Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 maja 2025 11:28
  • Data zakończenia: 4 maja 2025 11:55

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Wtynkowych
B. Nadtynkowych
C. Napowietrznych
D. Podtynkowych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.

Pytanie 2

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. Prowadzona na drabinkach
B. W listwach przypodłogowych
C. W kanałach podłogowych
D. Wykonana przewodami szynowymi
Wybór listw przypodłogowych jako rodzaju instalacji elektrycznej stosowanej w pomieszczeniach mieszkalnych jest jak najbardziej trafny. Listwy przypodłogowe są popularnym rozwiązaniem, ponieważ łączą w sobie funkcje estetyczne i użytkowe. Umożliwiają one ukrycie przewodów elektrycznych, co przyczynia się do uporządkowanego wyglądu wnętrza. W praktyce, listwy te mogą być wyposażone w gniazda zasilające, co zwiększa ich funkcjonalność, a także zapewnia łatwy dostęp do energii elektrycznej w pobliżu ścian, gdzie najczęściej znajdują się urządzenia elektryczne. Zgodnie z normami, instalacje elektryczne w pomieszczeniach mieszkalnych powinny być wykonywane z zachowaniem odpowiednich środków bezpieczeństwa oraz zgodnie z lokalnymi przepisami budowlanymi. Użycie listw przypodłogowych w tym kontekście jest zgodne z zasadami ergonomii i praktyczności. Dodatkowo, wykorzystanie tego rozwiązania pozwala na łatwiejszą konserwację i ewentualne modyfikacje instalacji bez konieczności przeprowadzania skomplikowanych prac budowlanych.

Pytanie 3

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48

A. 6,57 MΩ
B. 8,11 MΩ
C. 8,20 MΩ
D. 6,40 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 4

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Omomierza cyfrowego
B. Czujnika zaniku fazy
C. Neonowego wskaźnika napięcia
D. Miernika parametrów instalacji
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 5

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. D10
B. C16
C. B25
D. C20
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 6

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm2 w izolacji z PVC?

A. YDY 5×2,5 mm2
B. DY 2,5 mm2
C. YLY 7×2,5 mm2
D. LY 2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 7

Jakiego zestawu narzędzi należy używać podczas przygotowania przewodów LY do instalacji elektrycznej?

A. Nóż monterski, wkrętak, obcinaczki boczne
B. Obcinaczki boczne, przyrząd do ściągania izolacji, zaciskarka końcówek tulejkowych
C. Przyrząd do ściągania izolacji, obcinaczki czołowe, nóż monterski
D. Zaciskarka końcówek tulejkowych, obcinaczki czołowe, wkrętak
Obcinaczki boczne, przyrząd do ściągania izolacji oraz zaciskarka końcówek tulejkowych są niezbędnymi narzędziami przy przygotowaniu przewodów LY do montażu elektrycznego. Obcinaczki boczne służą do precyzyjnego przycinania przewodów, co jest istotne, aby uzyskać równe i czyste końce, co z kolei minimalizuje ryzyko uszkodzenia izolacji oraz zapewnia solidne połączenia. Przyrząd do ściągania izolacji umożliwia bezpieczne usunięcie izolacji z końcówek przewodów bez ryzyka ich uszkodzenia. Dzięki temu można łatwo przygotować przewody do dalszego montażu, gwarantując, że przewody będą miały odpowiednią długość i będą gotowe do połączenia. Zaciskarka końcówek tulejkowych jest kluczowa w procesie montażu, gdyż pozwala na pewne i trwałe połączenie przewodu z końcówką. Przestrzeganie standardów branżowych, takich jak PN-EN 60204-1 dotyczący bezpieczeństwa maszyn, podkreśla znaczenie stosowania odpowiednich narzędzi, co wpływa na jakość wykonania instalacji elektrycznych. W praktyce, wykorzystanie tych narzędzi wpływa na efektywność pracy oraz bezpieczeństwo użytkownika.

