Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 maja 2025 14:34
  • Data zakończenia: 19 maja 2025 15:09

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. poprzez podgrzewanie
B. poprzez schładzanie
C. adsorpcyjny
D. absorcyjny
Odpowiedź 'absorpcyjnego' jest prawidłowa, ponieważ proces osuszania przez środek osuszający polega na wchłanianiu wilgoci oraz oleju z powietrza. W procesach absorpcyjnych, substancja osuszająca, zwykle w postaci żelu krzemionkowego lub innych materiałów higroskopijnych, wchłania cząsteczki wody oraz innych zanieczyszczeń z powietrza. Zastosowanie technologii absorpcyjnej jest szczególnie widoczne w przemyśle, gdzie czystość powietrza jest kluczowa dla zachowania wydajności i jakości produkcji. Na przykład, w systemach pneumatycznych stosuje się osuszacze absorpcyjne, które skutecznie redukują wilgoć, co zapobiega korozji elementów mechanicznych oraz uszkodzeniom narzędzi. Ponadto, w standardach branżowych takich jak ISO 8573, podkreśla się znaczenie kontrolowania poziomu wilgoci w sprężonym powietrzu, co potwierdza konieczność stosowania odpowiednich środków osuszających.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. buty ochronne
B. maskę przeciwpyłową
C. kask ochronny
D. okulary ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. wyłącznie tranzystora na wyjściu 4
B. tranzystorów na wyjściach 1 i 3
C. tranzystorów na wyjściach 2 i 4
D. wyłącznie tranzystora na wyjściu 3
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Silnika.
B. Sterownika PLC.
C. Falownika.
D. Czujnika optycznego.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 11

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik tensometryczny
B. Czujnik optyczny
C. Czujnik indukcyjny
D. Czujnik magnetyczny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 12

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 1% roztworu kwasu octowego
B. 1% roztworu kwasu cytrynowego
C. wody destylowanej
D. 3% roztworu sody oczyszczonej
Oparzenia kwasem siarkowym to poważny problem medyczny, który wymaga natychmiastowego działania. W przypadku kontaktu z tym silnym kwasem, pierwszym krokiem jest obfite przemycie oparzonego miejsca wodą, co pozwala na usunięcie resztek kwasu z powierzchni skóry. Następnie, zastosowanie 3% roztworu sody oczyszczonej jest kluczowe, ponieważ soda działa jako łagodny alkalizator, neutralizując działanie kwasu. W praktyce, stosowanie sody oczyszczonej jest zalecane w sytuacjach, gdzie zasadowe pH może przyczynić się do łagodzenia skutków oparzenia. Dobre praktyki w zakresie pierwszej pomocy w takich przypadkach obejmują również monitorowanie stanu pacjenta oraz unikanie używania substancji o bardziej kwasowym charakterze, co mogłoby pogorszyć sytuację. Warto również pamiętać, że w przypadku oparzeń chemicznych, nie zaleca się stosowania wody destylowanej, gdyż nie ma właściwości neutralizujących w odniesieniu do substancji kwasowych. Znajomość tych zasad jest kluczowa w kontekście bezpieczeństwa w miejscu pracy oraz w sytuacjach awaryjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. LAD
B. IL
C. FBD
D. ST
Wybór niewłaściwego języka programowania może wynikać z niepełnego zrozumienia charakterystyk i zastosowań poszczególnych języków sterowników PLC. FBD (Function Block Diagram) jest językiem graficznym, który używa bloków funkcyjnych do modelowania systemów, co czyni go bardziej wizualnym, ale nie zawsze efektywnym w operacjach wymagających dużej precyzji, jak to ma miejsce w IL. Z kolei ST (Structured Text) to język tekstowy, ale bardziej przypominający tradycyjne języki programowania, co może wprowadzać w błąd użytkowników, którzy szukają prostoty i zwięzłości, jaką oferuje IL. LAD (Ladder Diagram) jest kolejnym językiem graficznym, który jest szczególnie przyjazny dla inżynierów przyzwyczajonych do schematów elektrycznych. Każdy z tych języków ma swoje mocne strony, ale nie można ich stosować zamiennie w sytuacjach, gdy precyzyjna manipulacja danymi jest kluczowa. Typowym błędem myślowym jest przekonanie, że język graficzny może zastąpić język tekstowy w kontekście programowania niskopoziomowego. W rzeczywistości, języki tekstowe, takie jak IL, oferują większą kontrolę nad procesem, co pozwala na optymalizację kodu i lepsze dostosowanie do specyficznych wymagań aplikacji. Dlatego istotne jest, aby inżynierowie automatyki dobrze rozumieli różnice między językami oraz ich zastosowania w praktyce, co pomoże uniknąć nieporozumień i błędnych wyborów w przyszłych projektach.

