Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 25 maja 2025 19:53
  • Data zakończenia: 25 maja 2025 19:58

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy3 i Dy9
B. Dy1 i Dy5
C. Dy5 i Dy11
D. Dy7 i Dy11
Odpowiedź Dy5 i Dy11 jest prawidłowa, ponieważ te konfiguracje transformatorów trójfazowych są rekomendowane w Polskich Normach (PN) ze względu na swoje korzystne właściwości eksploatacyjne. Konfiguracja Dy5, czyli połączenie w gwiazdę z przesunięciem fazowym o 180°, jest często stosowana w systemach zasilających, ponieważ minimalizuje straty mocy i pozwala na stabilne zasilanie odbiorników w układzie nieuzwojonym. Z kolei Dy11, czyli połączenie w trójkąt z przesunięciem fazowym o 30°, jest powszechnie wykorzystywane w aplikacjach wymagających dużych wydajności oraz dobrej jakości energii. Oba połączenia zapewniają optymalne parametry pracy transformatorów, co przekłada się na ich długowieczność i niezawodność. Zastosowanie tych konfiguracji jest szczególnie ważne w przemysłowych systemach zasilających oraz w energetyce, gdzie skutkuje to obniżeniem harmonik prądu i poprawą jakości energii. Dlatego ich wybór jest zgodny z najlepszymi praktykami branżowymi oraz normami, co czyni je zalecanymi w projektach elektrycznych.

Pytanie 2

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Zmierzyć ciągłość przewodów ochronnych PE
B. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
C. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
D. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
Sprawdzanie działania wyłącznika RCD przy pomocy przycisku 'TEST' nie rozwiązuje problemu z wysoką wartością impedancji pętli zwarcia, a jedynie testuje funkcjonalność samego urządzenia. Wyłączniki RCD mają na celu ochronę przed porażeniem prądem elektrycznym, ale ich sprawność nie wpływa bezpośrednio na impedancję pętli zwarcia. Wartość impedancji pętli zwarcia jest krytycznym parametrem, który powinien mieścić się w określonych granicach, aby zapewnić, że zabezpieczenia, takie jak bezpieczniki lub wyłączniki, zadziałają w odpowiednim czasie w przypadku zwarcia. Testy rezystancji izolacji przewodów, choć istotne, nie są bezpośrednio związane z problemem impedancji pętli zwarcia, ponieważ koncentrują się na integralności izolacji, a nie na połączeniach. Z kolei pomiar ciągłości przewodów ochronnych PE, choć ważny, nie identyfikuje potencjalnych problemów z połączeniami wewnętrznymi obwodu, które mogą być źródłem wysokiej impedancji. Niestety, często dochodzi do mylnego przekonania, że pojedyncze testy mogą kompleksowo rozwiązać problem, podczas gdy kluczowe jest zdiagnozowanie i nawiązanie do przyczyn wysokiej impedancji, które mogą wynikać z wielu czynników, w tym właśnie z nieprawidłowych połączeń elektrycznych.

Pytanie 3

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. pirometr
B. induktor
C. przekładnik napięciowy
D. prądnicę tachometryczną
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 4

Podczas serwisowania urządzenia wymieniono uszkodzony silnik bocznikowy prądu stałego. W trakcie próbnego uruchamiania silnika zauważono, że jego prędkość obrotowa jest wyższa od wartości nominalnej. Co może być przyczyną tego zjawiska?

A. Brak obciążenia na silniku
B. Zwarcie w obwodzie wzbudzenia silnika
C. Uszkodzenie w połączeniu uzwojenia twornika z zasilaczem
D. Uszkodzenie w połączeniu uzwojenia bocznikowego z zasilaczem
Brak połączenia w uzwojeniu bocznikowym z zasilaniem to spory problem, bo prowadzi to do niskiego wzbudzenia silnika, a przez to nie możemy kontrolować jego prędkości obrotowej. W silnikach bocznikowych to właśnie prąd wzbudzenia jest mega ważny, żeby prędkość była stabilna. Jak coś jest nie tak z połączeniem, prąd wzbudzenia spada, a to może sprawić, że silnik zacznie kręcić się szybciej niż powinien. Warto o tym pamiętać i regularnie sprawdzać połączenia elektryczne w układach napędowych, żeby uniknąć nieprzyjemnych sytuacji. Są różne normy, na przykład IEC 60034, które podkreślają, jak ważne jest poprawne wzbudzenie dla bezpieczeństwa i efektywności działania silnika. A jak ktoś modernizuje silnik lub wymienia jego części, to dobrze jest użyć odpowiednich narzędzi do diagnozowania, żeby mieć pewność, że wszystko działa jak należy i żeby silnik się nie rozbiegał.

