Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 25 maja 2025 19:40
  • Data zakończenia: 25 maja 2025 19:55

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podstawowym celem hermetycznej obudowy urządzenia elektronicznego z tworzywa sztucznego jest zapewnienie właściwej odporności tego urządzenia na wpływ

A. wilgoci
B. wysokiej temperatury
C. pól elektromagnetycznych
D. przepięć
Obudowa hermetyczna w urządzeniach elektronicznych, zrobiona z tworzywa sztucznego, jest bardzo ważna, bo chroni je przed różnymi warunkami atmosferycznymi. Jej podstawowym zadaniem jest ochrona przed wilgocią, co jest kluczowe, kiedy urządzenia mogą mieć kontakt z wodą lub w wysokiej wilgotności. Jeśli obudowa jest dobrze zaprojektowana, to spełnia normy, takie jak te od IP67, które pokazują, jak dobrze urządzenie jest zabezpieczone przed wodą oraz innymi zanieczyszczeniami. Można to zobaczyć na przykład w smartfonach czy zegarkach sportowych, które narażone są na deszcz czy pot. W przemyśle morskim i budowlanym hermetyzacja to standard, bo to zapewnia, że urządzenia działają prawidłowo w trudnych warunkach. Ważne jest, żeby używać odpowiednich materiałów i technologii uszczelniania, jak silikonowe uszczelki, bo to naprawdę pomaga w ochronie przed wilgocią. Moim zdaniem, producenci powinni też regularnie testować szczelność obudów, bo to wydłuży ich żywotność.

Pytanie 2

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. dostosować poziom głośności w unifonie
B. dostosować napięcie w kasecie rozmownej
C. zwiększyć napięcie zasilania elektrozaczepu
D. zwiększyć poziom głośności w panelu
Wyregulowanie napięcia w kasecie rozmownej, podwyższenie poziomu głośności w panelu oraz zwiększenie napięcia zasilania elektrozaczepu to podejścia, które mogą wydawać się sensowne, jednak w rzeczywistości są one nieadekwatne do rozwiązywania problemu piszczącego dźwięku w unifonie. Regulacja napięcia w kasecie rozmownej jest zazwyczaj związana z zasilaniem urządzenia, a nie z jakościami dźwiękowymi. Zmiana tego napięcia nie wpłynie na głośność dźwięku w unifonie, a może wręcz prowadzić do dodatkowych problemów z działaniem systemu. Podwyższanie poziomu głośności w panelu również nie jest rozwiązaniem, ponieważ zbyt wysoka głośność może tylko nasilić efekt sprzężenia akustycznego, co prowadzi do jeszcze głośniejszych pisków. Zwiększenie napięcia zasilania elektrozaczepu jest całkowicie nieuzasadnione w tym kontekście, ponieważ elektrozaczep nie ma wpływu na audio unifonu. Takie podejście pokazuje typowy błąd myślowy, polegający na myleniu zjawisk związanych z dźwiękiem i zasilaniem, co może prowadzić do kosztownych pomyłek w instalacji systemów domofonowych. Kluczowe jest zrozumienie, że problemy z dźwiękiem powinny być rozwiązywane poprzez ustawienia audio, a nie modyfikacje parametrów zasilania, które mogą negatywnie wpłynąć na całe urządzenie. W kontekście standardów branżowych, ważne jest, by w takich sytuacjach kierować się zaleceniami producentów, które zazwyczaj podkreślają znaczenie właściwego ustawienia głośności w unifonie jako pierwszego kroku w diagnostyce problemów audio.

Pytanie 3

Sygnał z wewnętrznej anteny osiąga wartość 40 dBμV. Aby na wejściu antenowym telewizora uzyskać sygnał o poziomie 60 dBμV, jaki wzmacniacz o określonym wzmocnieniu powinien być zastosowany?

A. 40 dB
B. 100 dB
C. 20 dB
D. 60 dB
Wzmocnienie sygnału na poziomie 20 dB jest poprawne w kontekście uzyskania pożądanego poziomu sygnału na wejściu odbiornika telewizyjnego. Początkowy poziom sygnału wynosi 40 dBμV, a wymagany poziom to 60 dBμV. Różnica między tymi dwoma wartościami wynosi 20 dB, co oznacza, że aby zwiększyć sygnał do pożądanego poziomu, musimy zastosować wzmacniacz o takim właśnie wzmocnieniu. W praktyce, wzmacniacze sygnału są kluczowymi elementami w systemach dystrybucji sygnału telewizyjnego, szczególnie w sytuacjach, gdy sygnał z anteny jest słaby. Standardowe wzmacniacze antenowe często oferują różne poziomy wzmocnienia, a dobór odpowiedniego powinien być oparty na analizie sygnału, aby uniknąć przesterowania. Należy także zwrócić uwagę na szumy własne wzmacniacza, które mogą wpływać na jakość sygnału, dlatego wybór urządzenia zgodnego z normami branżowymi, takimi jak EN 50083, jest kluczowy dla zachowania wysokiej jakości sygnału.

Pytanie 4

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. porażenia prądem elektrycznym
B. wyładowania elektrostatycznego groźnego dla układów typu MOS
C. wpływu pola magnetycznego na organizm ludzki
D. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
Pojawiające się mylne przekonania dotyczące potencjalnych konsekwencji braku uziemionej opaski na przegubie pracownika serwisu wynika z niepełnego zrozumienia zagadnień związanych z elektrycznością i wpływem pola magnetycznego na człowieka. Pierwsza z odpowiedzi sugeruje, że brak uziemienia może prowadzić do powstawania prądów wirowych wywoływanych przez zmienne pole magnetyczne. W rzeczywistości prądy wirowe są zjawiskami związanymi z przewodnikami umieszczonymi w zmiennym polu magnetycznym, co jest bardziej związane z indukcją elektromagnetyczną niż z uziemieniem. Oddziaływanie pola magnetycznego na organizm człowieka nie jest bezpośrednio związane z brakiem uziemienia, a raczej z długotrwałym narażeniem na silne pola magnetyczne, co jest zupełnie innym zagadnieniem. Porażenie prądem elektrycznym nie jest głównym zagrożeniem związanym z elektrostatyką, gdyż wyładowania elektrostatyczne mają znacznie niższe napięcie, jednak mogą być szkodliwe dla delikatnych układów elektronicznych. Kluczowe jest zrozumienie, że wyładowania elektrostatyczne, a nie prąd elektryczny w tradycyjnym rozumieniu, są realnym zagrożeniem dla komponentów takich jak układy MOS. Zastosowanie technologii ESD (Electrostatic Discharge) w praktyce, w tym uziemienie oraz stosowanie mat antystatycznych, jest niezbędne do ochrony sprzętu i zapewnienia jego długotrwałej niezawodności.