Pytanie 8

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 6,6 Ω
C. 3,8 Ω
D. 2,3 Ω
Wybór wartości impedancji pętli zwarcia, który jest za wysoki, prowadzi do problemów z zapewnieniem skutecznej ochrony przed porażeniem prądem. W przypadku większych wartości impedancji, takich jak 6,6 Ω, 3,8 Ω czy 4,0 Ω, istnieje ryzyko, że prąd zwarciowy nie osiągnie wystarczającej wartości, aby aktywować wyłącznik nadprądowy B20 w odpowiednim czasie. Przykładowo, zgodnie z normą PN-IEC 60364-4-41, aby zapewnić skuteczne wyłączenie zasilania przy prądzie zwarciowym, impedancja powinna być poniżej 2,3 Ω. Przy wyższych wartościach impedancji, prąd zwarciowy może być zbyt niski, co skutkuje opóźnieniem lub brakiem wyłączenia zasilania, a to z kolei zwiększa ryzyko porażenia prądem użytkowników. Warto zauważyć, że typowym błędem jest mylenie impedancji z innymi parametrami elektrycznymi, co prowadzi do nieprawidłowych wniosków. Analizując te wartości, ważne jest zrozumienie, że każdy system zabezpieczeń w instalacji elektrycznej musi być zaprojektowany z uwzględnieniem minimalnych wartości impedancji, aby zapewnić bezpieczeństwo użytkowników i skuteczność ochrony przeciwporażeniowej.

Pytanie 9

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. brak możliwości zadziałania załączonego wyłącznika
B. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
C. niemożność załączenia wyłącznika pod obciążeniem
D. prawidłowe działanie wyłącznika
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 10

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Kompensacyjnego
B. Twornika
C. Komutacyjnego
D. Wzbudzenia
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 11

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 12

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. wyrzynarki do głębokich cięć
B. młotka z przecinakiem
C. otwornicy z segmentami diamentowymi
D. otwornicy z nasypem wolframowym
Otwornice z diamentowymi segmentami to naprawdę najlepsze narzędzie, jeśli chodzi o wiercenie w twardym betonie. Dzięki swojej konstrukcji świetnie radzą sobie z usuwaniem materiału w bardzo precyzyjny sposób. Diamentowe segmenty są super twarde i odporne na ścieranie, co czyni je idealnym wyborem, zwłaszcza w trudnych warunkach. Na przykład, gdy instalujesz gniazda sieciowe w betonowych murach, to otwornica diamentowa daje czyste krawędzie, co wygląda lepiej i bardziej profesjonalnie. Z mojej perspektywy, korzystanie z takich narzędzi pomaga uniknąć uszkodzenia otaczających materiałów i naprawdę przyspiesza cały proces pracy. I fajnie, że otwornice są w różnych rozmiarach, więc można dobrać coś odpowiedniego do konkretnego projektu.

Pytanie 13

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja redukcyjna
B. Podkładka sprężysta
C. Tuleja kołnierzowa
D. Podkładka dystansowa
Tuleja kołnierzowa, tuleja redukcyjna oraz podkładka dystansowa, mimo że każdy z tych elementów ma swoje zastosowanie, nie są odpowiednie do zabezpieczania nakrętki przed odkręceniem. Tuleja kołnierzowa jest elementem mocującym, który zazwyczaj wspiera konstrukcje lub elementy w danym miejscu, ale nie ma właściwości sprężystych, co oznacza, że nie zapobiega luzowaniu się nakrętek. Jej główną funkcją jest ułatwienie montażu i stabilizacja, co nie wpływa na trwałość połączenia w warunkach dynamicznych. Tuleja redukcyjna, z kolei, służy do zmiany średnicy otworu w elementach złącznych, co również nie wpływa na zapobieganie odkręcaniu się nakrętki. Nie ma ona żadnych właściwości, które mogłyby przeciwdziałać luzowaniu połączenia. Z kolei podkładka dystansowa jest używana do utrzymywania odpowiedniego odstępu pomiędzy elementami, ale również nie jest w stanie zabezpieczyć połączenia przed luzowaniem. Często prowadzi to do błędnych wniosków, że elementy te mogą pełnić funkcję zabezpieczającą, co nie jest ich przeznaczeniem. W kontekście standardów branżowych, ważne jest, aby właściwie dobierać elementy zabezpieczające w zależności od specyfiki zastosowania, aby zapewnić pełne bezpieczeństwo i niezawodność konstrukcji.