Pytanie 5

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,5 IΔN do 1,2 IΔN
B. Od 0,3 IΔN do 0,8 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,3 IΔN do 1,0 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 6

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
B. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
C. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
D. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
Przed przystąpieniem do wymiany uszkodzonych elementów instalacji elektrycznej do 1 kV, kluczowe jest przestrzeganie ustalonej procedury bezpieczeństwa. Po pierwsze, zabezpieczenie przed powtórnym załączeniem oznacza zastosowanie odpowiednich blokad lub zamknięć, które uniemożliwiają przypadkowe przywrócenie zasilania podczas prac. Po tym etapie, potwierdzenie braku napięcia jest niezbędne, aby upewnić się, że instalacja faktycznie jest de-energizowana. Można to osiągnąć za pomocą odpowiednich przyrządów pomiarowych, takich jak wskaźniki napięcia, które powinny być używane przez wykwalifikowany personel. Uziemienie instalacji elektrycznej jest kolejnym krokiem, który zapewnia, że wszelkie pozostałe ładunki elektryczne są bezpiecznie odprowadzane do ziemi, co minimalizuje ryzyko porażenia prądem. Cała ta procedura jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które określają zasady dotyczące eksploatacji instalacji elektrycznych.

Pytanie 7

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Przekształcenie prądu przemiennego na stały
B. Regulacja napięcia wyjściowego
C. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
D. Ochrona przed przeciążeniem obwodu
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 8

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 50kΩ
B. 10kΩ
C. 25kΩ
D. 75kΩ
Rezystancja ścian i podłogi w izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić co najmniej 50 kΩ, aby zapewnić skuteczną ochronę przed dotykiem pośrednim. Wysoka wartość rezystancji jest kluczowa, ponieważ zmniejsza ryzyko przepływu prądu przez ciało człowieka w przypadku awarii izolacji. Zgodnie z normami IEC 60364 oraz PN-EN 61140, minimalna rezystancja ochronna dla urządzeń elektrycznych w takich warunkach powinna wynosić 50 kΩ. W praktyce, stosowanie takiej wartości rezystancji wpływa na zwiększenie bezpieczeństwa operatorów, zwłaszcza w środowiskach przemysłowych, gdzie ryzyko porażenia prądem jest wyższe. Przykładem może być zakład produkcyjny, w którym regularnie stosuje się urządzenia do pomiarów rezystancji w celu zapewnienia, że izolacja jest odpowiednia i nie zagraża pracownikom. Dobre praktyki obejmują także okresowe przeglądy instalacji elektrycznych oraz testowanie zabezpieczeń, co dodatkowo minimalizuje ryzyko awarii.

Pytanie 9

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik nie włączy się
B. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
C. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
D. Silnik zmieni swój kierunek obrotów
Podczas rozruchu silnika indukcyjnego jednofazowego, kondensator rozruchowy o pojemności 300 µF jest kluczowy dla zapewnienia momentu obrotowego niezbędnego do uruchomienia silnika. Jeśli zamienimy go z kondensatorem pracy 50 µF, silnik nie otrzyma odpowiedniej wartości pojemności, co skutkuje niewystarczającym momentem obrotowym. W rezultacie silnik nie ruszy. To zjawisko jest zgodne z zasadami działania silników indukcyjnych, gdzie kondensatory pełnią istotną rolę w tworzeniu przesunięcia fazowego między prądem a napięciem. W praktyce, stosowanie odpowiednich kondensatorów zgodnych z wymaganiami producenta, jest kluczowe dla prawidłowego działania silników. Właściwe dobieranie kondensatorów to standardowa praktyka, która minimalizuje ryzyko awarii i zapewnia długotrwałą niezawodność urządzeń elektrycznych.

Pytanie 10

Która z poniższych czynnościnie jest częścią prób odbiorczych w instalacjach elektrycznych?