Pytanie 18

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 1 440 zł
B. 2 200 zł
C. 2 440 zł
D. 1 220 zł
Wielu uczestników testu może mieć trudności z poprawnym zrozumieniem sposobu obliczania całkowitego kosztu urządzenia elektronicznego, co prowadzi do błędnych odpowiedzi. Kluczowym błędem jest pominięcie całkowitych kosztów wykonania, które w tym przypadku są równe kosztowi materiałów. Niezrozumienie tego faktu skutkuje przyjęciem błędnych wartości dla kosztów całkowitych. Dodatkowo, niedokładne obliczenie podatku VAT może prowadzić do znacznego zaniżenia lub zawyżenia kosztu końcowego. Na przykład, jeśli ktoś nie dodałby kosztów wykonania do materiałów, mógłby błędnie założyć, że całkowity koszt wynosi 1 220 zł, co jest kwotą jedynie materiałów powiększoną o podatek. Ponadto, błędne podejście do obliczania VAT, takie jak błędne zastosowanie stawki lub niewłaściwe obliczenia, może prowadzić do nieprawidłowych rezultatów. Kluczowe jest zrozumienie, że wszelkie koszty powinny być sumowane przed naliczeniem podatku, co jest zgodne z zasadami rachunkowości i przepisami podatkowymi. Aby uniknąć takich błędów, warto stosować standardowe procedury kalkulacji kosztów, które pozwolą na dokładne i systematyczne podejście do wyceny projektów.

Pytanie 19

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. resolver.
B. prądnica tachometryczna.
C. tensometr.
D. galwanometr.
Tensometr to urządzenie służące do pomiaru odkształceń w materiałach, a nie prędkości obrotowej. Jego działanie opiera się na efekcie piezoelektrycznym lub zmiany oporu elektrycznego w zależności od naprężenia. Użycie tensometru w kontekście pomiaru prędkości obrotowej jest nieadekwatne, ponieważ ten typ sensora nie ma zdolności do bezpośredniego monitorowania ruchu obrotowego. Galwanometr, z kolei, jest przyrządem elektromechanicznym służącym do pomiaru prądu elektrycznego, a jego zastosowanie w pomiarze prędkości obrotowej jest ograniczone i nieefektywne. Galwanometry są użyteczne w aplikacjach wymagających pomiaru małych prądów, ale nie mogą dostarczać informacji o obrotach wirnika. Resolver, będący urządzeniem do pomiaru kątowego, także nie jest idealnym rozwiązaniem do pomiaru prędkości obrotowej, ponieważ jego głównym zadaniem jest określenie położenia kątowego, a nie bezpośredni pomiar prędkości. Często pojawiające się błędy w myśleniu polegają na myleniu zastosowań tych urządzeń, co prowadzi do niewłaściwych wyborów w kontekście pomiarów i automatyzacji. Zrozumienie specyfiki i przeznaczenia poszczególnych urządzeń pomiarowych jest kluczowe dla efektywnego projektowania układów automatyki i systemów kontrolnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. LD
C. FBD
D. STL
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 24

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 25 V DC
B. 15 V DC
C. 30 V DC
D. 20 V DC
Napięcia 15 V DC, 30 V DC i 20 V DC nie mieszczą się w określonym zakresie zasilania dla sterownika PLC. Wybór zbyt niskiego napięcia, takiego jak 15 V DC, może prowadzić do niewłaściwego działania urządzenia. Sterownik PLC wymaga odpowiedniego napięcia, aby poprawnie funkcjonować i realizować zaprogramowane zadania. Zbyt niskie napięcie może skutkować niestabilnością pracy, co może prowadzić do błędów w przetwarzaniu sygnałów i w konsekwencji do awarii systemu. Z kolei napięcie 30 V DC przekracza dopuszczalny zakres zasilania, co stwarza ryzyko uszkodzenia komponentów, a nawet ich trwałego zniszczenia. W przypadku zasilania stosuje się zasady dotyczące tolerancji napięcia, które gwarantują bezpieczeństwo i efektywność działania urządzeń. Ponadto, 20 V DC, mimo że jest bliższe dolnej granicy, również nie spełnia wymogów określonych w dokumentacji, co może prowadzić do nieprzewidywalnych zachowań urządzenia oraz problemów z jego stabilnością. Wybór niewłaściwego napięcia zasilania jest częstym błędem, który może wynikać z niedostatecznej analizy specyfikacji technicznych i wymagań aplikacji. Kluczowe jest zrozumienie, że każde urządzenie ma swoje unikalne wymagania, które należy spełnić, aby zapewnić jego prawidłowe funkcjonowanie i bezpieczeństwo operacyjne.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. poziomnicę
B. przymiar liniowy
C. czujnik zegarowy
D. kątomierz
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 27