Pytanie 14

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zasilanie z transformatora izolacyjnego
B. Zastosowanie podwójnej warstwy izolacji
C. Użycie napięcia zasilania o zmniejszonej wartości
D. Połączenie obudowy z przewodem ochronnym sieci
W kontekście ochrony przed dotykiem pośrednim, wiele podejść może wydawać się atrakcyjnych, jednak nie są one wystarczające do zapewnienia właściwego poziomu bezpieczeństwa. Zastosowanie napięcia zasilającego o obniżonej wartości, choć teoretycznie może zredukować ryzyko porażenia, nie eliminuje go całkowicie, ponieważ w przypadku awarii izolacji nadal może wystąpić ryzyko niebezpiecznego napięcia. Zasilanie z transformatora separacyjnego również nie stanowi pełnej odpowiedzi na problem, gdyż chociaż transformator ten ogranicza ryzyko porażenia, to nie jest to rozwiązanie wystarczające w przypadku urządzeń, które nie są dostatecznie izolowane. Połączenie obudowy z przewodem ochronnym sieci jest bardziej charakterystyczne dla urządzeń klasy I, gdzie niezbędne jest uziemienie, natomiast w oprawach klasy II, które są projektowane bez przewodu ochronnego, takie podejście jest nieadekwatne. Te nieprawidłowe koncepcje często wynikają z braku zrozumienia zasad klasyfikacji sprzętu elektrycznego oraz norm bezpieczeństwa, takich jak IEC 61140, które jasno definiują wymagania dotyczące ochrony przeciwporażeniowej. Właściwe zrozumienie i zastosowanie zasad dotyczących izolacji oraz konstrukcji sprzętu jest kluczowe dla zapewnienia bezpieczeństwa użytkowników, co jest często pomijane w praktycznych zastosowaniach.

Pytanie 15

Jakim elementem powinno się zabezpieczyć nakrętkę przed jej odkręceniem?

A. Tuleją kołnierzową
B. Podkładką dystansową
C. Tuleją redukcyjną
D. Podkładką sprężystą
Wybór tulei redukcyjnej, tulei kołnierzowej, czy podkładki dystansowej do zabezpieczenia nakrętki przed odkręceniem nie jest właściwym podejściem, ponieważ każde z tych rozwiązań spełnia inne funkcje. Tuleja redukcyjna, na przykład, jest stosowana głównie do zmiany średnicy otworów, a nie do stabilizacji połączeń. Jej zastosowanie w kontekście zabezpieczania nakrętek mogłoby prowadzić do nieodpowiedniego montażu, co stwarza ryzyko luzów. Tuleja kołnierzowa z kolei, mimo że może wspierać elementy konstrukcyjne poprzez rozłożenie obciążenia na większą powierzchnię, nie ma zdolności do absorpcji drgań ani przeciwdziałania luzom w sposób, w jaki robi to podkładka sprężysta. Z tego powodu, użycie tulei kołnierzowej może prowadzić do nieprzewidzianych awarii. Podkładka dystansowa, choć pełni rolę regulacji odstępów, nie jest zaprojektowana do eliminacji luzów w połączeniach, co czyni ją nieodpowiednią do zabezpieczania nakrętek. Zrozumienie funkcji tych elementów oraz ich odpowiednie zastosowanie jest kluczowe dla zapewnienia trwałości i niezawodności konstrukcji. Błędne przekonanie, że inne elementy mogą z powodzeniem zastąpić podkładkę sprężystą, może prowadzić do poważnych niebezpieczeństw i uszkodzeń w inżynierii mechanicznej.