A. Weryfikacja ochrony uzupełniającej
B. Pomiar mocy, którą pobiera obwód odbiorczy
C. Pomiar rezystancji ścian i podłóg
D. Weryfikacja kolejności faz
Chociaż pomiar rezystancji podłóg i ścian, sprawdzenie ochrony uzupełniającej oraz kontrola kolejności faz są istotnymi czynnościami w zakresie prób odbiorczych, należy zrozumieć, dlaczego pomiar mocy pobieranej przez obwód odbiorczy nie jest zgodny z tym zakresem. Mierzenie mocy pobieranej przez obwód odbiorczy dotyczy efektywności energetycznej i obciążenia, a nie bezpieczeństwa czy poprawności technicznej instalacji. W kontekście prób odbiorczych, kluczowym celem jest zapewnienie, że instalacja działa zgodnie z normami bezpieczeństwa, co obejmuje weryfikację takich parametrów jak rezystancja izolacji, która jest istotna dla zapobiegania porażeniom elektrycznym. Pomiar mocy jest bardziej związany z eksploatacją i zarządzaniem energią niż z odbiorem instalacji, co może prowadzić do mylnych wniosków. Istotne jest, aby podczas analizy funkcjonowania instalacji elektrycznych nie mylić procesów odbiorczych z monitorowaniem zużycia energii. Niekiedy, zwłaszcza w kontekście modernizacji czy rozbudowy instalacji, mogą występować niedopowiedzenia dotyczące tego, co stanowi właściwy zakres prób odbiorczych. Kluczowe jest zrozumienie, że odbiór koncentruje się na zapewnieniu bezpieczeństwa i zgodności z obowiązującymi normami, a nie na analizie efektywności energetycznej, co może prowadzić do błędnych interpretacji.

Pytanie 11

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu ochronnego z obudową
B. uszkodzenie w grzałce
C. uszkodzenie w przewodzie fazowym
D. zwarcie przewodu fazowego oraz neutralnego
W przypadku innych odpowiedzi, które mogłyby być uznane za poprawne, jak przerwa w przewodzie fazowym, zwarcie przewodu ochronnego do obudowy czy zwarcie przewodu fazowego i neutralnego, warto wskazać na ich merytoryczne błędy. Przerwa w przewodzie fazowym nie mogłaby skutkować natychmiastowym działaniem zabezpieczenia nadprądowego, ponieważ w takim przypadku prąd nie popłynąłby w ogóle, co nie aktywuje zabezpieczeń. Zwarcie przewodu ochronnego do obudowy z kolei powinno wywołać reakcję wyłącznika różnicowoprądowego, a nie nadprądowego, jako że jest to zupełnie inny mechanizm zabezpieczający, który odpowiada za ochronę przed porażeniem prądem. Natomiast zwarcie przewodu fazowego i neutralnego zazwyczaj prowadzi do sytuacji nadmiernego przepływu prądu, co również spowodowałoby zadziałanie zabezpieczenia nadprądowego, ale w inny sposób i z innymi konsekwencjami. Niekiedy błędne wnioski płyną z niepełnego zrozumienia zasad działania zabezpieczeń oraz ich różnic, co prowadzi do pomyłek. Wiedza na temat tego, jak i dlaczego zabezpieczenia działają w dany sposób, jest kluczowa dla bezpieczeństwa instalacji elektrycznych i ich użytkowników. Dlatego zawsze należy dokładnie analizować przyczyny działania zabezpieczeń w kontekście konkretnego problemu.

Pytanie 12

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ

A. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
B. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
C. zwarcie międzyzwojowe w uzwojeniu W1 — W2
D. przerwę w uzwojeniu U1 — U2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 13

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Autotransformator
B. Dzielnik napięcia
C. Transformator bezpieczeństwa
D. Przekładnik
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 14

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Rozbudowanie instalacji
B. Zadziałanie wyłącznika różnicowoprądowego
C. Zadziałanie zabezpieczenia przedlicznikowego
D. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 15

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Przeprowadź próbę ciągłości połączeń wyrównawczych
B. Zweryfikuj poprawność doboru przekroju przewodów
C. Zbadaj rezystancję izolacji instalacji elektrycznej
D. Zmierz czas samoczynnego wyłączenia zasilania
Sprawdzenie poprawności doboru przekroju przewodów jest kluczowym krokiem przed oddaniem do użytku instalacji elektrycznej w budynkach mieszkalnych. Przekroje przewodów muszą być odpowiednio dobrane, aby zapewnić bezpieczeństwo użytkowania oraz efektywność energetyczną. Zbyt mały przekrój przewodu może prowadzić do przegrzewania się, co z kolei zwiększa ryzyko pożaru. Podczas tego sprawdzenia należy uwzględnić obciążenie prądowe, długość przewodów oraz rodzaj instalacji. Przykładowo, w przypadku instalacji oświetleniowej w domach jednorodzinnych zazwyczaj stosuje się przewody o przekroju 1,5 mm², natomiast w instalacjach zasilających urządzenia o większej mocy stosuje się przewody o przekroju 2,5 mm² lub nawet większym, w zależności od specyfiki obciążenia. Standardy takie jak PN-IEC 60364-5-52 wyraźnie określają zasady doboru przekrojów przewodów w zależności od zastosowania oraz warunków środowiskowych, co podkreśla znaczenie tego etapu w procesie inspekcji instalacji elektrycznej.