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Asynchroniczny
B. Krokowy
C. Szeregowy
D. Bocznikowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 28

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. awarii stojana silnika
B. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
C. przeciążenia instalacji elektrycznej, co może skutkować pożarem
D. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 29

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. zawór szybkiego spustu
B. zawór podwójnego sygnału
C. zawór zwrotny
D. przełącznik obiegu
Jak przeanalizujesz inne odpowiedzi, to łatwiej zrozumiesz, czemu nie pasują do pytania o prędkość ruchu tłoka w siłowniku pneumatycznym. Przełącznik obiegu nie wpływa bezpośrednio na tę prędkość, bo on głównie kieruje przepływem powietrza. Jego rola jest raczej w kontrolowaniu kierunku, a nie w regulacji prędkości. Zawór podwójnego sygnału też jest często stosowany do sterowania, ale jego głównym zadaniem jest zapewnienie dostępu do powietrza, co wpływa na synchronizację, ale nie przyspiesza samego ruchu. Zawór zwrotny natomiast zapobiega cofaniu się medium, co jest ważne w niektórych przypadkach, ale też nie ma wpływu na prędkość ruchu tłoka. Często można pomylić te różne funkcje zaworów z ich wpływem na dynamikę ruchu. W automatyce pneumatycznej warto mieć na uwadze, że każdy komponent ma swoją rolę i trzeba je dobierać do konkretnych potrzeb procesu. Zrozumienie tych detali jest kluczowe, żeby prawidłowo projektować i optymalizować instalacje pneumatyczne.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. usterką silnika pralki
B. brakiem dopływu wody do urządzenia
C. niewłaściwym zerowaniem obudowy silnika pralki
D. brakiem zasilania elektrycznego
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. regulacji ciśnienia
B. podwójnego sygnału
C. szybkiego spustu
D. przełączania obiegu
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jak można zmierzyć prędkość przepływu gazu?

A. przy pomocy pirometru radiacyjnego
B. za pomocą zwężki Venturiego
C. używając czujnika termoelektrycznego
D. z wykorzystaniem impulsatora fotoelektrycznego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Przetłumaczenie programu na kod binarny
B. Przesłanie programu do kontrolera
C. Konwersja kodu binarnego na format dziesiętny
D. Pobranie programu z kontrolera
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 40

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. przewodzenia
B. zaporowym
C. blokowania
D. nasycenia
Odpowiedzi, które podałeś, jak nasycenie, przewodzenie czy zaporowy, dotyczą różnych stanów pracy tyrystora, ale w tej sytuacji są niepoprawne. Stan nasycenia występuje, gdy tyrystor działa jako przełącznik i przewodzi prąd, ale tu mamy inaczej, bo anoda jest dodatnia, a katoda z bramką ujemna. Więc nie ma mowy o nasyceniu. Podobnie stan przewodzenia jest błędny, bo potrzebny jest impuls na bramkę, a tego nie ma w tym przypadku. Stan zaporowy też jest źle interpretowany, bo odnosi się do takiej sytuacji, gdzie tyrystor nie jest w pełni zablokowany, a w opisywanej sytuacji tak nie jest. Ważne, żeby zrozumieć, jak tyrystory kontrolują przepływ prądu, bo mylenie tych stanów może prowadzić do problemów w obwodach. Dobrze jest pamiętać, że zrozumienie tych spraw jest kluczowe, jeśli chodzi o projektowanie i stosowanie tyrystorów, żeby wszystko działało sprawnie i bezpiecznie.