wielu użytkowników, jest kluczowe dla prawidłowego korzystania z oprogramowania i unikania problemów prawnych związanych z niezgodnym użyciem.

Pytanie 9

Oprogramowanie, które jest dodatkiem do systemu Windows i ma na celu ochronę przed oprogramowaniem szpiegującym oraz innymi niechcianymi elementami, to

A. Windows Home Server
B. Windows Defender
C. Windows Azure
D. Windows Embedded
Windows Home Server, Windows Azure oraz Windows Embedded to inne komponenty systemu Windows, które pełnią różne funkcje, lecz nie są narzędziami dedykowanymi do ochrony przed oprogramowaniem szpiegującym. Windows Home Server był rozwiązaniem skoncentrowanym na zarządzaniu plikami w domowych sieciach, umożliwiającym centralne przechowywanie i udostępnianie danych, co sprawia, że nie zawierał w sobie funkcji zabezpieczających przed szkodliwym oprogramowaniem. W przypadku Windows Azure, jest to platforma chmurowa oferująca usługi obliczeniowe i hostingowe, skupiona na dostarczaniu zasobów w chmurze, a nie na lokalnej ochronie systemu. To podejście do ochrony nie jest zgodne z zaleceniami branżowymi, które sugerują, aby użytkownicy korzystali z dedykowanych narzędzi zabezpieczających. Windows Embedded to z kolei system operacyjny przeznaczony dla urządzeń wbudowanych, takich jak sprzęt przemysłowy, gdzie nie ma na celu zapewnienia ochrony przed złośliwym oprogramowaniem w tradycyjnym sensie. Wybór tych rozwiązań zamiast Windows Defender może prowadzić do poważnych luk w zabezpieczeniach, co stwarza ryzyko infekcji i utraty danych. Kluczowe jest zrozumienie różnicy między funkcjami poszczególnych produktów, co może zapobiec podejmowaniu błędnych decyzji w zakresie zabezpieczeń komputerowych.

Pytanie 10

Jak określa się w systemie Windows profil użytkownika, który jest tworzony przy pierwszym logowaniu do komputera i zapisywany na lokalnym dysku twardym, a wszelkie jego modyfikacje dotyczą tylko tego konkretnego komputera?

A. Obowiązkowy
B. Czasowy
C. Lokalny
D. Przenośny
Odpowiedzi "Mobilny", "Tymczasowy" oraz "Obowiązkowy" nie są poprawne, ponieważ każda z nich odnosi się do innego rodzaju profilu użytkownika w systemie Windows, który różni się znacząco od profilu lokalnego. Profil mobilny jest tworzony, gdy użytkownik potrzebuje dostępu do swoich danych i ustawień na różnych komputerach w sieci, co oznacza, że zmiany wprowadzone na jednym komputerze synchronizują się na innych. To podejście jest przydatne w przypadkach, gdy użytkownicy często zmieniają miejsca pracy lub korzystają z różnych stacji roboczych, jednak nie jest stosowane do profili lokalnych, które są ograniczone do jednego urządzenia. Profil tymczasowy jest tworzone, gdy system Windows nie może załadować profilu użytkownika, co skutkuje tym, że użytkownik ma dostęp jedynie do ograniczonego zestawu funkcji i ustawień. Użytkownik nie może wprowadzać trwałych zmian w tym profilu, co czyni go nieodpowiednim dla osób oczekujących spersonalizowanego środowiska pracy. Z kolei profil obowiązkowy to profil, który jest zarządzany przez administratora systemu i nie pozwala użytkownikom na wprowadzanie trwałych zmian; zmiany są resetowane przy każdym logowaniu. To stwarza zamieszanie, ponieważ użytkownicy mylą go z profilem lokalnym, który jest bardziej elastyczny i pozwala na pełną personalizację. Typowe błędy myślowe obejmują mylenie tych funkcji i niepełne rozumienie koncepcji zarządzania profilami, co prowadzi do nieprecyzyjnych wniosków na temat ich zastosowania.

Pytanie 11

Jaką konfigurację sieciową może mieć komputer, który należy do tej samej sieci LAN, co komputer z adresem 10.8.1.10/24?

A. 10.8.1.101 i 255.255.255.0
B. 10.8.0.101 i 255.255.255.0
C. 10.8.1.101 i 255.255.0.0
D. 10.8.0.101 i 255.255.0.0
Wybór konfiguracji 10.8.0.101 z maską 255.255.255.0 jest niewłaściwy, ponieważ adres 10.8.0.101 należy do innej podsieci. Maska 255.255.255.0 umożliwia komunikację jedynie między adresami w zakresie 10.8.1.1 do 10.8.1.254, a adres 10.8.0.101 mieści się w innej podsieci, co oznacza brak możliwości bezpośredniej komunikacji z komputerem o adresie 10.8.1.10. Podobnie, adres 10.8.0.101 przy masce 255.255.0.0 również jest nieprawidłowy, gdyż maska ta obejmuje znacznie szerszy zakres adresów IP, ale nie zapewnia odpowiedniej identyfikacji podsieci, do której należy komputer 10.8.1.10. Maski podsieci 255.255.0.0 i 255.255.255.0 różnią się w zakresie liczby dostępnych adresów, co może prowadzić do nieporozumień w dużych sieciach, gdzie ważne jest precyzyjne przyporządkowanie adresów do podsieci. Typowym błędem jest zakładanie, że urządzenia mogą się komunikować tylko na podstawie podobieństwa części adresu niepodzielonej maski, co prowadzi do błędnych wniosków o ich przynależności do jednej sieci. Właściwe zrozumienie koncepcji adresacji IP oraz odpowiednie stosowanie masek podsieci są kluczowe dla zapewnienia efektywnej i stabilnej komunikacji w sieciach komputerowych.

Pytanie 12

Dodatkowe właściwości rezultatu operacji przeprowadzanej przez jednostkę arytmetyczno-logiczne ALU obejmują

A. licznik instrukcji
B. wskaźnik stosu
C. akumulator
D. rejestr flagowy
Rejestr flagowy, znany również jako rejestr statusu, odgrywa kluczową rolę w jednostce arytmetyczno-logicznej (ALU), ponieważ przechowuje dodatkowe informacje dotyczące wyniku operacji arytmetycznych i logicznych. Przykładowo, po wykonaniu operacji dodawania, rejestr flagowy może zaktualizować flagę przeniesienia, informując system o tym, że wynik przekroczył maksymalną wartość, jaką można reprezentować w danym formacie danych. Tego typu informacje są niezbędne w kontekście dalszych operacji, aby zapewnić, że procesory mogą podejmować decyzje oparte na wynikach wcześniejszych obliczeń. Zastosowanie rejestru flagowego jest kluczowe w programowaniu niskopoziomowym i architekturze komputerów, gdzie pozwala na efektywne zarządzanie przepływem programu dzięki warunkowym instrukcjom skoku, które mogą zmieniać swoje zachowanie w zależności od stanu flag. Na przykład, w językach asemblerowych, instrukcje skoku warunkowego mogą sprawdzać flagi w rejestrze flagowym, aby zdecydować, czy kontynuować wykonywanie programu, czy przejść do innej sekcji kodu, co jest fundamentalne dla efektywnego zarządzania kontrolą przepływu.