Pytanie 5

Które z poniższych urządzeń nie jest wykorzystywane w lokalnej sieci komputerowej?

A. Hub.
B. Switch.
C. Multiswitch.
D. Router.
Zarówno routery, switch'e, jak i hub'y są fundamentalnymi elementami lokalnych sieci komputerowych, pełniąc różne, ale komplementarne funkcje w zarządzaniu komunikacją między urządzeniami. Router to urządzenie, które kieruje ruchem danych pomiędzy różnymi sieciami, umożliwiając komunikację z Internetem i innymi sieciami lokalnymi. W lokalnych sieciach komputerowych routery są niezbędne do łączenia sieci lokalnych z Internetem, a także do zarządzania adresacją IP i zapewnienia bezpieczeństwa danych poprzez zastosowanie firewalli. Switch'e z kolei działają na poziomie drugiej warstwy modelu OSI i są odpowiedzialne za przekazywanie danych między urządzeniami w obrębie tej samej sieci lokalnej, skutecznie redukując kolizje i zwiększając wydajność w porównaniu do hubów, które działają na poziomie pierwszej warstwy i wysyłają dane do wszystkich podłączonych urządzeń. Hub jest prostym urządzeniem umożliwiającym połączenie kilku komputerów, jednak jego niedoskonałości w zarządzaniu ruchem danych sprawiają, że jest coraz rzadziej używany w nowoczesnych sieciach. Wybór odpowiedniego sprzętu sieciowego jest kluczowy dla zapewnienia efektywności i niezawodności lokalnych sieci komputerowych, dlatego ważne jest, aby rozumieć różnice między tymi urządzeniami oraz ich rolę w architekturze sieciowej. W praktyce, stosowanie multiswitchy w lokalnych sieciach komputerowych byłoby błędnym podejściem, ponieważ to urządzenie jest przeznaczone do rozdzielania sygnałów telewizyjnych, a nie do transferu danych komputerowych.

Pytanie 6

Utrzymanie w pełni funkcjonalnych elektronicznych systemów zabezpieczeń powinno być realizowane w okresach określonych normami technicznymi, a jeżeli nie zostały one ustalone - nie rzadziej niż co:

A. trzy miesiące
B. miesiąc
C. rok
D. sześć miesięcy
Odpowiedź "sześć miesięcy" jest zgodna z zaleceniami norm technicznych dotyczących konserwacji systemów zabezpieczeń. Regularna konserwacja, wykonywana co najmniej co sześć miesięcy, jest kluczowa dla utrzymania sprawności systemów oraz zapewnienia ich niezawodności. Systemy zabezpieczeń, takie jak alarmy czy monitoring, wymagają okresowych przeglądów, aby wykryć potencjalne problemy, takie jak zużycie komponentów czy nieprawidłowe działanie czujników. Na przykład, w przypadku systemów alarmowych, nieprzeprowadzenie konserwacji może prowadzić do fałszywych alarmów lub całkowitej awarii systemu, co w sytuacjach kryzysowych może mieć tragiczne skutki. Normy branżowe, takie jak ISO 9001, podkreślają znaczenie regularnych przeglądów w celu zapewnienia jakości i bezpieczeństwa, co potwierdza, że przeprowadzanie konserwacji co sześć miesięcy jest praktyką rekomendowaną przez ekspertów. Dbanie o systemy zabezpieczeń nie tylko zwiększa ich żywotność, ale również podnosi poczucie bezpieczeństwa użytkowników.

Pytanie 7

Na środku wyświetlacza odbiornika OTV pojawia się bardzo jasna pozioma linia, podczas gdy reszta ekranu jest ciemna. Gdzie doszło do awarii w odbiorniku?

A. W bloku odchylania poziomego
B. W dekoderze kolorów
C. We wzmacniaczu p.cz. różnicowej fonii
D. W bloku odchylania pionowego
Uszkodzenie w bloku odchylania pionowego jest przyczyną jasnej poziomej linii na ekranie, ponieważ ten blok odpowiada za kontrolowanie ruchu elektronu w pionie. Jeśli obwody w tym bloku są uszkodzone, losowe impulsy nie są w stanie prawidłowo odchylić strumienia elektronów w górę i w dół, co skutkuje brakiem wyświetlania treści w pionie. Przykładem zastosowania tej wiedzy jest diagnostyka telewizorów CRT, gdzie technicy często sprawdzają napięcia w obwodach odchylania pionowego, aby zlokalizować problemy. Ponadto, zgodnie z dobrą praktyką, podczas naprawy sprzętu RTV, zaleca się regularne wykonywanie przeglądów bloków odpowiedzialnych za odchylanie, co może zapobiec występowaniu takich problemów. Warto również przypomnieć, że zrozumienie architektury wewnętrznej telewizora pozwala skuteczniej diagnozować i naprawiać usterki.

Pytanie 8

Wyłącznik nadmiarowoprądowy zabezpiecza instalację zasilającą urządzenie elektroniczne przed skutkami

A. przepięć w sieci energetycznej
B. zaniku napięcia
C. wyładowań atmosferycznych
D. przeciążenia instalacji elektrycznej
Wyłącznik nadmiarowoprądowy to istotny element systemu zabezpieczeń instalacji elektrycznych, którego głównym zadaniem jest ochrona przed skutkami przeciążenia. W sytuacji, gdy prąd płynący przez instalację przekracza dopuszczalne wartości, co zazwyczaj ma miejsce przy podłączeniu zbyt wielu urządzeń do jednego obwodu, wyłącznik ten automatycznie odłącza zasilanie. Dzięki temu chroni zarówno urządzenia elektroniczne, jak i samą instalację przed uszkodzeniami. W praktyce, zastosowanie wyłącznika nadmiarowoprądowego jest standardem w budynkach mieszkalnych i obiektach komercyjnych, ponieważ pozwala na zminimalizowanie ryzyka wystąpienia pożaru, który mógłby być spowodowany przegrzewaniem się przewodów. Ponadto, wyłączniki te są zgodne z normami PN-EN 60947-2, które definiują wymagania techniczne dla urządzeń rozdzielczych. Ważne jest, aby użytkownicy byli świadomi znaczenia tych urządzeń oraz regularnie kontrolowali ich sprawność, co jest kluczowe dla bezpieczeństwa ich instalacji elektrycznych.