Pytanie 16

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. MR11
B. GU10
C. G9
D. E27
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 17

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,37 mA
B. ±0,02 mA
C. ±2,35 mA
D. ±0,35 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 18

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. aR 16 A
C. gG 16 A
D. gB 20 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 19

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zwarcie w systemie elektrycznym
B. przeciążenie systemu elektrycznego
C. uszkodzenie urządzenia elektrycznego
D. zagrożenie porażeniem prądem elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 20

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
B. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
C. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
D. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 21

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 120 V
B. 500 V
C. 1000 V
D. 250 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 22

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić uszkodzony przewód na nowy o takim samym przekroju
B. Pomalować uszkodzoną izolację przewodu
C. Założyć gumowy wężyk na uszkodzoną izolację przewodu
D. Wymienić wszystkie przewody na nowe o większym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 23

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242

A. 2,5 mm2
B. 4,0 mm2
C. 1,5 mm2
D. 6,0 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 24

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 16 A, 20 A
C. 16 A, 20 A, 20 A, 16 A
D. 20 A, 16 A, 20 A, 16 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 25

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę kalibrową.
B. Oprawkę źródła światła.
C. Wkładkę topikową bezpiecznika.
D. Gniazdo zapłonnika.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 26

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 27

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik przepięciowy.
B. Rozłącznik bezpiecznikowy.
C. Wyłącznik nadmiarowoprądowy.
D. Odłącznik bezpiecznikowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 28

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza i amperomierza
B. omomierza oraz woltomierza
C. woltomierza i amperomierza
D. watomierza oraz woltomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 29

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Watomierza
B. Waromierza
C. Reflektometru
D. Woltomierza
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 30

Która z wymienionych przyczyn może być odpowiedzialna za zwęglenie izolacji na końcu przewodu fazowego w okolicy zacisku w puszce rozgałęźnej?

A. Zbyt duży przekrój używanego przewodu
B. Niewystarczająca wartość prądu roboczego
C. Poluzowanie śruby mocującej w puszce
D. Wzrost napięcia zasilającego na skutek przepięcia
Poluzowanie się śruby zacisku w puszce rozgałęźnej to jedna z najczęstszych przyczyn zwęglenia izolacji przewodów. Gdy śruba zacisku nie jest odpowiednio dokręcona, może dojść do niewłaściwego kontaktu między przewodem a zaciskiem. Taki luźny kontakt generuje dodatkowe ciepło, co w dłuższej perspektywie prowadzi do degradacji materiałów izolacyjnych. W praktyce, w sytuacji gdy przewód nie jest stabilnie zamocowany, może wystąpić także arczenie, co dodatkowo zwiększa ryzyko uszkodzenia izolacji. Z tego powodu, podczas instalacji elektrycznych, kluczowe jest przestrzeganie standardów dotyczących momentu dokręcenia oraz regularna kontrola stanu złącz. Należy również zwrócić uwagę na jakość używanych materiałów, które powinny spełniać normy PN-EN 60947-1 oraz PN-IEC 60364. Regularne przeglądy mogą pomóc w identyfikacji potencjalnych problemów zanim staną się one poważne, a tym samym zwiększyć bezpieczeństwo instalacji.

Pytanie 31

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Uszkodzenie izolacji przewodu ochronnego
B. Zwarcie doziemne przewodu neutralnego
C. Przerwa w przewodzie ochronnym
D. Przerwa w przewodzie neutralnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 32

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO < Zs ∙ Ia
B. UO > Zs ∙ 2Ia
C. UO > Zs ∙ Ia
D. UO < Zs ∙ 2Ia
Niewłaściwe odpowiedzi mogą wynikać z niepełnego zrozumienia zasad działania układów zabezpieczeń elektrycznych. W przypadku odpowiedzi, gdzie UO jest mniejsze od Zs ∙ Ia, zakłada się, że napięcie nie jest wystarczające do wyzwolenia ochrony, co jest błędne. W rzeczywistości, aby zapewnić skuteczną reakcję urządzenia ochronnego, napięcie musi przekraczać wartość wynikającą z iloczynu impedancji pętli zwarciowej i prądu zadziałania. Odpowiedzi sugerujące, że UO powinno być mniejsze od tego iloczynu, wskazują na błędne założenia dotyczące warunków pracy zabezpieczeń. Również odpowiedzi, w których UO jest większe od Zs ∙ 2Ia, nie uwzględniają, że wartość prądu zadziałania powinna być odpowiednio dobrana do rzeczywistych warunków obciążeniowych. Należy pamiętać, że w projektowaniu instalacji elektrycznych kluczowe jest zachowanie właściwych relacji między napięciem, prądem i impedancją, co jest regulowane przez normy i standardy branżowe, takie jak PN-IEC 60364 dotyczące instalacji elektrycznych. Brak takiej wiedzy może prowadzić do poważnych konsekwencji, takich jak uszkodzenia urządzeń, a nawet zagrożenie dla życia ludzi. Dlatego ważne jest, aby dobrze rozumieć te relacje i ich praktyczne zastosowanie w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 33