Pytanie 13

Najskuteczniejszym sposobem na ochronę komputera przed wirusami jest zainstalowanie

A. zapory FireWall
B. hasła do BIOS-u
C. licencjonowanego systemu operacyjnego
D. skanera antywirusowego
Wprowadzenie hasła dla BIOS-u może niby zwiększyć bezpieczeństwo systemu przez zablokowanie nieautoryzowanego dostępu do ustawień komputera, ale to nie pomoże w obronie przed wirusami czy złośliwym oprogramowaniem. Hasło BIOS tak naprawdę chroni głównie sprzęt, a nie system operacyjny przed zagrożeniami. Licencjonowany system operacyjny może ograniczyć ryzyko ataków, bo zapewnia regularne aktualizacje i wsparcie, ale nie zastąpi dobrego oprogramowania antywirusowego. Bez aktywnego skanera antywirusowego, komputer i tak może być narażony na różne zagrożenia, jak wirusy, robaki czy ransomware, które mogą naprawdę namieszać. A co do zapory FireWall, to jest narzędzie do kontroli ruchu sieciowego i może pomóc w blokowaniu podejrzanych połączeń, ale samo nie potrafi identyfikować i usuwać złośliwego oprogramowania. Wiele osób myli te funkcje i myśli, że wystarczy zainstalować jedno rozwiązanie, żeby komputer był bezpieczny. To podejście jest, moim zdaniem, niebezpieczne, bo skuteczna ochrona wymaga zintegrowanej strategii z wieloma warstwami zabezpieczeń, jak skaner antywirusowy, zapora oraz regularne uaktualnienia systemu. Rozumienie różnicy między tymi mechanizmami jest kluczowe, żeby dobrze zabezpieczyć swoje dane i system operacyjny.

Pytanie 14

Jakie zastosowanie ma oprogramowanie Microsoft Hyper-V?

A. rozpoznawania komputera w sieci
B. łączenia się z innym hostem zdalnie
C. wirtualizacji rzeczywistych komputerów
D. znajdowania zasobów w sieci
Twoja odpowiedź na temat funkcji Hyper-V pokazuje pewne nieporozumienie. Wybierając opcje związane z identyfikacją komputera w sieci czy lokalizacją zasobów, pomyliłeś rzeczy. Hyper-V nie działa jako narzędzie do zarządzania adresami IP ani nazwami komputerów. To nie jest jego zadanie. Takie rzeczy robią protokoły jak DHCP czy DNS, a one nie mają nic wspólnego z wirtualizacją. Jeśli chodzi o lokalizację zasobów, to wykorzystuje się do tego inne mechanizmy, jak SMB czy NFS. Co do zdalnego połączenia z innym hostem, to choć maszyny wirtualne z Hyper-V mogą się łączyć, to sam Hyper-V tym się nie zajmuje. Zdalne połączenia realizowane są przez protokoły jak RDP czy SSH. Te niejasności mogą wynikać z mylenia roli wirtualizacji z innymi aspektami sieci. Chodzi o to, że Hyper-V służy do tworzenia i zarządzania maszynami wirtualnymi, a nie do zarządzania siecią. Dlatego ważne jest, żeby dobrze zrozumieć, jak to wszystko działa, żeby wykorzystać jego pełny potencjał w firmach.

Pytanie 15

Dane z twardego dysku HDD, którego sterownik silnika SM jest uszkodzony, można odzyskać

A. za pomocą polecenia fixmbr
B. przy użyciu programu do odzyskiwania danych, na przykład TestDisk
C. dzięki wymianie płytki z elektroniką dysku na inną z tego samego modelu
D. poprzez wymianę silnika SM
Odzyskiwanie danych z dysku twardego HDD z uszkodzonym sterownikiem silnika SM wymaga zastosowania metod, które uwzględniają specyfikę uszkodzeń. Wymiana silnika SM, mimo że wydaje się logiczna, w praktyce jest bardzo trudna i często niemożliwa bez specjalistycznego sprzętu. Silnik SM jest zsynchronizowany z firmwarem dysku i wymiana go na inny, nawet tego samego modelu, może prowadzić do dalszych uszkodzeń lub całkowitej utraty danych. Podobnie, użycie polecenia fixmbr jest nieodpowiednie w tym kontekście, gdyż to narzędzie jest przeznaczone do naprawy struktur partycji w systemie Windows, a nie do odzyskiwania danych na poziomie fizycznym dysku. Posiadając uszkodzenie na poziomie elektroniki, nawet przy użyciu tego polecenia użytkownik nie jest w stanie odczytać danych, które są niedostępne z powodu problemów sprzętowych. Z kolei zewnętrzne programy do odzyskiwania danych, takie jak TestDisk, są skuteczne jedynie wtedy, gdy struktura plików lub partycji jest uszkodzona, a nie w przypadku uszkodzeń hardware'owych. Często prowadzi to do mylnego przekonania, że oprogramowanie może zdziałać cuda w przypadkach, gdzie wymagana jest interwencja serwisowa. Właściwe zrozumienie, kiedy należy stosować konkretne metody odzyskiwania danych, jest kluczowe w pracy z uszkodzonymi dyskami twardymi.

Pytanie 16

Jakie polecenie pozwala na uzyskanie adresów fizycznych dla kart sieciowych w systemie?