Pytanie 9

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. zmniejszenie prędkości silnika
B. zwiększenie prędkości silnika
C. wzrost prądu lasera
D. spadek prądu lasera
Zwiększenie prądu lasera jest typowym objawem zużycia głowicy laserowej w odtwarzaczach CD. Kiedy głowica laserowa ulega zużyciu, efektywność emitowania światła lasera maleje, co skutkuje potrzebą zwiększenia prądu w celu uzyskania odpowiedniej intensywności promieniowania. W praktyce, gdy głowica laserowa nie jest w stanie dostarczyć wystarczającej ilości energii do poprawnego odczytu danych zapisanych na płycie, system automatycznie zwiększa prąd, aby zrekompensować tę utratę. Taki mechanizm jest zgodny z zasadami działania systemów optycznych i protokołami diagnostycznymi, które monitorują poziom sygnału oraz jego jakość. Warto również zauważyć, że zbyt wysokie napięcie może prowadzić do przegrzania komponentów, co może skutkować trwałym uszkodzeniem urządzenia. Dlatego ważne jest regularne serwisowanie i monitorowanie stanu technicznego odtwarzacza, aby zminimalizować ryzyko awarii.

Pytanie 10

Aby podłączyć czujnik PIR do linii parametrycznej 2EOL (DEOL), co jest wymagane?

A. 4 żyły przewodu i dwa rezystory
B. 6 żył przewodu i dwa rezystory
C. 6 żył przewodu i jeden rezystor
D. 4 żyły przewodu i jeden rezystor
W przypadku podłączenia czujnika PIR do linii parametrycznej 2EOL (DEOL) pomyłki w zakresie liczby żył przewodu i zastosowanych rezystorów mogą prowadzić do nieprawidłowego działania systemu. Odpowiedź sugerująca cztery żyły przewodu oraz jednego rezystora jest nieadekwatna, ponieważ nie zapewnia odpowiednich warunków do stabilnej pracy czujnika. W praktyce, jedno rezystor nie jest wystarczające do uzyskania prawidłowego pomiaru rezystancji linii, co może skutkować fałszywymi alarmami lub brakiem reakcji na wykrycie ruchu. Ponadto, opcja z sześcioma żyłami przewodu również nie jest uzasadniona - zbyt duża liczba żył w tej konfiguracji może prowadzić do zbędnych komplikacji w instalacji oraz zwiększenia kosztów materiałowych, co jest niewłaściwe z perspektywy efektywności kosztowej. Istotnym błędem w myśleniu jest założenie, że więcej przewodów lub rezystorów automatycznie przekłada się na lepszą jakość systemu. W rzeczywistości kluczowa jest odpowiednia liczba żył i ich konfiguracja, co pozwala na osiągnięcie optymalnej wydajności i zgodności z normami bezpieczeństwa. Takie podejście do podłączenia czujników wymaga znajomości zasad działania systemów alarmowych oraz praktycznych aspektów ich instalacji, aby uniknąć typowych pułapek i zapewnić niezawodność systemu."

Pytanie 11

Aby zlokalizować uszkodzenie tranzystora bipolarnego bez jego wylutowywania z płyty głównej systemu alarmowego, powinno się zmierzyć

A. natężenie prądu kolektora tranzystora
B. rezystancję złącz pomiędzy B, E, C przy włączonym systemie
C. rezystancję złącz pomiędzy B, E, C przy wyłączonym systemie
D. napięcia pomiędzy końcówkami E, B, C przy włączonym systemie
Pomiar napięć pomiędzy końcówkami emiter (E), baza (B) i kolektor (C) tranzystora bipolarnego przy włączonej centrali alarmowej jest kluczowym krokiem w diagnostyce uszkodzeń. Gdy tranzystor jest aktywny, jego złącza są w różnych stanach, co pozwala na ocenę, czy tranzystor działa prawidłowo. W normalnym stanie pracy, napięcie na bazie powinno być wyższe niż na emiterze, a napięcie kolektora powinno być odpowiednio wyższe niż na bazie. Na przykład, w tranzystorze typu NPN, typowe napięcia mogą wynosić około 0.6-0.7V na złączu B-E oraz kilka woltów na złączu C-B. Jeśli napięcia te są znacznie różne, może to wskazywać na uszkodzenie tranzystora. Pomiar napięć jest zgodny z najlepszymi praktykami w dziedzinie elektroniki, ponieważ umożliwia identyfikację problemów bez potrzeby fizycznego usuwania komponentu z płyty, co minimalizuje ryzyko dodatkowych uszkodzeń oraz przyspiesza proces diagnostyczny.

Pytanie 12

Jaką czynność należy wykonać najpierw, gdy podczas serwisowania instalacji antenowej telewizji naziemnej zauważono obniżenie poziomu sygnału antenowego?

A. Oczyścić wszystkie złącza
B. Wyregulować ustawienie anteny
C. Zamienić przewód antenowy
D. Wyregulować odbiornik
Wyregulowanie ustawienia anteny jest kluczowym krokiem w przypadku stwierdzenia spadku poziomu sygnału antenowego. Anteny telewizyjne, w zależności od ich typu i lokalizacji, są zaprojektowane tak, aby odbierały sygnał radiowy z określonego kierunku. Niekiedy, na przykład z powodu zmiany warunków atmosferycznych, przeszkód w terenie czy działań budowlanych, kąt nachylenia lub kierunek anteny mogą wymagać korekty. Regulacja anteny powinna być przeprowadzana zgodnie z zaleceniami producenta oraz obowiązującymi standardami, takimi jak normy DVB-T, które określają wymagania dotyczące jakości sygnału. Przykładem praktycznego zastosowania jest użycie analizatora sygnału, który pozwala precyzyjnie ustawić antenę, aby osiągnąć optymalny poziom odbioru. Warto także pamiętać, że przed rozpoczęciem regulacji warto zidentyfikować, czy nie ma innych problemów z instalacją, takich jak uszkodzenia przewodów czy złączy, co może wpłynąć na jakość sygnału.

Pytanie 13

Aby połączyć kable współosiowe o impedancji 75 Ω, należy

A. zlutować przewody główne, zaizolować je, a następnie połączyć ekran
B. połączyć przewody poprzez ich skręcenie, a następnie zaizolować
C. połączyć kable stosując kostkę zaciskową
D. użyć tzw. beczki do zestawienia dwóch wtyków typu F
Wybór tzw. beczki do połączenia dwóch wtyków typu F jest najlepszym rozwiązaniem w przypadku kabli współosiowych o impedancji 75 Ω. Beczkę stosuje się, aby zapewnić ciągłość sygnału oraz minimalizację strat, co jest kluczowe dla utrzymania jakości transmisji, zwłaszcza w zastosowaniach telewizyjnych czy w systemach transmisji danych. Wtyki typu F są powszechnie używane w instalacjach antenowych oraz w kablowych systemach telewizji. Beczkę można łatwo zainstalować, co czyni ją praktycznym rozwiązaniem, a także pozwala na łatwiejszą wymianę komponentów w razie potrzeby. Ważne jest, aby połączenie było dobrze wykonane, z uwzględnieniem odpowiednich technik montażowych, takich jak zabezpieczenie połączenia przed wilgocią i uszkodzeniami mechanicznymi. Używanie beczki do połączeń współosiowych jest zgodne z normami branżowymi, co zapewnia niezawodność i trwałość instalacji.

