Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 15 maja 2025 13:22
  • Data zakończenia: 15 maja 2025 13:50

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czym są programy GRUB, LILO, NTLDR?

A. aplikacje do modernizacji BIOS-u
B. programy rozruchowe
C. wersje głównego interfejsu sieciowego
D. firmware dla dysku twardego
Programy GRUB, LILO i NTLDR są definiowane jako programy rozruchowe, które odgrywają kluczową rolę w procesie uruchamiania systemu operacyjnego. GRUB (Grand Unified Bootloader) jest powszechnie stosowany w systemach Linux, umożliwiając użytkownikowi wybór między różnymi systemami operacyjnymi oraz konfigurację opcji bootowania. LILO (Linux Loader) to starszy program rozruchowy, który również obsługuje systemy Linux, ale z ograniczonymi możliwościami w porównaniu do GRUB. NTLDR (NT Loader) jest specyficzny dla systemów Windows, zarządzając rozruchem systemów opartych na NT, takich jak Windows 7 czy Windows Server. Programy te działają na poziomie sprzętowym, inicjalizując procesy potrzebne do załadowania systemu operacyjnego w pamięci. Zrozumienie ich funkcji jest kluczowe dla administratorów systemów, którzy muszą zarządzać rozruchem oraz obiegiem danych w środowiskach wielosystemowych, a także dla specjalistów zajmujących się bezpieczeństwem, którzy muszą znać potencjalne zagrożenia związane z rozruchem, takie jak bootkit. Dobre praktyki w tej dziedzinie obejmują regularne aktualizacje programów rozruchowych oraz właściwe zabezpieczenie dostępu do BIOS-u i ustawień rozruchowych.

Pytanie 2

Użycie którego z urządzeń może prowadzić do wzrostu liczby kolizji pakietów w sieci?

A. Przełącznika
B. Mostu
C. Koncentratora
D. Rutera
Koncentrator, znany również jako hub, jest urządzeniem sieciowym, które działa na poziomie warstwy fizycznej modelu OSI. Jego działanie polega na odbieraniu sygnału z jednego portu i rozsyłaniu go do wszystkich innych portów. Takie podejście powoduje, że wszystkie urządzenia podłączone do koncentratora dzielą tę samą przestrzeń adresową, co prowadzi do zwiększonej liczby kolizji pakietów w sieci. W sieciach Ethernet, gdy dwa urządzenia próbują jednocześnie wysłać dane, następuje kolizja, co zmusza je do ponownego nadawania po krótkim losowym opóźnieniu. W praktyce, w sieciach o dużym natężeniu ruchu, koncentratory są rzadko używane, gdyż wprowadzenie przełączników, które operują na warstwie drugiej i mogą inteligentnie kierować ruch do odpowiednich portów, znacznie minimalizuje kolizje. Z uwagi na to, że koncentratory nie analizują adresów MAC i nie segregują ruchu, ich zastosowanie w nowoczesnych sieciach jest ograniczone. Warto zwrócić uwagę na standardy IEEE 802.3, które definiują zasady działania sieci Ethernet, w tym zasady dotyczące kolizji i ich minimalizacji.

Pytanie 3

Aby umożliwić wymianę informacji pomiędzy sieciami VLAN, wykorzystuje się

A. punkt dostępowy.
B. modem.
C. koncentrator.
D. router.
Routery są kluczowymi urządzeniami w architekturze sieciowej, które umożliwiają komunikację między różnymi sieciami, w tym między sieciami VLAN (Virtual Local Area Network). VLAN-y są technologią, która pozwala na segmentację ruchu sieciowego w obrębie jednej fizycznej sieci lokalnej, co zwiększa bezpieczeństwo i efektywność zarządzania ruchem. Aby urządzenia znajdujące się w różnych VLAN-ach mogły się ze sobą komunikować, niezbędne jest wykorzystanie routera, który działa na warstwie trzeciej modelu OSI. Routery dokonują inspekcji pakietów i podejmują decyzje o trasowaniu ruchu między VLAN-ami, co umożliwia wymianę danych. Przykładem zastosowania routerów w sieciach VLAN jest konfiguracja trunkingowa, gdzie router łączy z różnymi VLAN-ami przy pomocy jednego interfejsu, wykorzystując protokoły takie jak 802.1Q. Dzięki zastosowaniu routerów można również implementować polityki bezpieczeństwa i zarządzania ruchem, co jest zgodne z dobrą praktyką w inżynierii sieciowej.