A. pathping
B. getmac
C. arp -a
D. ping
Odpowiedzi takie jak 'pathping', 'arp -a' i 'ping' są niepoprawne, ponieważ każde z tych poleceń ma inne zastosowanie w kontekście zarządzania siecią. Polecenie 'pathping' łączy funkcjonalność 'ping' i 'tracert', umożliwiając analizę trasy i opóźnienia do docelowego hosta, ale nie dostarcza informacji o adresach MAC kart sieciowych. Użycie tego polecenia może prowadzić do mylnych założeń, zwłaszcza w kontekście identyfikacji urządzeń w sieci. Z kolei 'arp -a' wyświetla tabelę ARP, która pokazuje powiązania między adresami IP a adresami MAC w danym lokalnym segmencie sieci, ale wymaga wcześniejszego pobrania tych informacji przez inne polecenia, a nie jest bezpośrednim narzędziem do ich uzyskiwania. Natomiast 'ping' jest narzędziem diagnostycznym, które sprawdza dostępność innego hosta w sieci, ale również nie dostarcza informacji o adresach MAC. Typowym błędem myślowym jest zakładanie, że wszystkie polecenia sieciowe mogą dostarczać tych samych rodzajów informacji, co pokazuje, jak ważne jest zrozumienie różnic w ich funkcjonalności oraz zastosowania w praktyce. Wiedza na temat każdego z tych poleceń pomaga lepiej zarządzać siecią i diagnostyką problemów, ale kluczowe jest ich właściwe stosowanie w kontekście konkretnych potrzeb.

Pytanie 17

Aby podłączyć kabel w module Keystone, jakie narzędzie należy zastosować?

A. narzędzie ręczne do zaciskania
B. narzędzie uderzeniowe
C. wkrętak typu Torx
D. bit imbusowy
Praska ręczna, wkrętak typu Torx oraz bit imbusowy to narzędzia, które mogą być używane w różnych kontekstach związanych z instalacjami elektrycznymi i datowymi, ale nie są one właściwe do podłączenia kabli w module Keystone. Użycie praski ręcznej, choć może wydawać się logiczne, nie zapewnia odpowiedniej precyzji i może prowadzić do uszkodzenia kabli lub modułu. Praska służy zazwyczaj do zaciskania wtyków RJ-45 na końcówkach kabli, a więc nie jest przeznaczona do efektywnego wpinania przewodów w moduł Keystone, który wymaga zastosowania narzędzia uderzeniowego. Co więcej, wkrętak typu Torx oraz bit imbusowy są narzędziami stosowanymi do montażu lub demontażu elementów przykręcanych, ale nie mają zastosowania w kontekście podłączania kabli. Powszechnym błędem jest mylenie różnych narzędzi ze względu na ich zastosowanie, co może prowadzić do niewłaściwych decyzji w trakcie instalacji. Właściwe podejście do wyboru narzędzi jest kluczowe dla uzyskania trwałych i bezpiecznych połączeń, dlatego zaleca się stosowanie narzędzi zgodnych z zaleceniami producentów oraz standardami branżowymi.

Pytanie 18

W drukarce laserowej do trwałego utrwalania druku na papierze wykorzystuje się

A. promienie lasera
B. głowice piezoelektryczne
C. rozgrzane wałki
D. bęben transferowy
Wydawać by się mogło, że inne komponenty drukarki laserowej również pełnią ważne funkcje w procesie wydruku, jednak nie są one odpowiedzialne za utrwalanie obrazu na papierze. Głowice piezoelektryczne, które są elementem stosowanym głównie w drukarkach atramentowych, działają na zasadzie zmiany kształtu pod wpływem napięcia, co pozwala na precyzyjne wyrzucanie kropli atramentu na papier. To podejście nie znajduje zastosowania w technologii druku laserowego, gdzie zamiast tego wykorzystuje się tonery i proces elektrofotograficzny. Bęben transferowy pełni inną rolę – jest odpowiedzialny za przenoszenie obrazu z bębna światłoczułego na papier, ale nie jest on elementem, który utrwala toner na papierze. Promienie lasera, z drugiej strony, są kluczowe do naświetlania bębna światłoczułego i tworzenia obrazu, ale nie mają wpływu na sam proces utrwalania. Typowym błędem myślowym jest utożsamianie różnych funkcji komponentów drukujących, co może prowadzić do mylnego przekonania, że inne elementy, takie jak laser czy bęben transferowy, również przyczyniają się do trwałości wydruku. Zrozumienie, że każdy z elementów drukarki laserowej ma swoje unikalne zadanie, jest kluczowe dla efektywnego korzystania z tej technologii oraz dla optymalizacji procesów drukowania w środowisku biurowym.

Pytanie 19

Na ilustracji widoczna jest pamięć operacyjna

Ilustracja do pytania
A. SIMM
B. SDRAM
C. RIMM
D. RAMBUS
SIMM to starszy typ modułu pamięci który charakteryzował się mniejszą liczbą pinów i niższymi prędkościami przesyłu danych. Były używane głównie w komputerach w latach 80. i 90. XX wieku. Przejście na moduły DIMM w tym SDRAM miało na celu zwiększenie wydajności poprzez większą liczbę pinów oraz jednoczesne przesyłanie danych z większą prędkością. RAMBUS to technologia pamięci opracowana w latach 90. która oferowała wysoką przepustowość danych. Pomimo swojej potencjalnej wydajności RAMBUS nie zdobyła szerokiej popularności ze względu na wysokie koszty licencyjne i konkurencję ze strony tańszych rozwiązań takich jak SDRAM. RIMM to forma modułów pamięci używana w technologii RAMBUS. Chociaż oferowała dużą przepustowość w teorii praktyczne zastosowanie okazało się ograniczone z powodu wysokich kosztów oraz relatywnie niewielkiej wydajności w porównaniu do rozwijających się standardów SDRAM. Błędne odpowiedzi często wynikają z mylenia tych technologii z bardziej popularnymi i wydajnymi rozwiązaniami jak SDRAM który zdominował rynek dzięki optymalnemu stosunkowi ceny do wydajności oraz kompatybilności z szeroką gamą urządzeń komputerowych.

Pytanie 20

Użytkownik o nazwie Gość należy do grupy o nazwie Goście. Grupa Goście jest częścią grupy Wszyscy. Jakie ma uprawnienia użytkownik Gość w folderze test1?

Ilustracja do pytania
A. Użytkownik Gość ma pełne uprawnienia do folderu test1
B. Użytkownik Gość nie ma uprawnień do folderu test1
C. Użytkownik Gość posiada tylko uprawnienia zapisu do folderu test1
D. Użytkownik Gość ma uprawnienia tylko do odczytu folderu test1
W systemach operacyjnych, takich jak Windows, uprawnienia do folderów i plików są zarządzane poprzez przypisywanie ich użytkownikom i grupom. Użytkownik Gość, jako członek grupy Goście, dziedziczy uprawnienia przypisane tej grupie. Na załączonym obrazku widać, że grupa Goście ma odmówione wszelkie uprawnienia do folderu test1. W praktyce oznacza to, że żadna operacja, taka jak odczyt, zapis czy zmiana, nie jest dozwolona dla użytkowników tej grupy. Zasada dziedziczenia uprawnień oznacza, że jeśli grupa, do której należy użytkownik, ma odmówione uprawnienia, to pojedynczy użytkownik także ich nie posiada, chyba że ma nadane uprawnienia indywidualne, co tutaj nie ma miejsca. To podejście do zarządzania uprawnieniami jest zgodne z najlepszymi praktykami, które zalecają minimalizację dostępu do niezbędnego minimum, co zwiększa bezpieczeństwo systemu. Dzięki temu administracja dostępem do zasobów jest bardziej przewidywalna i łatwiejsza w zarządzaniu, a użytkownicy nie mają niepotrzebnych lub nieintencjonalnych uprawnień.