Pytanie 14

Jaki klucz jest używany do luzowania śrub z walcowym łbem oraz sześciokątnym gniazdem?

A. Nasadowy
B. Oczkowy
C. Płaski
D. Imbusowy
Klucz imbusowy, znany również jako klucz sześciokątny, jest idealnym narzędziem do odkręcania śrub z łbem walcowym z gniazdem sześciokątnym. Jego konstrukcja pozwala na efektywne przenoszenie momentu obrotowego, co jest kluczowe w pracy z elementami mocującymi, które mogą być narażone na wysokie obciążenia. Dzięki precyzyjnie wymiarowanym końcówkom, klucz imbusowy minimalizuje ryzyko uszkodzenia łba śruby, co jest częstym problemem przy używaniu innych rodzajów kluczy. Użycie klucza imbusowego jest zgodne z najlepszymi praktykami w inżynierii i mechanice, gdzie precyzyjne dopasowanie narzędzi do rodzajów śrub ma kluczowe znaczenie dla zapewnienia trwałości połączeń. Często stosuje się go w mechanice rowerowej, motocykli i w wielu konstrukcjach metalowych, co czyni go wszechstronnym narzędziem w arsenale każdego majsterkowicza.

Pytanie 15

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. stabilizatorze napięcia o działaniu impulsowym
B. obwodzie szeregowym R, L, C
C. obwodzie równoległym R, L, C
D. stabilizatorze napięcia o działaniu ciągłym
Rezonans napięć występuje w obwodach szeregowych R, L, C, gdzie R to opornik, L to induktor, a C to kondensator. Gdy częstotliwość sygnału zmiennego osiąga wartość rezonansową, impedancja obwodu osiąga minimum, co prowadzi do maksymalizacji prądu. W takim stanie napięcia na elementach obwodu są ze sobą ściśle powiązane, co może prowadzić do zjawiska wzmacniania sygnału. Przykładem praktycznym zastosowania tego zjawiska jest obwód rezonansowy stosowany w radioodbiornikach, gdzie umożliwia selekcję określonej częstotliwości sygnału radiowego, eliminując inne zakłócenia. Zrozumienie tego zjawiska jest kluczowe w projektowaniu filtrów, oscylatorów oraz w systemach komunikacyjnych. W praktyce inżynierskiej, wiedza o rezonansie jest niezbędna do efektywnego projektowania układów elektronicznych, aby zapewnić ich stabilność i efektywność działania.

Pytanie 16

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. zasilacza
B. głośnika
C. potencjometru
D. wzmacniacza mocy
Potencjometr to kluczowy element urządzeń audio, odpowiadający za regulację głośności. Trzaski, które mogą występować podczas dostosowywania siły głosu, najczęściej są oznaką zużycia lub uszkodzenia potencjometru. W wyniku zużycia mechanizmu lub osadzenia się zanieczyszczeń w jego wnętrzu, może dojść do zakłóceń w przewodzeniu sygnału audio. Zastosowanie wysokiej jakości potencjometrów, takich jak te zgodne ze standardami przemysłowymi, może znacznie zredukować ryzyko wystąpienia takich problemów. W praktyce, regularne czyszczenie potencjometrów oraz ich wymiana po osiągnięciu określonego progu eksploatacyjnego, np. po kilku latach intensywnego użytkowania, jest zalecane, aby zapewnić optymalną jakość dźwięku i minimalizować ryzyko zakłóceń. Utrzymanie sprzętu audio w dobrym stanie technicznym jest kluczowe dla profesjonalnych użytkowników, takich jak muzycy, technicy dźwięku oraz inżynierowie akustyczni, którzy muszą zapewnić najwyższą jakość dźwięku w każdych warunkach.

Pytanie 17

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. potencjometrem
B. cewką regulowaną
C. kondensatorem dostrojczym
D. filtr z regulowaną indukcyjnością
Kondensator dostrojczy jest elementem elektronicznym, który jest używany do regulacji częstotliwości obwodów rezonansowych w aplikacjach takich jak radioodbiorniki, nadajniki i systemy komunikacyjne. Działa na zasadzie zmiany pojemności, co wpływa na częstotliwość rezonansową obwodu LC (indukcyjność i kondensator). Przykładem zastosowania kondensatora dostrojczego może być dostrajanie fal radiowych w odbiornikach radiowych, gdzie użytkownik może dostosować pojemność kondensatora, aby odbierać różne stacje. W branży elektronicznej, szczególnie w projektowaniu filtrów pasmowych czy oscylatorów, stosowanie kondensatorów dostrojczych jest standardem, ponieważ pozwala na precyzyjne dostrojenie sygnałów do odpowiednich częstotliwości. Ponadto, dobrą praktyką jest zazwyczaj korzystanie z kondensatorów o wysokiej jakości dielektrycznej, co minimalizuje straty energii i poprawia stabilność działania urządzenia. W kontekście obwodów elektronicznych, znajomość właściwości kondensatorów dostrojczych i ich zastosowań jest kluczowa dla inżynierów i techników zajmujących się elektroniką.

Pytanie 18

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. A.
B. C.
C. D.
D. B.
Poprawna odpowiedź to D, ponieważ spełnia wymogi logicznej funkcji F(abc). Aby funkcja przyjęła wartość "1", musimy mieć a=1, b̅=1 (co oznacza, że b=0) oraz c=1. Oznacza to, że dla kombinacji D (a=1, b=0, c=1) wszystkie warunki są spełnione, co daje wynik mnożenia logicznego równy 1. W praktycznych zastosowaniach wiedza o funkcjach logicznych jest kluczowa w inżynierii cyfrowej, szczególnie w projektowaniu układów przełączających w systemach elektronicznych. Na przykład, układy te są często wykorzystywane w systemach automatyki przemysłowej, gdzie odpowiednie sygnały muszą być ze sobą skorelowane, aby aktywować określone urządzenia. Przestrzeganie standardów takich jak IEC 61131-3 jest istotne, aby zapewnić spójność i niezawodność operacyjną w układach programowalnych. W związku z tym, zrozumienie tego zagadnienia jest niezbędne dla każdego inżyniera pracującego w dziedzinie automatyki i elektroniki.