Pytanie 16

W instalacji jednofazowej o częstotliwości 50 Hz oraz napięciu znamionowym 230 V, wartość napięcia pomiędzy przewodem fazowym a przewodem neutralnym nie powinna wynosić

A. mniej niż 230 V
B. więcej niż 253 V
C. więcej niż 243 V
D. mniej niż 213 V
'Większa niż 253 V' to faktycznie dobra odpowiedź. W instalacjach jednofazowych, gdzie mamy napięcie 230 V i częstotliwość 50 Hz, napięcie między fazą a neutralnym musi się mieścić w określonym zakresie. Z tego co pamiętam, normy mówią, że odchylenia napięcia mogą wynosić +/- 10%. W takim przypadku dolna granica to 207 V, a górna to 253 V. Jak widzisz, wszystko powyżej 253 V to już sporo za dużo. I to może być niebezpieczne dla urządzeń elektrycznych, mogą się przegrzewać i psuć. Dlatego w projektowaniu instalacji warto używać zabezpieczeń, jak wyłączniki nadprądowe czy ograniczniki przepięć, żeby chronić system. Monitorowanie napięcia to kluczowa sprawa, żeby wszystko działało długo i bezpiecznie.

Pytanie 17

Wybierz najmniejszy przekrój głównego przewodu wyrównawczego, który jest wykonany z miedzi, mając na uwadze, że maksymalny wymagany przekrój przewodu ochronnego w całej instalacji wynosi S = 16 mm2.

A. 10 mm2
B. 6 mm2
C. 4 mm2
D. 16 mm2
Wybór przewodu wyrównawczego głównego o przekroju 10 mm² jest uzasadniony normami oraz praktycznymi wymaganiami w zakresie ochrony przed porażeniem prądem elektrycznym. Zgodnie z normą PN-IEC 60364-5-54, minimalny przekrój przewodu wyrównawczego głównego powinien być dostosowany do największego przekroju przewodu ochronnego w instalacji, co w tym przypadku wynosi 16 mm². Przewód wyrównawczy ma kluczowe znaczenie w zapewnieniu efektywnej ochrony przed różnymi rodzajami awarii, w tym zwarciami, co może prowadzić do niebezpiecznych sytuacji. Przekrój 10 mm² jest odpowiedni, gdyż umożliwia efektywne prowadzenie prądów zwarciowych, a jednocześnie jest wystarczająco elastyczny do zastosowań w praktyce, gdzie przewody muszą być dostosowane do warunków montażowych. Zastosowanie tego przekroju zapewnia także odpowiednią odporność na przegrzewanie, co jest kluczowe w kontekście bezpieczeństwa instalacji elektrycznych. W przypadku większych instalacji lub w miejscach o zwiększonym ryzyku, dodatkowe czynniki, takie jak temperatura otoczenia i sposób prowadzenia przewodów, powinny być brane pod uwagę przy dalszym doborze przekroju.

Pytanie 18

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 16 A
B. 6 A
C. 20 A
D. 10 A
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy PN = 2,4 kW oraz napięciu UN = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: IN = PN / UN. Zatem IN = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 19

Na wartość impedancji pętli zwarcia w systemie TN-C wpływ mają

A. materiał izolacyjny przewodów
B. przekrój żył przewodów
C. liczba przewodów umieszczonych w korytkach
D. metoda ułożenia przewodów w instalacji
Wartość impedancji pętli zwarcia w sieci TN-C jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznej. Przekrój żył przewodów ma bezpośredni wpływ na oporność elektryczną i tym samym na impedancję pętli zwarcia. Im większy przekrój przewodów, tym mniejsza ich oporność, co prowadzi do niższej wartości impedancji pętli. To z kolei pozytywnie wpływa na czas zadziałania zabezpieczeń nadprądowych, co jest zgodne z wymaganiami normy PN-IEC 60364. W praktyce, odpowiednio dobrany przekrój przewodów zapewnia, że w przypadku zwarcia prąd zwarciowy będzie na tyle wysoki, aby zadziałały zabezpieczenia, minimalizując ryzyko uszkodzeń oraz pożaru. Właściwy dobór przekroju żył jest szczególnie ważny w instalacjach o dużym obciążeniu, gdzie niewłaściwe wartości impedancji mogą prowadzić do awarii systemu.

Pytanie 20

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B20
B. B25
C. B16
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 21

Jak zastosowanie w instalacji puszek rozgałęźnych o stopniu ochrony IP 43 zamiast wymaganych w projekcie o stopniu ochrony IP44 wpłynie na jej jakość?