Pytanie 21

Jednym z zaleceń w zakresie ochrony przed wirusami jest przeprowadzanie skanowania całego systemu. W związku z tym należy skanować komputer

A. tylko po zaktualizowaniu baz danych oprogramowania antywirusowego
B. jedynie w sytuacji, gdy w systemie nie działa monitor antywirusowy
C. wyłącznie w przypadkach, gdy istnieje podejrzenie infekcji wirusem
D. regularnie, na przykład co siedem dni
Skanowanie całego komputera systematycznie, na przykład raz w tygodniu, jest kluczowym zaleceniem w zakresie ochrony antywirusowej i zabezpieczania systemu przed zagrożeniami. Regularne skanowanie pozwala na wczesne wykrywanie i eliminowanie potencjalnych wirusów oraz innych szkodliwych programów, zanim zdążą one wyrządzić poważne szkody. Przykładowo, wiele złośliwych oprogramowań potrafi się ukrywać w systemie przez dłuższy czas, a ich działanie może być wykryte dopiero po pewnym czasie. Dlatego skanowanie w regularnych odstępach czasu, zgodnie z dobrymi praktykami branżowymi, takimi jak zalecenia NIST (National Institute of Standards and Technology) dotyczące zarządzania ryzykiem, zapewnia, że system jest stale monitorowany i zabezpieczony. Dodatkowo warto zaznaczyć, że niektóre programy antywirusowe oferują funkcje automatycznego skanowania, które można skonfigurować do działania w wybranych porach, co ułatwia przestrzeganie tego zalecenia.

Pytanie 22

Na zdjęciu widać kartę

Ilustracja do pytania
A. telewizyjną z interfejsem ISA
B. telewizyjną z interfejsem PCI
C. dźwiękową z interfejsem PCI
D. sieciową z interfejsem ISA
Karta telewizyjna ze złączem PCI jest urządzeniem pozwalającym komputerowi odbierać sygnał telewizyjny. Złącze PCI (Peripheral Component Interconnect) jest standardem stosowanym do łączenia urządzeń dodatkowych z płytą główną komputera. Karty telewizyjne umożliwiają oglądanie telewizji na ekranie komputera, a także nagrywanie programów telewizyjnych. Ten rodzaj kart jest szczególnie użyteczny w sytuacjach, gdzie wymagane jest oglądanie telewizji w miejscach, gdzie nie ma dostępu do tradycyjnego odbiornika. Karty te obsługują różne standardy nadawania takie jak NTSC, PAL i SECAM, co pozwala na ich szerokie zastosowanie w różnych regionach geograficznych. Wykorzystanie złącza PCI zapewnia większą przepustowość danych oraz możliwość instalacji w większości komputerów osobistych. Instalowanie i konfigurowanie karty telewizyjnej wymaga zrozumienia specyfikacji sprzętowej oraz kompatybilności z systemem operacyjnym. Dzięki zastosowaniu standardowych złączy, takich jak PCI, użytkownik ma możliwość łatwej wymiany kart na nowsze wersje, co jest zgodne z dobrymi praktykami modernizacji sprzętu komputerowego. Zastosowanie karty telewizyjnej w komputerze osobistym jest także przykładem integracji multimediów w jedno urządzenie, co zwiększa jego funkcjonalność i wszechstronność zastosowań.

Pytanie 23

Zawarty w listingach kod zawiera instrukcje pozwalające na

Switch>enable
Switch#configure terminal
Switch(config)#interface range fastEthernet 0/1-10
Switch(config-if-range)#switchport access vlan 10
Switch(config-if-range)#exit

A. zmianę prędkości dla portu 0/1 na fastethernet
B. utworzenie wirtualnej sieci lokalnej o nazwie vlan 10 na przełączniku
C. przypisanie nazwy fastEthernet pierwszym dziesięciu portom switcha
D. wyłączenie portów 0 i 1 ze sieci vlan
Zmiana ustawienia prędkości dla portu nie jest wspomniana w przedstawionym listing'u, ponieważ żadne z poleceń nie odnosi się do konfiguracji prędkości portu; byłyby to komendy takie jak speed 100 lub duplex full, które nie występują w pokazanym fragmencie. Usunięcie portów z sieci VLAN wymagałoby polecenia no switchport access vlan lub podobnego, co również nie pojawia się w listing'u, ponieważ zamiast tego porty są przypisywane do VLAN 10. Ustawienie nazwy fastEthernet dla portów w przełączniku nie jest możliwe przy użyciu przedstawionych poleceń, jako że komenda interface range fastEthernet 0/1-10 i switchport access vlan 10 dotyczą przypisywania VLAN a nie nadawania nazw. Typowym błędem w myśleniu może być także interpretacja polecenia interface range jako przyporządkowania nazwy, co w rzeczywistości definiuje zakres portów do konfiguracji. Istotnym aspektem jest zrozumienie, że VLAN służy do logicznego oddzielania sieci w ramach jednej infrastruktury fizycznej, co jest kluczową funkcją w nowoczesnych sieciach, szczególnie w środowiskach dużych firm, gdzie konieczne jest zarządzanie ruchem sieciowym i zapewnienie bezpieczeństwa bezpośrednio na poziomie przełącznika. Zapewnienie odpowiedniej konfiguracji VLAN umożliwia oddzielenie ruchu, co jest niezbędne w kontekście zarządzania siecią, zwiększając bezpieczeństwo i efektywność operacyjną organizacji.

Pytanie 24

Jak należy ustawić w systemie Windows Server 2008 parametry protokołu TCP/IP karty sieciowej, aby komputer mógł jednocześnie łączyć się z dwiema różnymi sieciami lokalnymi posiadającymi odrębne adresy IP?