Pytanie 19

Na zakłócenie czasowe w odbiorze sygnału satelitarnego prawidłowo zamontowanej anteny wpływ mają

A. zawilgocenie kabla antenowego
B. mgła
C. wiatr
D. chmura burzowa
Chmury burzowe mają duży wpływ na sygnał satelitarny, zwłaszcza przez rozpraszanie oraz wchłanianie fal radiowych. Kiedy pojawiają się takie chmury, które są naładowane wodą i różnymi cząstkami, sygnał może być naprawdę słabszy, co prowadzi do różnych zakłóceń. Na przykład, w czasie burzy radiofale mogą być odbijane albo rozpraszane, co sprawia, że sygnał staje się niestabilny. Warto pamiętać, że projektując systemy antenowe, powinniśmy brać pod uwagę lokalne warunki atmosferyczne, w tym możliwość wystąpienia burz, bo to może mieć duży wpływ na jakość odbioru. Moim zdaniem, użytkownicy satelitów powinni być świadomi, że podczas intensywnych deszczy czy burz, jakość sygnału może znacznie spaść, więc czasem trzeba pomyśleć o dodatkowych rozwiązaniach, jak mocniejsze anteny czy jakieś systemy zapasowe, by poprawić odbiór.

Pytanie 20

Podczas hibernacji komputera zachodzi

A. przełączanie na zasilanie z UPS.
B. zamknięcie systemu.
C. reset systemu.
D. zapisanie zawartości pamięci na dysku twardym.
Hibernacja systemu komputerowego to proces, w którym zawartość pamięci operacyjnej (RAM) jest zapisywana na dysku twardym w celu oszczędzania energii, a następnie system może zostać wyłączony. Ta metoda jest szczególnie przydatna w laptopach oraz urządzeniach mobilnych, gdzie długotrwałe użytkowanie na baterii ma kluczowe znaczenie. Po wznowieniu pracy, system odtworzy stan, w jakim został wstrzymany, przywracając wszystkie otwarte aplikacje i dokumenty. Hibernacja różni się od usypiania, gdzie dane w pamięci są zachowywane tylko na czas aktywnego stanu, przy minimalnym zużyciu energii. W standardach zarządzania energią, taki jak ACPI (Advanced Configuration and Power Interface), hibernacja jest zalecana jako efektywne rozwiązanie do zarządzania mocą, które pozwala na długotrwałe przechowywanie stanu systemu bez potrzeby ciągłego zasilania. Przykładem zastosowania hibernacji może być moment, gdy użytkownik planuje dłuższą przerwę od pracy i chce wrócić do tego samego miejsca w systemie bez utraty postępów.

Pytanie 21

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 1 m2
B. 4 m2
C. 2 m2
D. 3 m2
W kontekście aranżacji przestrzeni biurowej, minimalna powierzchnia 2 m2 przypadająca na jednego pracownika jest zgodna z normami i zaleceniami dotyczącymi ergonomii oraz zdrowia w miejscu pracy. Zgodnie z wytycznymi, takimi jak normy PN-EN 15251 oraz wytyczne BHP, zapewnienie odpowiedniej przestrzeni osobistej jest kluczowe dla komfortu i efektywności pracy. Pracownicy, mający do dyspozycji nie tylko biurko, ale także przestrzeń na poruszanie się, ograniczają uczucie przytłoczenia i zwiększają swoją wydajność. Przykładem zastosowania tej zasady mogą być biura typu open space, gdzie mimo otwartej przestrzeni, odpowiednie rozmieszczenie stanowisk pracy oraz zapewnienie przynajmniej 2 m2 na osobę sprzyja lepszej koncentracji i mniejszemu stresowi. Warto również zauważyć, że w przypadku organizacji biura, większa przestrzeń wpływa na poprawę komunikacji między pracownikami oraz umożliwia lepsze funkcjonowanie zespołów, co jest szczególnie ważne w kontekście współczesnych modeli pracy zespołowej.

Pytanie 22

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 4 160 zł
B. 2 320 zł
C. 2 160 zł
D. 4 320 zł
Analiza błędów w obliczeniach kosztów wykonania instalacji elektrycznej w mieszkaniu może ujawnić szereg nieporozumień dotyczących podstawowych zasad naliczania podatków i kosztów. Często pojawiają się błędne założenia dotyczące tego, jak należy obliczać całkowity koszt inwestycji, co może prowadzić do nieprawidłowych oszacowań. W przypadku podanych odpowiedzi wiele osób może skupić się na prostym dodawaniu kosztów materiałów i robocizny, nie uwzględniając prawidłowych zasad naliczania VAT. Zrozumienie, że usługi instalacyjne wymagają obliczenia VAT na całościowy koszt robocizny i materiałów, jest kluczowe. Dodatkowo, niektórzy mogą mylnie przypisać VAT tylko do kosztów materiałów, co jest niezgodne z przepisami. Na przykład, przyjmując, że koszt robocizny jest oddzielny od kosztów materiałów, można błędnie obliczyć całkowity koszt na podstawie niepełnych danych. Istotnym aspektem jest również znajomość obowiązujących stawek VAT dla różnych usług budowlanych, które mogą się różnić w zależności od rodzaju wykonywanych prac. Błędne jest również pominięcie faktu, że całkowity koszt inwestycji powinien zawierać wszystkie wydatki, a nie tylko te związane z materiałami. Zrozumienie tych zasad jest niezbędne w celu właściwej kalkulacji kosztów budowlanych oraz przy zachowaniu przejrzystości finansowej w projektach inwestycyjnych.

Pytanie 23

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
B. fototranzystor
C. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
D. transoptor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 24

Aby zapewnić prawidłowe funkcjonowanie systemu kontroli dostępu, konieczne jest

A. dostosowanie zwory elektromagnetycznej
B. naprawa kontrolera ethernet
C. wymiana rejestratora cyfrowego
D. konfiguracja czasu alarmowania
Ustawienie czasu alarmowania w kontekście konserwacji systemu kontroli dostępu może być mylące. Choć czas alarmowania jest istotnym parametrem w systemach zabezpieczeń, nie jest to kluczowy element konserwacji. Zmiana tego parametru dotyczy głównie reakcji systemu w sytuacji wykrycia naruszenia, a nie fizycznego stanu urządzeń. Regulacja zwory elektromagnetycznej jest bezpośrednio związana z bezpieczeństwem dostępu, podczas gdy czas alarmowania odnosi się do aspektów reakcji systemu. Przypadek wymiany rejestratora cyfrowego również jest mylący, ponieważ wymiana sprzętu następuje zazwyczaj w momencie awarii lub przestarzałości technologii, a nie jako część rutynowej konserwacji. Rejestrator pełni rolę w archiwizacji zdarzeń, a jego wymiana nie wpływa bezpośrednio na operacyjność systemu kontroli dostępu. Naprawa kontrolera ethernet również nie jest bezpośrednio związana z konserwacją systemu. Kontroler ethernet może wymagać serwisowania w przypadku awarii, ale nie jest to rutynowy proces konserwacji, a raczej interwencja doraźna. Te zrozumienia są kluczowe dla odpowiedniego zarządzania i utrzymania systemów zabezpieczeń. Błędem jest skupienie się na aspektach, które nie mają bezpośredniego wpływu na fizyczne działanie zabezpieczeń, co może prowadzić do niedoszacowania roli, jaką odgrywają mechanizmy zamykające w systemach kontroli dostępu.