A. Poprawi się klasa ochrony.
B. Zmniejszy się odporność na pył.
C. Zmniejszy się odporność na wilgoć.
D. Poprawi się klasa izolacji.
Dobra robota, że zwróciłeś uwagę na wybór puszek rozgałęźnych z IP 43. Wiesz, że to gorsza opcja w porównaniu do IP 44? IP oznacza, jak dobrze urządzenie radzi sobie z wodą i innymi nieprzyjemnościami. W przypadku IP 43, ochrona przed wilgocią nie jest zbyt silna, więc urządzenia mogą być narażone na wodne mgły, ale nie na krople wody spadające pod kątem. W przeciwieństwie do tego, IP 44 to lepsza opcja, jeśli chodzi o odporność na wilgoć, co jest super ważne w miejscach jak łazienki czy piwnice. Tak naprawdę, dobierając odpowiednie puszki, nie tylko dbamy o bezpieczeństwo, ale też o długość życia całej instalacji elektrycznej. Wybór elementów z właściwą klasą ochrony ma ogromny wpływ na to, jak system będzie działał i zmniejsza ryzyko różnych awarii związanych z wilgocią.

Pytanie 22

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Czterech
B. Dwóch
C. Trzech
D. Jednego
Odpowiedź 'jednego' pracownika jest poprawna, ponieważ zgodnie z obowiązującymi normami, w tym z Polską Normą PN-IEC 60364, przy wykonywaniu prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV, wystarcza obecność jednego pracownika posiadającego odpowiednie kwalifikacje i uprawnienia. Takie prace, szczególnie w środowisku biurowym, często nie wymagają dodatkowych osób do nadzoru, chyba że sytuacja wskazuje na szczególne ryzyko. Zazwyczaj pracownik ten powinien mieć uprawnienia w zakresie eksploatacji urządzeń elektrycznych, co potwierdza jego zdolność do bezpiecznego wykonywania pomiarów i prób. Na przykład, podczas przeprowadzania testów izolacji kabla, wystarczy jedna osoba, aby przeprowadzić pomiary. W praktyce, odpowiednia dokumentacja i zapisy, takie jak protokoły pomiarów, również są niezbędne do zapewnienia zgodności z normami bezpieczeństwa. Warto również zauważyć, że taka minimalna liczba pracowników jest zgodna z zaleceniami i dobrymi praktykami, co pozwala na efektywne zarządzanie zasobami ludzkimi w firmach zajmujących się obsługą urządzeń elektrycznych.

Pytanie 23

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Zbyt wysokie obroty wirnika
B. Przegrzanie uzwojeń stojana
C. Przegrzanie uzwojeń wirnika
D. Zwarcie pomiędzy zwojami wirnika
W przypadku nagrzewania się uzwojeń stojana, choć może to prowadzić do różnych problemów w pracy silnika, nie jest to bezpośrednią przyczyną nadmiernego iskrzenia na komutatorze. Wysokie temperatury mogą prowadzić do degradacji izolacji, co z kolei zwiększa ryzyko zwarcia, ale samo w sobie nagrzewanie nie generuje bezpośrednio iskrzenia. Zjawisko zwarcia pomiędzy zwojami wirnika ma znacznie większy wpływ na to zjawisko. Nagrzewanie się uzwojeń wirnika również nie jest przyczyną iskrzenia, a raczej objawem nieprawidłowego działania silnika, jednak nie generuje ono iskrzenia na komutatorze. Zbyt duże obroty wirnika mogą prowadzić do problemów mechanicznych i niewłaściwego działania komutacji, ale ich wpływ na iskrzenie jest marginalny w porównaniu do zwarcia. W silnikach szeregowych, które charakteryzują się bezpośrednim połączeniem uzwojeń wirnika z obwodem zasilania, nadmierne obroty mogą prowadzić do niestabilności pracy, ale konieczne jest rozróżnienie pomiędzy przyczyną a skutkiem. Typowym błędem myślowym jest zakładanie, że każdy problem z silnikiem musi być związany z jego temperaturą lub prędkością obrotową, podczas gdy kluczowe przyczyny, takie jak zwarcia, mogą być pomijane.

Pytanie 24

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zmniejszenie prędkości obrotowej
B. zwiększenie prędkości obrotowej
C. zatrzymanie wirnika
D. zmianę kierunku obrotu
Zmiana liczby par biegunów wirującego pola magnetycznego w silniku indukcyjnym prowadzi do zmiany jego prędkości obrotowej. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa wirnika jest determinowana przez częstotliwość zasilania oraz liczbę par biegunów. Wzór na prędkość synchroniczną (Ns) wyrażany jest jako Ns = 120*f/p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. Zwiększenie liczby par biegunów (p) przy stałej częstotliwości zasilania (f) skutkuje zmniejszeniem prędkości obrotowej wirnika. Praktycznie, taka zmiana jest wykorzystywana w aplikacjach, gdzie potrzebne jest uzyskanie większego momentu obrotowego przy niższej prędkości, na przykład w napędach maszyn przemysłowych. Dobrą praktyką jest także uwzględnienie w projektowaniu silników odpowiednich parametrów, takich jak obciążenie i wymagania aplikacyjne, aby zapewnić optymalne działanie silnika w danym zakresie prędkości.