A. Wprowadzić dwa adresy serwerów DNS
B. Wprowadzić dwie bramy, korzystając z zakładki "Zaawansowane"
C. Wybrać opcję "Uzyskaj adres IP automatycznie"
D. Wprowadzić dwa adresy IP, korzystając z zakładki "Zaawansowane"
Niepoprawne odpowiedzi bazują na pomyłkach związanych z funkcjonalnością protokołu TCP/IP w kontekście przypisywania adresów IP. Wpisanie dwóch adresów serwerów DNS nie ma nic wspólnego z dodawaniem wielu adresów IP do jednej karty sieciowej; DNS odpowiada za tłumaczenie nazw domenowych na adresy IP, a nie za bezpośrednie przypisywanie adresów sieciowych. Zaznaczenie opcji 'Uzyskaj adres IP automatycznie' również nie jest właściwe, gdyż ta funkcja dotyczy automatycznego przydzielania adresu IP przez serwer DHCP, co nie odpowiada potrzebie przypisania wielu statycznych adresów IP do jednego interfejsu. Ponadto, wpisanie dwóch adresów bramy jest niemożliwe, ponieważ każda karta sieciowa może mieć tylko jedną domyślną bramę. Dwie bramy w tej samej podsieci prowadzą do konfliktów, ponieważ protokół routingu nie wie, która brama powinna być używana do przesyłania danych. Zrozumienie tych różnic jest kluczowe dla prawidłowej konfiguracji sieci, a nieznajomość zasad dotyczących adresacji IP i ról DNS może prowadzić do poważnych problemów z komunikacją w sieci.

Pytanie 25

Polecenie grep w systemie Linux pozwala na

A. wyszukanie danych w pliku
B. archiwizację danych
C. porównanie dwóch plików
D. kompresję danych
Polecenie grep jest jednym z najważniejszych narzędzi w systemie Linux, które pozwala na efektywne wyszukiwanie danych w plikach tekstowych. Jego główną funkcją jest przeszukiwanie zawartości plików i wyświetlanie linii, które odpowiadają określonemu wzorcowi. Na przykład, jeśli chcesz znaleźć wszystkie wystąpienia słowa 'błąd' w pliku logu, możesz użyć polecenia grep w następujący sposób: 'grep błąd plik.log'. To narzędzie obsługuje wyrażenia regularne, co znacząco zwiększa jego możliwości. Możesz również używać opcji takich jak '-i', aby wyszukiwanie było nieczułe na wielkość liter, czy '-r', aby przeszukać również podkatalogi. grep jest standardowym narzędziem w wielu skryptach i procesach automatyzacji, co czyni go niezastąpionym w codziennej pracy administratorów systemów i programistów. Dobrą praktyką jest również łączenie grep z innymi poleceniami, takimi jak pipe '|', co pozwala na bardziej zaawansowane operacje na danych.

Pytanie 26

Jakie korzyści płyną z zastosowania systemu plików NTFS?

A. możliwość zapisywania plików z nazwami dłuższymi niż 255 znaków
B. opcja formatowania nośnika o niewielkiej pojemności (od 1,44 MB)
C. przechowywanie jedynie jednej kopii tabeli plików
D. funkcja szyfrowania folderów oraz plików
Te odpowiedzi, które mówią o formatowaniu małych nośników, nazwach plików dłuższych niż 255 znaków czy przechowywaniu tylko jednej kopii tabeli plików, są trochę nie na czasie. Formatowanie nośnika 1,44 MB dotyczy przestarzałego systemu FAT, a NTFS to zupełnie inna historia, bo obsługuje dużo większe dyski, co bardziej pasuje do dzisiejszych czasów. Co do długości nazw plików, to w FAT rzeczywiście jest ograniczenie do 255 znaków, ale w NTFS jest to inaczej. NTFS pozwala na dłuższe nazwy, chociaż w Windows długość nazwy też jest ograniczona do 255 znaków. A jeśli chodzi o tabelę plików, to NTFS nie trzyma tylko jednej kopii, bo ma fajne mechanizmy, które dają redundancję i zabezpieczają dane, co jest mega ważne, żeby nie stracić ważnych informacji. Wydaje mi się, że te pomyłki mogą wynikać z nieaktualnych informacji o systemach plików, więc warto być na bieżąco z tymi tematami.

Pytanie 27

Interfejs SATA 2 (3Gb/s) oferuje prędkość transferu

A. 150 MB/s
B. 300 MB/s
C. 750 MB/s
D. 375 MB/s
W przypadku podanych wartości, 300 MB/s, 375 MB/s, 750 MB/s oraz 150 MB/s, ważne jest zrozumienie, na czym opierają się te liczby i jakie są ich źródła. Odpowiedź 300 MB/s może wydawać się logiczna, jednak wynika to z nieporozumienia dotyczącego konwersji jednostek i rzeczywistej przepustowości interfejsu SATA 2. Rekomendowany standard SATA 2, z prędkością 3 Gb/s, po odpowiedniej konwersji daje 375 MB/s, co oznacza, że 300 MB/s jest po prostu zaniżoną wartością. Odpowiedź na poziomie 750 MB/s jest również myląca, ponieważ taka przepustowość dotyczy standardu SATA 3, który oferuje transfer danych do 6 Gb/s, a nie interfejsu SATA 2. Kolejna wartość, 150 MB/s, to maksymalna przepustowość dla standardu SATA 1, co może wprowadzać w błąd, jeśli nie zostanie uwzględniona odpowiednia przeszłość technologii. Powszechnym błędem jest mylenie różnych standardów SATA oraz ich rzeczywistych możliwości, co może prowadzić do niewłaściwych decyzji przy wyborze sprzętu i architekturze systemów. Przestrzeganie norm i standardów branżowych jest kluczowe, aby zapewnić optymalną wydajność oraz kompatybilność sprzętu.

Pytanie 28

Jaką komendę należy wpisać w miejsce kropek, aby w systemie Linux wydłużyć standardowy odstęp czasowy między kolejnymi wysyłanymi pakietami przy użyciu polecenia ping?

ping ........... 192.168.11.3

A. -s 75
B. -c 9
C. -i 3
D. -a 81
Polecenie ping jest narzędziem diagnostycznym używanym do sprawdzania dostępności oraz jakości połączenia z innym hostem w sieci. Opcja -a w ping jest czasami używana w różnych implementacjach do uruchomienia alarmu akustycznego gdy host odpowiada jednak nie jest to standardowa opcja w kontekście zmiany interwału czasowego między pakietami. W trybie diagnostycznym flaga -c określa liczbę pakietów które mają być wysłane co jest użyteczne gdy chcemy ograniczyć liczbę próbek do analizy ale nie wpływa na odstęp między nimi. Użycie tej opcji jest istotne gdy potrzebujemy jednorazowej analizy zamiast ciągłego wysyłania pakietów. Opcja -s ustala rozmiar pakietu ICMP co może być przydatne do testowania jak różne rozmiary pakietów wpływają na jakość połączenia jednak również nie ma związku z częstotliwością wysyłania pakietów. W kontekście zwiększania odstępu czasowego wszystkie te opcje są niewłaściwe ponieważ nie wpływają na harmonogram wysyłania pakietów. Zrozumienie i właściwe użycie dostępnych opcji jest kluczowe w skutecznym diagnozowaniu i optymalizowaniu sieci co pozwala na bardziej świadome zarządzanie zasobami sieciowymi i ograniczenie potencjalnych problemów związanych z przepustowością i opóźnieniami. Poprawne przypisanie flag do ich funkcji wymaga zrozumienia specyfiki protokołów i mechanizmów sieciowych co jest istotne w profesjonalnym podejściu do administracji siecią.