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Silnik będzie zasilany prądem przeciwnym
B. Silnik będzie pracował w stanie jałowym
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 34

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Ciągłości przewodu neutralnego
B. Rezystancji izolacji przewodu uziemiającego
C. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
D. Ciągłości przewodów fazowych
Rezystancja uziomu, do którego dołączona jest obudowa odbiornika, jest kluczowym pomiarem w celu sprawdzenia skuteczności ochrony przeciwporażeniowej w systemach elektrycznych, w tym w sieciach TT. Odbiorniki I klasy ochronności wymagają, aby obudowa była trwale uziemiona, co zapewnia, że w przypadku wystąpienia awarii, prąd upływowy ma możliwość przepływu do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Pomiar rezystancji uziomu powinien być wykonany zgodnie z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość ta nie przekraczała 10 Ω dla zapewnienia efektywnej ochrony. Przykładowo, w instalacjach przemysłowych, gdzie używane są urządzenia o dużej mocy, niska rezystancja uziomu jest niezbędna, aby zapewnić szybkie działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Ponadto, w praktyce, warto przeprowadzać regularne pomiary rezystancji uziomu, aby upewnić się, że warunki uziemienia nie uległy zmianie wraz z upływem czasu czy też w wyniku warunków atmosferycznych, co może wpłynąć na bezpieczeństwo użytkowników. Jest to podstawowy krok w procesie zarządzania ryzykiem w instalacjach elektrycznych.

Pytanie 35

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. wskaźnika kolejności faz
B. mostka LC
C. omomierza
D. miernika izolacji
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 36

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00

A. 6,73 MΩ
B. 7,48 MΩ
C. 6,87 MΩ
D. 6,18 MΩ
Analiza rezystancji izolacji uzwojeń silnika w różnych temperaturach może stanowić wyzwanie, zwłaszcza gdy nie są brane pod uwagę odpowiednie współczynniki przeliczeniowe. W przypadku, gdy odpowiedzi sugerują wartości 6,73 MΩ, 6,87 MΩ, 7,48 MΩ oraz 6,18 MΩ, istotne jest zrozumienie, że każda z tych odpowiedzi opiera się na błędnych założeniach. Wartość 6,18 MΩ, choć może wydawać się poprawna, została obliczona w sposób nieprawidłowy, ponieważ pomija uwzględnienie odpowiednich współczynników przeliczeniowych i ich wpływu na wynik. W przypadku obliczania rezystancji izolacji, temperatura ma kluczowe znaczenie, a różnice między 20°C a 23°C mogą znacząco wpływać na wyniki. Przyjmuje się, że wzrost temperatury wpływa na zmniejszenie rezystancji, co oznacza, że rezystancja w niższej temperaturze powinna być wyższa. Wartości 6,73 MΩ i 6,87 MΩ mogą wynikać z pomyłek w korzystaniu z tabeli współczynników lub niewłaściwego zastosowania wzoru, co prowadzi do zaniżenia wartości izolacji. Natomiast 7,48 MΩ, choć na pierwszy rzut oka może wydawać się bardziej wiarygodne, jest wynikiem błędnych obliczeń, które nie uwzględniają prawidłowego przeliczenia na podstawie temperatury. Wiedza na temat prawidłowego wyznaczania rezystancji izolacji uzwojeń jest niezwykle istotna w kontekście bezpieczeństwa urządzeń elektrycznych oraz ich niezawodności w długotrwałym użytkowaniu.

Pytanie 37

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. IT
B. TN-C-S
C. TN-C
D. TN-S
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 38

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 39

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 40 mA
B. IΔ = 10 mA
C. IΔ = 20 mA
D. IΔ = 30 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 40

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 50 V
B. 12 V
C. 230 V
D. 100 V
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.