Pytanie 25

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
B. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
C. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
D. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 26

Kamera, działająca w systemie monitoringu wizyjnego, która jest umieszczona na zewnątrz i rejestruje obraz w każdych warunkach, powinna być wyposażona w

A. oświetlacz IR
B. obudowę metalową
C. obudowę z plastiku
D. obiektyw szerokokątny
Oświetlacz IR to naprawdę ważny element w kamerach do monitoringu, zwłaszcza tych na zewnątrz. Dzięki niemu możemy nagrywać obrazy nawet w ciemnościach, bo chociaż to światło jest niewidoczne dla nas, kamery to widzą. To jest mega przydatne, szczególnie na parkingach czy w ogrodach, gdzie czasami jest naprawdę ciemno. Takie oświetlacze pomagają kamerom działać dobrze w różnych warunkach i są uwzględnione w normach branżowych, jak EN 50132. Dzięki nim monitoring może być efektywny przez całą dobę, co ratuje nas w różnych sytuacjach, poprawiając bezpieczeństwo na terenie, który obserwujemy. Można powiedzieć, że to kluczowy element w całym systemie.

Pytanie 27

Pasywny komponent wykorzystywany w telekomunikacyjnych oraz komputerowych sieciach, który na zewnątrz posiada gniazda, a wewnątrz styki do zamocowania kabla, określany jest jako

A. skrótką
B. panelem krosowniczym
C. kanałem kablowym
D. złączką
Kanały kablowe, skrętki oraz złączki to różne elementy systemów telekomunikacyjnych, ale nie pełnią one funkcji, jakie ma panel krosowniczy. Kanał kablowy jest strukturą stosowaną do prowadzenia i ochraniania kabli, jednak nie umożliwia bezpośredniego zarządzania połączeniami. Jego zadaniem jest raczej organizacja fizycznej przestrzeni, w której kable są umieszczane, co różni się od funkcji panelu krosowniczego, który zapewnia możliwość łatwego dostępu do różnych połączeń. Skrętka, na przykład U/FTP lub S/FTP, to typ kabla stosowanego w sieciach komputerowych, ale sama w sobie nie pełni roli mediatora połączeń. Złączki, jak RJ45, służą do łączenia kabli ze sprzętem lub innymi kablami, jednak nie organizują one połączeń w sposób, jaki oferuje panel krosowniczy. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi obejmują mylenie funkcji organizacyjnych z funkcjami transportowymi. Warto pamiętać, że efektywne zarządzanie infrastrukturą sieciową wymaga znajomości różnorodnych elementów i ich funkcji, aby właściwie dobierać je do konkretnych zastosowań. Dlatego istotne jest zrozumienie, że panel krosowniczy jest nie tylko punktem dołączania kabli, ale kluczowym narzędziem w zarządzaniu siecią, co odzwierciedla jego zastosowanie w standardach branżowych.

Pytanie 28

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 400 W
B. 200 W
C. 100 W
D. 800 W
Wiesz, żeby obliczyć zakres pomiarowy watomierza, trzeba skorzystać z wzoru na moc elektryczną. Mamy tutaj proste równanie: P = U * I. W tym przypadku to wygląda tak: prąd wynosi 2 A, a napięcie to 200 V. Jak to podstawisz do wzoru, wyjdzie ci P = 200 V * 2 A, co daje 400 W. To znaczy, że maksymalna moc, którą ten watomierz może zmierzyć, to 400 W – to pasuje do jego specyfikacji. W praktyce, jak będziesz mógł mierzyć różne urządzenia, ważne jest, żeby wiedzieć, jaki jest maksymalny zakres pomiarowy, bo inaczej ryzykujesz uszkodzenie urządzenia i błędne odczyty. Takie pomiary są przydatne w wielu sytuacjach – od monitorowania zużycia energii w domu po sprawdzanie wydajności w przemyśle. Zrozumienie zakresu pomiarowego jest kluczowe, bo pozwala inżynierom i technikom na właściwy dobór sprzętu do konkretnych zadań.

Pytanie 29

Aby zakończyć instalację telewizyjną wykonaną przy użyciu kabla koncentrycznego, konieczne jest zastosowanie rezystora o oporności

A. 500 Ω
B. 75 Ω
C. 300 Ω
D. 50 Ω
Właściwa odpowiedź to 75 Ω, ponieważ większość systemów telewizyjnych, w tym anteny i odbiorniki, zostało zaprojektowanych do pracy z impedancją 75 Ω. Stosowanie rezystora o tej wartości na zakończeniu linii koncentrycznej jest kluczowe dla zapewnienia odpowiedniego dopasowania impedancji, co minimalizuje straty sygnału oraz odbicia. W praktyce, jeśli zakończenie linii nie będzie zgodne z impedancją, część sygnału może zostać odbita, co prowadzi do zakłóceń w odbiorze i obniżenia jakości sygnału wideo i audio. W standardach telekomunikacyjnych, takich jak normy DVB-T i DVB-S, impedancja 75 Ω jest powszechnie stosowana, co potwierdza jej znaczenie w branży. Przykładem zastosowania rezystora 75 Ω w praktyce jest montaż gniazdek antenowych oraz zakończeń kabli w instalacjach domowych, gdzie kluczowe jest zachowanie wysokiej jakości sygnału. Dodatkowo, w profesjonalnych aplikacjach telewizyjnych, takich jak systemy telewizji przemysłowej czy transmisje na żywo, wykorzystanie odpowiednich rezystorów końcowych jest niezbędne do utrzymania integralności sygnału.