Pytanie 29

Proces zapisywania kluczy rejestru do pliku określamy jako

A. edycją rejestru
B. kopiowaniem rejestru
C. eksportowaniem rejestru
D. modyfikacją rejestru
Edycja rejestru to proces, w którym użytkownicy zmieniają istniejące wartości kluczy i wartości w rejestrze systemowym. To działanie nie polega jednak na zapisywaniu tych wartości do pliku, co różni je od eksportowania. W praktyce edytowanie rejestru może prowadzić do modyfikacji ustawień systemowych, które mogą wpływać na działanie oprogramowania i samego systemu operacyjnego. Modyfikacja rejestru, z kolei, odnosi się do procesu zmiany jego struktury lub wartości, co również nie jest tożsame z eksportowaniem. Niezrozumienie tych różnic może prowadzić do poważnych problemów, takich jak usunięcie kluczowych wartości, co może skutkować niestabilnością systemu czy nawet jego awarią. Kopiowanie rejestru, jako termin, nie jest używane w kontekście operacji związanych z rejestrem w systemie Windows, co może wprowadzać w błąd. Użytkownicy często mylą kopiowanie z eksportowaniem, zapominając o tym, że proces eksportu tworzy plik, który można zaimportować w przyszłości. Typowym błędem myślowym jest także zakładanie, że modyfikacje i edycje rejestru są bezpieczne bez wcześniejszego wykonania kopii zapasowej, co jest fundamentalnym błędem w zarządzaniu systemem operacyjnym. Dlatego tak istotne jest, aby przed jakimikolwiek zmianami zawsze wykonywać eksport rejestru, co stanowi kluczową praktykę w administracji systemami operacyjnymi.

Pytanie 30

Jeżeli szybkość pobierania danych z sieci wynosi 8 Mb/s, to w ciągu 6 s możliwe jest pobranie pliku o maksymalnej wielkości równej

A. 8 MB
B. 4 MB
C. 6 MB
D. 2 MB
Zrozumienie tematu prędkości pobierania danych z Internetu wymaga uwzględnienia konwersji jednostek oraz właściwych obliczeń. Niepoprawne odpowiedzi często wynikają z nieprawidłowego oszacowania, ile danych można pobrać, co jest kluczowe w kontekście prędkości określanej w megabitach na sekundę. Często myli się megabity z megabajtami, co prowadzi do błędnych wniosków. Na przykład, odpowiedzi wskazujące na 8 MB lub 4 MB ignorują konwersję jednostek. 8 MB w rzeczywistości wykracza poza możliwości pobierania przy prędkości 8 Mb/s w ciągu 6 sekund, ponieważ to oznaczałoby, że urządzenie pobiera więcej danych, niż jest w stanie w tym czasie przetworzyć. Z kolei 4 MB i 2 MB to także zaniżone wartości, które mogą wynikać z błędnego przeliczenia prędkości lub czasu. Kluczowe jest, aby przy takich obliczeniach mieć świadomość definicji megabita i megabajta oraz stosować odpowiednie wzory matematyczne do obliczeń. Typowym błędem myślowym jest też założenie, że prędkość pobierania nigdy nie zmienia się, co jest nieprawdziwe w warunkach rzeczywistych, gdzie wiele zmiennych może wpłynąć na efektywną szybkość transferu. Właściwe zrozumienie tych zasad nie tylko pomaga w unikaniu nieporozumień, ale także przydaje się w planowaniu zadań związanych z pobieraniem i przesyłaniem danych.

Pytanie 31

Zarządzaniem drukarkami w sieci, obsługiwaniem zadań drukowania oraz przyznawaniem uprawnień do drukarek zajmuje się serwer

A. wydruków
B. DHCP
C. plików
D. FTP
Odpowiedzi takie jak "FTP", "DHCP" oraz "plików" wskazują na nieporozumienie dotyczące funkcji, jakie pełnią różne usługi i protokoły w sieci komputerowej. Protokół FTP (File Transfer Protocol) służy do przesyłania plików pomiędzy komputerami w sieci, a nie zarządzania drukiem. Służy on do transferu danych, więc nie jest odpowiedni w kontekście rozgłaszania drukarek ani kolejkowania zadań wydruku. DHCP (Dynamic Host Configuration Protocol) to protokół, który automatycznie przydziela adresy IP urządzeniom w sieci lokalnej, co znacznie upraszcza zarządzanie siecią, ale nie ma związku z drukowaniem. Z kolei pojęcie "plików" w kontekście druku jest nieadekwatne, ponieważ odnosi się do przechowywania i organizacji danych, a nie zarządzania procesem ich drukowania. Użytkownicy często mylą te pojęcia z uwagi na to, że wszystkie są częścią infrastruktury sieciowej, jednak kluczowe jest rozumienie, że każda z tych technologii ma swoje specyficzne zastosowanie. Problematyka ta ukazuje potrzebę dokładnego zrozumienia roli poszczególnych komponentów w architekturze sieci, co jest niezbędne do efektywnego zarządzania zasobami i zadań w środowisku IT.

Pytanie 32

Aby zrealizować transfer danych pomiędzy siecią w pracowni a siecią ogólnoszkolną, która ma inną adresację IP, należy zastosować

A. koncentrator
B. punkt dostępowy
C. ruter
D. przełącznik
Przełącznik, koncentrator i punkt dostępowy mają różne funkcje w architekturze sieciowej, które nie obejmują bezpośrednio wymiany danych pomiędzy sieciami o różnych adresach IP. Przełącznik działa na warstwie drugiej modelu OSI, co oznacza, że przesyła ramki na podstawie adresów MAC, a nie adresów IP. Jego zadaniem jest łączenie urządzeń w obrębie tej samej sieci lokalnej (LAN), co oznacza, że nie ma on możliwości komunikacji z innymi sieciami, które mają różne zakresy adresowe. Koncentrator, będący prostym urządzeniem do łączenia wielu urządzeń w sieci, w ogóle nie przetwarza danych, a jedynie je retransmituje, co zdecydowanie nie jest wystarczające w przypadku potrzeby wymiany danych pomiędzy różnymi sieciami. Z kolei punkt dostępowy to urządzenie, które umożliwia bezprzewodowe połączenie z siecią, ale również nie ma zdolności do routingu między różnymi adresami IP. W praktyce, osoby myślące, że te urządzenia mogą zastąpić ruter, mogą napotkać trudności w realizacji zadań związanych z integracją różnych sieci, co prowadzi do problemów z komunikacją oraz dostępem do zasobów. Kluczowe jest zrozumienie, że do wymiany danych pomiędzy różnymi sieciami niezbędny jest ruter, który wykonuje bardziej złożone operacje na poziomie adresacji IP, co jest nieosiągalne dla wspomnianych urządzeń.