Pytanie 4

System operacyjny został poddany atakowi przez oprogramowanie szpiegujące. Po usunięciu problemów, aby zapobiec przyszłym atakom, należy

A. stworzyć dwie partycje na dysku twardym
B. zainstalować oprogramowanie antyspyware
C. ustawić czyszczenie pamięci podręcznej
D. przeprowadzić defragmentację dysku
Zainstalowanie oprogramowania antyspyware to kluczowy krok w zapewnieniu bezpieczeństwa systemu operacyjnego. Oprogramowanie to jest zaprojektowane specjalnie w celu wykrywania, usuwania i zapobiegania działaniu programów szpiegujących, które mogą kradnąć dane osobowe, rejestrować aktywność użytkownika lub wprowadzać inne zagrożenia do systemu. W praktyce, instalacja takiego oprogramowania pozwala na monitorowanie aktywności systemu i blokowanie podejrzanych działań w czasie rzeczywistym. Dobrą praktyką jest również regularne aktualizowanie tego oprogramowania, aby mieć dostęp do najnowszych definicji zagrożeń, co zwiększa skuteczność ochrony. Warto również wspomnieć o przestrzeganiu zasad cyberbezpieczeństwa, takich jak unikanie nieznanych linków oraz pobieranie oprogramowania tylko z wiarygodnych źródeł. Do popularnych narzędzi antyspyware należą programy takie jak Malwarebytes czy Spybot, które są szeroko rekomendowane przez specjalistów w dziedzinie IT.

Pytanie 5

Jakim parametrem definiuje się stopień zmniejszenia mocy sygnału w danej parze przewodów po przejściu przez cały tor kablowy?

A. tłumienie
B. długość
C. przenik zdalny
D. przenik zbliżny
Tłumienie jest kluczowym parametrem w telekomunikacji, który określa, o ile moc sygnału maleje podczas jego przejścia przez medium, takie jak przewody czy tor kablowy. W praktyce, tłumienie można opisać jako straty energii sygnału, które mogą wynikać z różnych czynników, takich jak opór, absorpcja materiału oraz zakłócenia elektromagnetyczne. Przykładowo, w instalacjach telekomunikacyjnych, takich jak światłowody lub kable miedziane, odpowiednie pomiary tłumienia są niezbędne do zapewnienia jakości sygnału. W branży telekomunikacyjnej standardy, takie jak ITU-T G.652 dla światłowodów, określają maksymalne poziomy tłumienia, aby gwarantować niezawodność transmisji. Zrozumienie tego parametru jest istotne dla projektowania sieci oraz doboru odpowiednich komponentów, co w efekcie przekłada się na lepszą jakość usług świadczonych użytkownikom.

Pytanie 6

Który adres IP reprezentuje hosta działającego w sieci o adresie 192.168.160.224/28?

A. 192.168.160.239
B. 192.168.160.225
C. 192.168.160.240
D. 192.168.160.192
Adres IP 192.168.160.225 jest poprawnym adresem hosta w sieci o adresie 192.168.160.224/28, ponieważ ta sieć ma maskę podsieci 255.255.255.240, co oznacza, że z identyfikatora sieci można wydzielić 16 adresów IP. Adresy w tej podsieci to 192.168.160.224 (adres sieci), 192.168.160.225 (pierwszy adres hosta), przez 192.168.160.239 (ostatni adres hosta), a 192.168.160.240 to adres rozgłoszeniowy. W związku z tym, adres 192.168.160.225 jest pierwszym dostępny adresem hosta, co czyni go poprawnym wyborem. W praktyce, przydzielanie adresów IP w takiej sieci jest kluczowe w kontekście efektywnego zarządzania adresacją, a także w zapewnieniu, że każdy host w sieci ma unikalny adres. W standardach branżowych, takie podejście do adresacji IP jest zgodne z zasadami CIDR (Classless Inter-Domain Routing), które umożliwiają bardziej elastyczne podejście do podziału adresów IP i minimalizacji marnotrawstwa adresów.