Pytanie 30

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
B. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
C. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
D. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
Topologia liniowa, w której zastosowano gniazda TV końcowe lub przelotowe, nie jest najlepszym rozwiązaniem dla instalacji antenowych. W przypadku gniazd końcowych w topologii liniowej, sygnał jest przesyłany przez każdą jednostkę po drodze, co prowadzi do znacznych strat sygnału i pogorszenia jakości obrazu. Gniazda przelotowe również wprowadzają dodatkowe problemy, ponieważ sygnał przechodzi przez wiele punktów, co zwiększa ryzyko zakłóceń. W praktyce, użytkownicy mogą doświadczać problemów z odbiorem, takich jak zniekształcenia obrazu czy zrywanie sygnału. Dodatkowo, instalacje liniowe są trudniejsze do rozbudowy, ponieważ każda zmiana wymaga przerywania istniejących połączeń. Takie podejście nie jest zgodne z zaleceniami branżowymi, które podkreślają znaczenie minimalizacji strat sygnału oraz łatwości w modyfikacji systemu. Dlatego, wybór topologii gwiazdy z gniazdami końcowymi jest nie tylko bardziej efektywny, ale również jest zgodny z najlepszymi praktykami w branży telekomunikacyjnej i instalacyjnej.

Pytanie 31

Adres IP bramy w rejestratorze, który jest podłączony do sieci komputerowej, to adres

A. kamery
B. serwera DNS
C. przełącznika
D. rutera
Błędne odpowiedzi na to pytanie mogą wynikać z nieporozumienia dotyczącego roli poszczególnych urządzeń w sieci. Przełącznik to urządzenie, które działa na poziomie warstwy drugiej modelu OSI, odpowiedzialne za przekazywanie ramek danych w obrębie lokalnej sieci. Nie ma on funkcji bramy, ponieważ nie obsługuje komunikacji pomiędzy różnymi sieciami. Kamery, z drugiej strony, to urządzenia końcowe, które przesyłają dane za pomocą protokołów sieciowych, ale również nie pełnią roli bramy. Serwer DNS działa na poziomie tłumaczenia nazw domenowych na adresy IP, co jest niezbędne do lokalizowania zasobów w sieci, jednak jego funkcjonalność również nie obejmuje działania jako brama. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji przełącznika z funkcjami rutera oraz nieznajomość podstawowych zadań serwera DNS. Aby skutecznie zarządzać siecią, należy zrozumieć, że ruter jest odpowiedzialny za komunikację zewnętrzną, a inne urządzenia, takie jak przełączniki, kamery czy serwery DNS, pełnią uzupełniające role, lecz nie mogą działać jako brama bezposrednia.

Pytanie 32

Który z wymienionych komponentów wykorzystuje się w systemach automatyki przemysłowej do pomiaru temperatury?

A. Tyrystor
B. Warystor
C. Triak
D. Termistor
Termistor jest elementem czujnikowym, który zmienia opór elektryczny w zależności od temperatury. Jest to stosunkowo powszechny komponent w automatyce przemysłowej, wykorzystywany w różnych systemach pomiarowych i kontrolnych. Jego budowa opiera się na materiałach półprzewodnikowych, które charakteryzują się dużą czułością na zmiany temperatury, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur. Przykładowe zastosowania termistorów obejmują kontrolę temperatury w piecach przemysłowych, klimatyzacji, a także w systemach monitorowania procesów chemicznych. Zgodnie ze standardami, termistory są często wykorzystywane w systemach automatyki do zapewnienia efektywnej regulacji i optymalizacji procesów, co przekłada się na zwiększenie efektywności energetycznej oraz bezpieczeństwa operacji. Zastosowanie termistorów w połączeniu z odpowiednim oprogramowaniem pozwala na tworzenie zaawansowanych algorytmów kontroli, co jest zgodne z najlepszymi praktykami w branży automatyki."

Pytanie 33

Zanim przystąpimy do konserwacji jednostki centralnej komputera stacjonarnego podłączonego do lokalnej sieci, najpierw powinniśmy

A. wyciągnąć przewód sieciowy
B. uziemić metalowe elementy obudowy
C. otworzyć obudowę jednostki centralnej
D. odłączyć przewód zasilający
Odpowiedź 'odłączyć przewód zasilający' jest kluczowa przed przystąpieniem do konserwacji jednostki centralnej komputera, ponieważ wyłącza zasilanie urządzenia. W przypadku konserwacji, takiej jak czyszczenie komponentów czy wymiana podzespołów, istnieje ryzyko zwarcia, które może prowadzić do uszkodzenia sprzętu lub zagrożenia dla zdrowia użytkownika. Odłączenie przewodu zasilającego jest pierwszym krokiem w procedurze bezpiecznej konserwacji i jest zgodne z najlepszymi praktykami w branży IT. Przykładowo, w standardach OSHA (Occupational Safety and Health Administration) oraz IEC (International Electrotechnical Commission) podkreśla się znaczenie odłączania zasilania przed jakimikolwiek pracami serwisowymi. Warto również pamiętać o używaniu odpowiednich narzędzi, takich jak opaski antyelektrostatyczne, aby zminimalizować ryzyko uszkodzenia komponentów przez ładunki elektrostatyczne. W prawidłowej konserwacji istotne jest, aby zawsze działać zgodnie z zaleceniami producenta sprzętu, co dodatkowo podnosi poziom bezpieczeństwa i efektywności działań serwisowych.

Pytanie 34

Gdy zachodzi potrzeba połączenia światłowodu z przewodem skrętkowym, powinno się użyć

A. konwerter.
B. wzmacniak.
C. router.
D. koncentrator.
Konwerter to urządzenie, które pozwala na łączenie różnych typów mediów transmisyjnych, jak światłowód i skrętka. W kontekście sieci, konwertery światłowodowe są naprawdę ważne, bo integrują różne technologie. Właściwie to, ich głównym zadaniem jest zmiana sygnału optycznego z światłowodu na sygnał elektryczny, który można przesłać przez skrętkę, i odwrotnie. To jest istotne, kiedy chcemy rozbudować lokalną sieć, korzystając z już istniejących połączeń, jak sieci Ethernet. Przykład? Jeśli mamy budynek, który potrzebuje internetu, to możemy połączyć go z centralą przez światłowód, ale w samej budowli kontynuować transmisję sygnału przez skrętkę. To jest zgodne z najlepszymi praktykami w budowie sieci, a także z normami IEEE 802.3, które określają metody przesyłu w lokalnych sieciach. Dlatego konwerter to kluczowy element nowoczesnych architektur sieciowych.