Pytanie 33

Jaki jest największy rozmiar pojedynczego datagramu IPv4, uwzględniając jego nagłówek?

A. 32 kB
B. 128 kB
C. 64 kB
D. 256 kB
Odpowiedzi takie jak 32 kB, 128 kB czy 256 kB są totalnie nietrafione, jeśli chodzi o maksymalny rozmiar datagramu IPv4. Na przykład 32 kB może wprowadzić w błąd, bo ktoś mógłby pomyśleć, że to faktyczny limit, ale to za mało. Z kolei 128 kB i 256 kB w ogóle przekraczają maksymalny rozmiar 65 535 bajtów, co jest po prostu nie do przyjęcia w IPv4. Często ludzie myślą, że większe liczby to lepsze rozwiązanie, a w kontekście IP może to prowadzić do problemów z fragmentacją i zmniejszeniem wydajności. Warto też wiedzieć, że różne protokoły transportowe, jak UDP czy TCP, mają swoje ograniczenia na wielkość pakietów, co naprawdę ma znaczenie, gdy pracujemy z przesyłaniem danych. Wiedza na ten temat jest kluczowa dla każdego, kto chce robić coś z sieciami, bo jak niewłaściwie użyjemy tych parametrów, to może być ciężko z zaprojektowaniem sprawnej sieci.

Pytanie 34

Aby użytkownik laptopa z systemem Windows 7 lub nowszym mógł korzystać z drukarki przez sieć WiFi, musi zainstalować drukarkę na porcie

A. Nul
B. LPT3
C. WSD
D. COM3
Wybór portu WSD (Web Services for Devices) do instalacji drukarki w systemie Windows 7 lub nowszym jest poprawny, ponieważ WSD to protokół zaprojektowany z myślą o prostocie i wygodzie w zarządzaniu urządzeniami sieciowymi. Umożliwia automatyczne wykrywanie i konfigurację drukarek w sieci bez potrzeby ręcznej konfiguracji. W praktyce oznacza to, że użytkownicy mogą łatwo podłączyć swoje drukarki do sieci WiFi, co pozwala na korzystanie z nich z różnych urządzeń bezpośrednio po zainstalowaniu. Protokół WSD jest zgodny z wieloma nowoczesnymi drukarkami, co czyni go standardem branżowym w kontekście urządzeń sieciowych. Dodatkowo, korzystając z portu WSD, użytkownicy mogą cieszyć się lepszą integracją z systemami Windows, zapewniającą m.in. automatyczne aktualizacje sterowników oraz wsparcie dla funkcji takich jak druk dwustronny czy zdalne zarządzanie zadaniami drukowania.

Pytanie 35

Jakiej klasy należy adres IP 130.140.0.0?

A. Należy do klasy D
B. Należy do klasy B
C. Należy do klasy A
D. Należy do klasy C
Wybór klasy D w przypadku adresu 130.140.0.0 jest błędny, ponieważ klasa D jest zarezerwowana dla multicastingu, co oznacza, że służy do przesyłania danych do grupy odbiorców jednocześnie, a nie do adresacji pojedynczych hostów. Klasa D obejmuje adresy z zakresu od 224 do 239, a więc nie ma nic wspólnego z podanym adresem. To zrozumienie funkcji poszczególnych klas adresów IP jest kluczowe w kontekście zarządzania ruchem sieciowym oraz efektywnego wykorzystania zasobów. Wybór klasy A jest również błędny, ponieważ klasa A obejmuje adresy w zakresie od 1 do 126, co sprawia, że adres 130.140.0.0 wykracza poza ten zakres. Klasa A jest przeznaczona dla bardzo dużych sieci, oferując 16 milionów adresów hostów, co czyni tę klasę mniej praktyczną dla średniej wielkości organizacji. Klasa C z kolei, odpowiednia dla mniejszych sieci, ma zakres od 192 do 223, co również wyklucza adres 130.140.0.0. Błędy w identyfikacji klas adresów IP mogą prowadzić do poważnych problemów w projektowaniu sieci, w tym do niewłaściwego przydzielania adresów, co z kolei może skutkować problemami z łącznością, wydajnością oraz bezpieczeństwem sieci. Dlatego zrozumienie, jakie są różnice między klasami i jakie mają zastosowanie w praktyce, jest niezbędne dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 36

W trakcie użytkowania przewodowej myszy optycznej wskaźnik nie reaguje na ruch urządzenia po podkładce, a kursor zmienia swoje położenie dopiero po właściwym ustawieniu myszy. Te symptomy sugerują uszkodzenie

A. ślizgaczy
B. kabla
C. baterii
D. przycisków
Baterie są elementem, który jest typowy dla urządzeń bezprzewodowych, a nie dla przewodowych myszy optycznych. Użytkownicy często mylą te dwa typy urządzeń, co prowadzi do błędnych wniosków dotyczących przyczyny problemu. W przypadku bezprzewodowych myszy, to faktycznie uszkodzona bateria mogłaby uniemożliwić działanie urządzenia, jednak w sytuacji, gdy mysz jest przewodowa, bateria nie odgrywa żadnej roli w komunikacji z komputerem. Ślizgacze natomiast odpowiadają za gładkie przesuwanie myszy po powierzchni, ale ich uszkodzenie nie wpływa na reakcję kursora na ruch. Ślizgacze są odpowiedzialne za mechaniczną część ruchu, a nie za przesyłanie danych. Uszkodzenie przycisków mogłoby wpłynąć na ich funkcjonalność, ale nie zakłóciłoby sygnału do komputera dotyczącego ruchu. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to brak zrozumienia różnicy między elementami sprzętowymi odpowiedzialnymi za komunikację a tymi, które wpływają na fizyczne użytkowanie urządzenia. Użytkownicy powinni mieć świadomość, że w przypadku przewodowych myszy, kluczową rolę odgrywa kabel, który jest bezpośrednim łącznikiem z komputerem.