Pytanie 25

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć kondensatory równolegle do silników
B. Podłączyć dławiki indukcyjne szeregowo do silników
C. Podłączyć dławiki indukcyjne równolegle do silników
D. Podłączyć kondensatory szeregowo do silników
Włączenie dławików indukcyjnych równolegle do silników nie jest skuteczną metodą kompensacji mocy biernej, ponieważ dławiki wytwarzają moc bierną indukcyjną. Ich zastosowanie w tej konfiguracji zwiększałoby zapotrzebowanie na moc bierną, co prowadziłoby do dalszego obciążenia sieci zasilającej i zwiększenia kosztów energii. Wprowadzenie kondensatorów szeregowo do silników również jest niewłaściwe, ponieważ tak skonfigurowane kondensatory nie mogą efektywnie kompensować mocy biernej silników indukcyjnych, gdyż ich działanie jest ograniczone do specyficznych warunków prądowych, co zmniejsza efektywność kompensacji. Działanie dławików indukcyjnych szeregowo z silnikami wprowadza dodatkowe straty mocy i może prowadzić do niestabilnych warunków pracy. Typowym błędem myślowym jest przyjmowanie, że urządzenia indukcyjne mogą być wspomagane przez inne urządzenia indukcyjne lub na zasadzie szeregowego połączenia. W praktyce, do efektywnej kompensacji mocy biernej w systemach z silnikami indukcyjnymi, niezbędne jest zastosowanie kondensatorów w konfiguracji równoległej, co pozwala na stabilizację mocy biernej i poprawę współczynnika mocy w instalacjach przemysłowych.

Pytanie 26

Jakie z wymienionych powodów wpływa na zmniejszenie prędkości obrotowej trójfazowego silnika klatkowego w trakcie jego pracy?

A. Zmniejszenie obciążenia silnika.
B. Wzrost wartości napięcia zasilającego.
C. Przerwa w zasilaniu jednej z faz.
D. Zwarcie pierścieni ślizgowych.
Przerwa w zasilaniu jednej fazy w trójfazowym silniku klatkowym prowadzi do poważnych zaburzeń w jego pracy. Silniki te są zaprojektowane do pracy w układzie trójfazowym, co oznacza, że ​​każda faza zasilania przyczynia się do generowania pola magnetycznego o określonym kącie fazowym. Gdy jedna z faz zostaje odcięta, silnik zaczyna działać na zasadzie silnika jednofazowego, co prowadzi do spadku momentu obrotowego i prędkości obrotowej. W praktyce może to doprowadzić do przegrzania silnika, a w konsekwencji do uszkodzenia uzwojeń. Przykładem zastosowania tej wiedzy jest konieczność monitorowania jakości zasilania w zakładach przemysłowych, gdzie stosuje się urządzenia pomiarowe do identyfikacji przerw w zasilaniu, co pozwala zapobiegać awariom i minimalizować przestoje. W branży elektromaszynowej stosowanie rozwiązań takich jak zabezpieczenia przed przeciążeniem i monitorowanie fazy jest standardem, który wspiera efektywność operacyjną i bezpieczeństwo urządzeń.

Pytanie 27

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 400 mA
B. 200 mA
C. 100 mA
D. 500 mA
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 28

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C40
B. S303 C25
C. S303 C20
D. S303 C32
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 29

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 10 A
B. 16 A
C. 25 A
D. 6 A
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 30

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Elementów łącznikowych.
B. Wyłączników różnicowoprądowych.
C. Wkładek bezpiecznikowych.
D. Opraw oświetleniowych.
Wkładki bezpiecznikowe są elementami instalacji elektrycznych, które można wymieniać bez konieczności wyłączania zasilania, o ile zastosowane są odpowiednie rozwiązania technologiczne, takie jak wkładki bezpiecznikowe typu 'hot swap'. W praktyce oznacza to, że użytkownicy mogą wymieniać te elementy, aby przywrócić funkcjonalność obwodu, minimalizując ryzyko wystąpienia przerw w zasilaniu. Wkładki bezpiecznikowe mają kluczowe znaczenie dla bezpieczeństwa instalacji, ponieważ zabezpieczają obwody przed przeciążeniem i zwarciem. Prawidłowa wymiana tych wkładek, bez wyłączania zasilania, jest zgodna z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60947, które określają wymagania dla urządzeń przeznaczonych do pracy w instalacjach elektrycznych. Przykładowo, w obiektach przemysłowych, gdzie nieprzerwane zasilanie ma kluczowe znaczenie, możliwość wymiany wkładek bezpiecznikowych w czasie pracy instalacji przyczynia się do zwiększenia efektywności operacyjnej.