Pytanie 7

Wykonanie polecenia attrib +h +s +r przykład.txt w konsoli systemu Windows spowoduje

A. nadanie dla pliku przykład.txt atrybutów ukryty, systemowy, tylko do odczytu
B. zapisanie ciągu znaków hsr do pliku przykład.txt
C. zabezpieczenie pliku przykład.txt hasłem hsr
D. nadanie dla pliku przykład.txt atrybutów ukryty, skompresowany, tylko do odczytu
Wiesz, polecenie attrib +h +s +r w Windowsie to naprawdę ważna sprawa, jeśli chodzi o zarządzanie plikami. Jak używasz go na pliku przykład.txt, to oznacza, że plik dostaje atrybuty: ukryty (h), systemowy (s) i tylko do odczytu (r). Atrybut ukryty sprawia, że plik nie jest widoczny podczas przeglądania, co jest przydatne, gdy mamy do czynienia z plikami systemowymi czy danymi, które nie powinny być bez powodu zmieniane przez zwykłych użytkowników. Z kolei atrybut systemowy wskazuje, że plik jest potrzebny do działania systemu operacyjnego. A atrybut tylko do odczytu chroni plik przed przypadkowymi zmianami. Myślę, że sprawdza się to w przypadku plików konfiguracyjnych lub aplikacji, które lepiej zostawić w spokoju. Dobrze jest używać tych atrybutów dla ważnych plików, bo to serio zwiększa bezpieczeństwo i stabilność systemu. Pamiętaj jednak, że nadawanie atrybutów to nie to samo co zabezpieczanie plików przed dostępem, a jedynie ich lepsza organizacja w systemie plików.

Pytanie 8

Metoda przesyłania danych pomiędzy urządzeniami CD/DVD a pamięcią komputera w trybie bezpośredniego dostępu do pamięci to

A. PIO
B. SATA
C. IDE
D. DMA
Wybór odpowiedzi PIO (Programmed Input/Output), SATA (Serial Advanced Technology Attachment) oraz IDE (Integrated Drive Electronics) pokazuje pewne nieporozumienia dotyczące mechanizmów transferu danych w systemach komputerowych. PIO i IDE to metody komunikacji, które nie korzystają z bezpośredniego dostępu do pamięci. PIO polega na tym, że procesor kontroluje każdy transfer danych, co staje się wąskim gardłem w przypadku większych transferów. Użycie PIO w nowoczesnych systemach jest ograniczone, ponieważ przyczynia się do większego obciążenia CPU oraz wydłużenia czasu transferu, co jest nieefektywne w porównaniu do DMA. Z drugiej strony, SATA to standard interfejsu, który określa, w jaki sposób urządzenia podłącza się do komputera, ale nie jest techniką transferu danych w sensie dostępu do pamięci. Podczas gdy SATA oferuje szybsze transfery niż starsze standardy, takie jak PATA (Parallel ATA), nie zmienia fundamentalnej zasady, że transfery danych mogą być zrealizowane bezpośrednio do pamięci przy użyciu DMA. Wybór jednej z tych opcji pokazuje brak zrozumienia fundamentalnych różnic pomiędzy różnymi typami dostępu do pamięci i ich wpływu na wydajność systemu. Kluczowe jest zrozumienie, że techniki takie jak DMA są zaprojektowane z myślą o minimalizowaniu obciążenia CPU i optymalizacji transferów danych, co czyni je bardziej odpowiednimi w kontekście współczesnych aplikacji wymagających wysokiej wydajności.

Pytanie 9

Wskaż właściwą formę maski podsieci?

A. 255.255.0.128
B. 0.0.0.0
C. 255.255.255.255
D. 255.252.252.255
Odpowiedź 255.255.255.255 to maska podsieci, która jest używana do wskazania adresu broadcast w danej sieci. Jest to maksymalna wartość dla maski podsieci, co oznacza, że wszystkie bity są ustawione na 1, a więc wszystkie adresy IP w danej podsieci są dostępne dla komunikacji. W praktyce oznacza to, że każda maszyna w sieci może komunikować się z innymi maszynami, a także wysyłać dane do wszystkich urządzeń jednocześnie. Maska 255.255.255.255 jest często używana w konfiguracjach sieciowych, aby zdefiniować adresy rozgłoszeniowe, co jest kluczowe w protokołach takich jak ARP (Address Resolution Protocol) i DHCP (Dynamic Host Configuration Protocol), gdzie urządzenia muszą wysyłać pakiety do wszystkich innych urządzeń w sieci lokalnej. W przypadku sieci IPv4, stosowanie takich masek jest zgodne z zaleceniami organizacji IETF, która standardyzuje wiele aspektów działania sieci. W związku z tym, zrozumienie użycia maski 255.255.255.255 jest podstawowym elementem wiedzy o sieciach komputerowych.

Pytanie 10

Jaki protokół stosują komputery, aby informować router o zamiarze dołączenia do lub opuszczenia konkretnej grupy multicastowej?