Pytanie 37

Który z protokołów umożliwia terminalowe połączenie ze zdalnymi urządzeniami, zapewniając jednocześnie transfer danych w zaszyfrowanej formie?

A. SSH (Secure Shell)
B. Telnet
C. Remote
D. SSL (Secure Socket Layer)
Zrozumienie błędnych wyborów wymaga analizy poszczególnych protokołów. SSL (Secure Socket Layer) to protokół, który zapewnia bezpieczne połączenia w warstwie transportowej, głównie używany do szyfrowania komunikacji w internecie, ale nie jest przystosowany do terminalowego łączenia się z urządzeniami. SSL jest stosunkowo skomplikowanym rozwiązaniem, które nie obsługuje interakcji zdalnych urządzeń w sposób, w jaki robi to SSH. W rzeczywistości, SSL został zastąpiony przez nowocześniejszy i bardziej bezpieczny protokół, TLS (Transport Layer Security). Protokół Remote nie istnieje jako standardowy protokół komunikacyjny, dlatego jest to odpowiedź myląca. Z kolei Telnet to protokół, który umożliwia zdalne logowanie się do systemów, ale nie oferuje żadnego szyfrowania, co czyni go niezwykle niebezpiecznym w kontekście transmitowania wrażliwych danych przez publiczne sieci. Użytkownicy często mylnie uważają, że Telnet jest wystarczająco bezpieczny, co jest błędnym założeniem, zwłaszcza w dobie licznych cyberataków. Z tego powodu, korzystanie z Telnetu jest odradzane w profesjonalnym środowisku IT, gdzie bezpieczeństwo danych jest kluczowe. W praktyce, wybierając odpowiedni protokół do zdalnego dostępu, należy priorytetowo traktować bezpieczeństwo, a SSH jest protokołem, który w tym zakresie spełnia najwyższe standardy.

Pytanie 38

Aby naprawić zasilacz laptopa poprzez wymianę kondensatorów, jakie narzędzie powinno się wykorzystać?

A. tester okablowania sieciowego
B. lutownicę z cyną i kalafonią
C. tester płyt głównych
D. chwytak próżniowy
Wybór niewłaściwych narzędzi do naprawy zasilacza laptopa jest częstym błędem, który może prowadzić do dalszych problemów z urządzeniem. Chwytak próżniowy, chociaż użyteczny w wielu zastosowaniach elektronicznych, nie jest odpowiedni do wymiany kondensatorów. Jego głównym zastosowaniem jest podnoszenie i przenoszenie drobnych komponentów elektronicznych, co w przypadku wymiany kondensatorów nie jest wymagane. Tester płyt głównych również nie wnosi wartości w procesie lutowania, ponieważ jego funkcja polega na diagnostyce i sprawdzaniu poprawności działania płyty, a nie na fizycznej naprawie komponentów. Z kolei tester okablowania sieciowego jest narzędziem służącym do analizy i diagnozowania problemów w infrastrukturze sieciowej, co w kontekście zasilacza laptopa jest całkowicie nieprzydatne. Podejmowanie takich błędnych decyzji jest często wynikiem braku zrozumienia procesu lutowania oraz roli, jaką odgrywają poszczególne narzędzia w naprawach elektronicznych. Kluczowym aspektem, na który należy zwrócić uwagę, jest znajomość specyfiki komponentów oraz technik ich wymiany, co pozwala na właściwe dobranie narzędzi i uniknięcie kosztownych błędów.

Pytanie 39

Jakie zabezpieczenie w dokumentacji technicznej określa mechanizm zasilacza komputerowego zapobiegający przegrzaniu urządzenia?

A. UVP
B. OPP
C. SCP
D. OTP
Wybór UVP, SCP albo OPP jako mechanizmów ochrony przed przegrzaniem zasilacza to błąd z paru powodów. UVP to Under Voltage Protection, czyli zabezpieczenie przed za niskim napięciem, nie wysoką temperaturą. Jego rolą jest ochrona urządzeń, gdy napięcie spadnie za nisko, a to nie ma nic wspólnego z temperaturą. SCP, czyli Short Circuit Protection, dotyczy ochrony przed zwarciami, co też nie ma nic do przegrzewania. To zabezpieczenie wyłącza zasilacz, gdy wystąpi zwarcie, żeby chronić zarówno zasilacz, jak i inne komputery. OPP, czyli Over Power Protection, chroni zasilacz przed zbyt dużym poborem mocy. To ważne zabezpieczenie, ale nie ma związku z temperaturą. Często osoby, które podejmują złe decyzje w tym temacie, nie rozumieją, że każdy z tych mechanizmów pełni inną rolę w zasilaniu. Znajomość tych zabezpieczeń jest kluczowa, żeby zapewnić bezpieczeństwo i stabilność systemu komputerowego. Dobrze jest wiedzieć, jakie zabezpieczenie jest potrzebne, żeby zminimalizować ryzyko przegrzewania, przeciążenia czy zwarcia.

Pytanie 40

Jaki element sieci SIP określamy jako telefon IP?

A. Terminalem końcowym
B. Serwerem przekierowań
C. Serwerem rejestracji SIP
D. Serwerem Proxy SIP
W kontekście architektury SIP, serwer rejestracji SIP, serwer proxy SIP oraz serwer przekierowań pełnią kluczowe funkcje, ale nie są terminalami końcowymi. Serwer rejestracji SIP jest odpowiedzialny za zarządzanie rejestracją terminali końcowych w sieci, co oznacza, że umożliwia im zgłaszanie swojej dostępności i lokalizacji. Użytkownicy mogą mieć tendencję do mylenia serwera rejestracji z terminalem końcowym, ponieważ oba elementy są kluczowe dla nawiązywania połączeń, lecz pełnią różne role w infrastrukturze. Serwer proxy SIP działa jako pośrednik w komunikacji, kierując sygnały między terminalami końcowymi, co może prowadzić do pomyłek w zrozumieniu, że jest to bezpośredni interfejs dla użytkownika, co nie jest prawdą. Z kolei serwer przekierowań może zmieniać ścieżki połączeń, ale również nie jest bezpośrednim urządzeniem, z którym użytkownik się komunikuje. Te wszystkie elementy współpracują ze sobą, aby zapewnić efektywną komunikację w sieci SIP, ale to telefon IP, jako terminal końcowy, jest urządzeniem, które ostatecznie umożliwia rozmowę i interakcję użytkownika. Niezrozumienie tych ról może prowadzić do błędnych wniosków dotyczących funkcjonowania całej sieci SIP i jej architektury.