Pytanie 31

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zagiąć oczka na końcach przewodów
B. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
C. zmienić przewody na nowe o większym przekroju
D. zamontować końcówki oczkowe na przewodach
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 32

Który przewód powinien być zastosowany do połączenia z siecią 230 V transformatora znajdującego się w metalowej obudowie centralki alarmowej?

A. OMY 2×0,75 mm2
B. YTDY 2×0,5 mm2
C. OMY 3×0,75 mm2
D. YTDY 4×0,5 mm2
Odpowiedź OMY 3×0,75 mm2 jest poprawna, ponieważ przewód ten charakteryzuje się odpowiednią konstrukcją i parametrami technicznymi do wykorzystania w instalacjach zasilających urządzenia wymagające podłączenia do sieci 230 V. Przewód OMY jest przewodem w gumie, co zapewnia mu elastyczność i odporność na różne czynniki atmosferyczne oraz mechaniczne, co jest kluczowe w kontekście instalacji w metalowej obudowie centralki alarmowej. Wybór przewodu o przekroju 0,75 mm2 jest uzasadniony dla aplikacji o średnim poborze mocy, co jest typowe w systemach alarmowych. Dodatkowo, OMY 3×0,75 mm2 zawiera trzy żyły, co umożliwia nie tylko zasilanie, ale także podłączenie dodatkowych funkcji, takich jak sygnalizacja. Stosowanie przewodów zgodnych z normami PN-EN 60228 oraz PN-EN 50525 jest zgodne z zaleceniami dobrych praktyk elektrycznych, co zapewnia bezpieczeństwo i niezawodność w eksploatacji.

Pytanie 33

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających wzrośnie.
B. Spadek napięcia na przewodach zasilających zmniejszy się.
C. Moc wydobywana w piecu zmaleje 1,5 raza.
D. Moc wydobywana w piecu wzrośnie 1,5 raza.
Pojęcie spadku napięcia jest kluczowe w kontekście efektywności instalacji elektrycznych i w niniejszym przypadku odpowiedzi, które sugerują zwiększenie spadku napięcia, są niepoprawne, ponieważ nie uwzględniają zasady związanej z oporem przewodów. W rzeczywistości, gdy przekrój przewodu wzrasta, opór maleje, co prowadzi do zmniejszenia spadku napięcia na przewodach. Odpowiedzi, które mówią o zmniejszeniu mocy wydzielanej w piecu, mogą wynikać z błędnego zrozumienia relacji między napięciem, prądem a mocą. Moc wydobywana przez urządzenia elektryczne zależy od napięcia i prądu, a zatem jeśli spadek napięcia maleje, urządzenie ma szansę na stabilniejsze zasilanie, a nie jego zmniejszenie. Podobnie, twierdzenie o zwiększeniu mocy wydzielanej w piecu jest mylące, ponieważ moc pieca elektrycznego jest ustalana przez parametry zasilania i nie wzrośnie w wyniku wymiany przewodu, lecz pozostaje na poziomie 12 kW, zgodnie z jego specyfikacją. Użytkownicy często nie rozumieją, że zmiana przekroju przewodu nie zmienia wymagań dotyczących mocy urządzenia, lecz wpływa korzystnie na parametry przesyłowe energii, co powinno być kluczowym elementem w analizie tego przypadku.

Pytanie 34

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. prądu stanu jałowego
B. prądu upływu
C. rezystancji uzwojeń stojana
D. rezystancji przewodu ochronnego
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 35

Jakie są zalecane minimalne okresy pomiędzy kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach narażonych na pożar?

A. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej oraz 5 lat dla badania rezystancji izolacji
B. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 5 lat dla badania rezystancji izolacji
C. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
D. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
Nieprawidłowe podejścia do okresów między sprawdzeniami instalacji elektrycznych mogą prowadzić do poważnych zagrożeń dla bezpieczeństwa. Na przykład, sprawdzanie skuteczności ochrony przeciwporażeniowej co 1 rok, jak sugeruje jedna z opcji, jest zbyt częste i może być nieefektywne, biorąc pod uwagę, że te systemy powinny wykazywać stabilność przez dłuższy czas, co potwierdzają wytyczne europejskie przyjęte w normach bezpieczeństwa. Z drugiej strony, zalecenie, aby sprawdzać rezystancję izolacji co 5 lat, ignoruje szybkość, z jaką mogą pojawiać się uszkodzenia izolacji w wyniku eksploatacji, co może prowadzić do ryzykownych sytuacji. Typowe błędy myślowe polegają na myleniu częstotliwości kontroli z ich rzeczywistą skutecznością. Dłuższe okresy mogą prowadzić do zaniedbań i niewykrytych usterek, które z czasem narastają. Dlatego niezbędne jest przestrzeganie określonych norm, które są oparte na rzeczywistych warunkach eksploatacyjnych, a nie jedynie na intuicyjnych osądach dotyczących bezpieczeństwa. Rozsądnie jest stosować się do najlepszych praktyk branżowych, które zalecają częstsze przeglądy instalacji w pomieszczeniach o podwyższonym ryzyku pożaru, aby minimalizować ryzyko incydentów związanych z elektrycznością.