Pytanie 35

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. przegrzaniem rejestratora
B. zmianą parametrów działania kamer
C. obniżeniem efektywności rejestratora
D. zawieszeniem pracy systemu
Krótkotrwałe zaniki napięcia zasilającego system CCTV mogą prowadzić do "zawieszenia" pracy systemu, ponieważ urządzenia te wymagają stabilnego i ciągłego zasilania, aby prawidłowo funkcjonować. W przypadku spadków napięcia, rejestratory i kamery mogą utracić synchronizację, co skutkuje przerwą w rejestrowaniu obrazu lub brakiem możliwości przesyłania danych. W praktyce oznacza to, że podczas dużych wichur, gdy zasilanie może być niestabilne, system CCTV może całkowicie przestać działać. Dobrą praktyką w zabezpieczeniu systemów monitoringu przed takimi zdarzeniami jest zastosowanie zasilaczy UPS, które zapewniają ciągłość zasilania w przypadku zaniku prądu. Zgodnie z normami branżowymi, regularne testowanie tych systemów zasilania awaryjnego oraz ich odpowiednia konserwacja są kluczowe dla efektywności i niezawodności systemów CCTV.

Pytanie 36

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. generatora
B. zasilacza
C. wzmacniacza
D. filtra
Wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik sprawności energetycznej to kluczowe parametry wzmacniaczy. Wzmacniacze są urządzeniami elektrycznymi, których podstawowym zadaniem jest zwiększenie amplitudy sygnału elektrycznego. Wzmocnienie mocy odnosi się do zdolności wzmacniacza do podnoszenia mocy sygnału, co jest niezbędne w aplikacjach audio, telekomunikacyjnych czy radiowych. Moc wyjściowa określa, ile energii wzmacniacz może dostarczyć do obciążenia, co ma kluczowe znaczenie dla zapewnienia odpowiedniej jakości dźwięku lub sygnału. Pasmo przenoszenia natomiast definiuje zakres częstotliwości, w jakim wzmacniacz może efektywnie działać, co jest istotne w kontekście reprodukcji dźwięku czy przesyłania danych. Współczynnik sprawności energetycznej mierzy, jak efektywnie wzmacniacz przekształca moc zasilania na moc wyjściową, co jest istotne dla ograniczenia strat energii i poprawy wydajności systemu. Przykładem zastosowania wzmacniacza może być system audio, gdzie poprawne zgranie tych parametrów decyduje o jakości dźwięku i jego mocy. Zgodnie z normami branżowymi, jak np. normy IEC, ważne jest, aby wzmacniacze były projektowane z uwzględnieniem tych parametrów, aby spełniały wymagania użytkowników i zapewniały niezawodność w działaniu.

Pytanie 37

Jeśli po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski lub rozmowa jest cicho, co należy zrobić?

A. podnieść napięcie zasilania elektrozaczepu
B. zwiększyć poziom głośności w unifonie
C. dostosować poziom głośności w zasilaczu
D. dostosować napięcie w kasecie rozmownej
Wybór opcji związanej z podwyższeniem poziomu głośności w unifonie nie jest wystarczająco skuteczny, ponieważ w sytuacjach, gdy dźwięk jest słabo słyszalny lub słychać piski, problem często leży w zasilaczu. Unifon, jako urządzenie odbierające sygnał, może być zbyt czuły lub nie mieć możliwości skutecznej regulacji, jeśli zasilacz nie dostarcza odpowiedniego sygnału. Ponadto, podwyższenie napięcia zasilania elektrozaczepu nie ma wpływu na jakość dźwięku w słuchawce, ponieważ elektrozaczep odpowiada tylko za otwieranie drzwi i nie wpływa na przekaz audio. Regulacja napięcia w kasecie rozmownej także nie rozwiązuje problemu, ponieważ nie jest odpowiedzialna za głośność, lecz za ogólną funkcjonalność urządzenia. Niekiedy użytkownicy błędnie myślą, że wszelkie problemy z dźwiękiem można rozwiązać poprzez dostosowanie ustawień w odbiorniku, zapominając o kluczowej roli, jaką odgrywa zasilacz w całym systemie. Z tego powodu, ważne jest, aby przy instalacji domofonów zwracać uwagę na wszystkie komponenty systemu oraz ich wzajemne oddziaływanie. Właściwe zrozumienie funkcji oraz zależności między poszczególnymi elementami jest niezbędne dla efektywnej diagnostyki i naprawy występujących problemów.

Pytanie 38

Na ekranie odbiornika OTV widoczna jest bardzo jasna linia pozioma, podczas gdy reszta ekranu pozostaje ciemna. W którym module odbiornika doszło do awarii?

A. We wzmacniaczu p.cz. różnicowym fonii
B. W dekoderze kolorów
C. W module odchylania pionowego
D. W module odchylania poziomego
Poprawna odpowiedź to blok odchylania pionowego, ponieważ opisany objaw, czyli jasna linia pozioma na ekranie, sugeruje problem w obszarze odpowiedzialnym za kontrolę odchylania obrazu w kierunku pionowym. W przypadku awarii tego bloku, sygnał odchylania pionowego nie jest prawidłowo przetwarzany, co prowadzi do niemożności skanowania obrazu w pionie, co z kolei skutkuje wyświetlaniem tylko poziomej linii. Tego typu problem jest typowy dla uszkodzeń w układach analogowych, gdzie niewłaściwe napięcia lub przerwy w obwodzie mogą całkowicie zablokować sygnał. W praktyce, diagnostyka takich usterek wymaga użycia oscyloskopu do analizy sygnałów odchylających oraz pomiaru napięć w kluczowych punktach obwodu, co pozwala na szybkie zlokalizowanie problemu. W branży elektronicznej standardowe procedury naprawcze zalecają wymianę uszkodzonych komponentów, takich jak kondensatory czy tranzystory, aby przywrócić prawidłowe działanie odbiornika.

Pytanie 39

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. wobulatora
B. woltomierza
C. oscyloskopu
D. omomierza
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 40

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. zasilania kamer.
B. kabelka HDMI.
C. dysku twardego.
D. kamer HD.
Komunikat 'HDD Error' w rejestratorze jest jednoznacznym sygnałem, że występuje problem z dyskiem twardym. Dyski twarde, będące kluczowymi komponentami systemów rejestracji wideo, przechowują wszystkie nagrania oraz dane konfiguracyjne. Ich uszkodzenie może prowadzić do utraty danych, co jest szczególnie krytyczne w systemach monitoringu, gdzie bezpieczeństwo jest priorytetem. W przypadku wystąpienia takiego błędu zaleca się natychmiastowe sprawdzenie stanu dysku, na przykład poprzez skanowanie narzędziami diagnostycznymi, takimi jak CrystalDiskInfo, które mogą wykazać stan SMART dysku. Warto również zastanowić się nad regularnym tworzeniem kopii zapasowych danych, aby zminimalizować ryzyko ich utraty w przyszłości. Dobre praktyki w branży monitoringu wizyjnego obejmują również cykliczną wymianę dysków twardych oraz stosowanie dysków przeznaczonych specjalnie do pracy w systemach rejestracji wideo, które są bardziej odporne na naświetlenie i mają dłuższą żywotność.