Pytanie 36

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Przerwa w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Zwarcie w obwodzie twornika
Przerwa w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego prowadzi do nagłego wzrostu prędkości obrotowej, ponieważ uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które współdziała z wirnikiem. Gdy uzwojenie wzbudzenia jest przerwane, pole magnetyczne gwałtownie słabnie, co skutkuje zmniejszeniem oporu elektromotorycznego. W efekcie, prąd w obwodzie twornika wzrasta, co prowadzi do przyspieszenia prędkości obrotowej wirnika. To zjawisko jest zgodne z zasadą działania silników prądu stałego, gdzie zmiana pola magnetycznego wpływa bezpośrednio na obroty silnika. W praktyce, takie nagłe zmiany mogą prowadzić do uszkodzenia silnika, a zatem w przypadku silników stosowanych w przemyśle, niezbędne jest monitorowanie stanu uzwojeń oraz stosowanie zabezpieczeń, takich jak urządzenia do detekcji przerwy w uzwojeniu, aby uniknąć niepożądanych skutków operacyjnych.

Pytanie 37

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 60 V
B. 25 V
C. 50 V
D. 12 V
Wartość skuteczna przemiennego napięcia dotykowego, dopuszczalnego długotrwale w warunkach środowiskowych normalnych, wynosi 50 V. Ta wartość została określona w normach międzynarodowych, takich jak IEC 60479, które badają wpływ prądu elektrycznego na organizm ludzki. W przypadku, gdy rezystancja ciała ludzkiego wynosi około 1 kΩ, napięcie 50 V może prowadzić do wyczuwalnego, ale niegroźnego odczucia dla większości ludzi. W praktyce oznacza to, że w instalacjach elektrycznych, które mogą być narażone na przypadkowy kontakt z człowiekiem, stosowane są zabezpieczenia, aby nie przekraczać tej wartości napięcia, co ma kluczowe znaczenie dla bezpieczeństwa. W zastosowaniach takich jak instalacje elektryczne w miejscach publicznych oraz w obiektach przemysłowych, zachowanie limitu 50 V jest fundamentalnym aspektem projektowania systemów ochrony przeciwporażeniowej. Warto również zauważyć, że różne środowiska mogą wpływać na rezystancję ciała ludzkiego, dlatego projektanci systemów elektrycznych muszą uwzględniać takie czynniki jak wilgotność czy kontakt z różnymi materiałami, aby zawsze stosować się do obowiązujących norm i najlepszych praktyk.

Pytanie 38

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. YDYt
B. LYg
C. OMYp
D. YADYn
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 39

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 50 V AC
B. 110 V DC
C. 230 V AC
D. 12 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 40

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Fazomierz
B. Waromierz
C. Częstościomierz
D. Watomierz
Fazomierz jest narzędziem pomiarowym, które umożliwia bezpośredni pomiar współczynnika mocy silników indukcyjnych, co jest kluczowe w analizie efektywności energetycznej. Współczynnik mocy jest miarą, która informuje o proporcji mocy czynnej, która wykonuje pracę, do mocy pozornej, która jest dostarczana do obwodu. Użycie fazomierza pozwala na dokładne określenie, jak energia jest wykorzystywana przez silnik, co jest szczególnie istotne w kontekście optymalizacji pracy urządzeń oraz redukcji kosztów energii. W praktyce, podczas rutynowych kontroli silników w zakładach przemysłowych, fazomierz może być używany do oceny pracy silników, co pozwala na identyfikację problemów z ich wydajnością. Utrzymywanie współczynnika mocy na odpowiednim poziomie jest również zgodne z wymaganiami wielu dostawców energii, którzy mogą stosować kary finansowe dla użytkowników z niskim współczynnikiem mocy. Poznanie i zrozumienie zasad pomiaru współczynnika mocy jest zatem istotne dla inżynierów i techników zajmujących się zarządzaniem energią.