A. TCP/IP
B. DHCP
C. IGMP
D. UDP
IGMP (Internet Group Management Protocol) jest protokołem, który umożliwia komputerom informowanie routerów o chęci dołączenia do lub opuszczenia określonej grupy rozgłoszeniowej. Protokół ten odgrywa kluczową rolę w zarządzaniu grupami multicastowymi, co jest istotne dla aplikacji wymagających efektywnego przesyłania danych do wielu odbiorców jednocześnie, takich jak transmisje wideo na żywo czy telekonferencje. Dzięki IGMP, router może optymalnie zarządzać ruchem multicastowym, przesyłając dane tylko do tych odbiorców, którzy wyrazili zainteresowanie danym strumieniem. Zastosowanie IGMP jest szczególnie widoczne w sieciach lokalnych oraz w środowiskach, w których wykorzystuje się usługi multicastowe, co pozwala na oszczędność pasma oraz zasobów sieciowych. W praktyce, IGMP pozwala na dynamiczne zarządzanie członkostwem w grupach, co jest niezbędne w zmieniających się warunkach sieciowych. Jest to zgodne z dobrą praktyką w projektowaniu sieci, gdzie wydajność i efektywność są kluczowymi czynnikami.

Pytanie 11

Jaką operację można wykonać podczas konfiguracji przełącznika CISCO w interfejsie CLI, nie przechodząc do trybu uprzywilejowanego, w zakresie dostępu widocznym w ramce?

Switch>

A. Wyświetlenie tabeli ARP
B. Tworzenie VLAN-ów
C. Zmiana nazwy hosta
D. Ustalanie haseł dostępowych
Określanie haseł dostępu wymaga przejścia do trybu konfiguracji globalnej, co odbywa się poprzez tryb uprzywilejowany. Zmiana nazwy systemowej również wymaga dostępu do trybu konfiguracji globalnej, gdyż jest to zmiana w konfiguracji urządzenia, wpływająca na jego identyfikację w sieci. Tworzenie sieci VLAN wiąże się z wprowadzeniem zmian w konfiguracji przełącznika i również wymaga trybu uprzywilejowanego, a następnie przejścia do trybu konfiguracji VLAN. Wszystkie te operacje są konfiguracyjne i jako takie wymagają wyższych uprawnień, które są dostępne dopiero po zalogowaniu się do trybu uprzywilejowanego za pomocą polecenia 'enable'. Typowym błędem jest założenie, że dostęp do podstawowego poziomu CLI pozwala na dowolne operacje konfiguracyjne. Jednak w rzeczywistości dostęp na poziomie użytkownika jest ściśle ograniczony do operacji monitorujących i diagnostycznych, co zabezpiecza przełącznik przed nieautoryzowanymi zmianami konfiguracji, chroniąc integralność sieci. Zrozumienie uprawnień na różnych poziomach dostępu jest kluczowe dla efektywnej i bezpiecznej administracji urządzeniami sieciowymi.

Pytanie 12

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja, która planuje rozpocząć transmisję, nasłuchuje, czy w sieci występuje aktywność, a następnie

A. oczekuje na ustalenie priorytetu transmisji przez koncentrator
B. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
C. czeka na token umożliwiający rozpoczęcie nadawania
D. wysyła prośbę o zezwolenie na transmisję
W odpowiedzi na pytanie, poprawną opcją jest "po wykryciu ruchu w sieci czeka aż nośnik będzie wolny". Metoda CSMA/CD (Carrier Sense Multiple Access with Collision Detection) operuje na zasadzie nasłuchiwania medium transmisyjnego przed rozpoczęciem nadawania. Gdy stacja chce wysłać dane, najpierw sprawdza, czy medium jest wolne, co oznacza, że nie zachodzi żaden ruch. Jeżeli medium jest zajęte, stacja nie rozpoczyna transmisji, lecz czeka, aż stanie się wolne. To podejście ma na celu minimalizację kolizji, które są kosztowne w kontekście wydajności sieci. Przykładami zastosowania tej metody mogą być starsze sieci Ethernet, które korzystały z kabli koncentrycznych, gdzie kolizje były powszechne. Dobre praktyki w projektowaniu sieci zalecają stosowanie CSMA/CD w środowiskach, gdzie równocześnie może nadawać wiele urządzeń, co jest kluczowe dla zapewnienia efektywności transmisji danych oraz ich integralności. Znajomość tej metodologii jest istotna, ponieważ pozwala na lepsze zrozumienie, jak funkcjonują różne typy sieci i jakie mechanizmy są wdrażane, aby zapewnić ich stabilność i wydajność.

Pytanie 13

Aby zapobiegać i eliminować szkodliwe oprogramowanie, takie jak exploity, robaki oraz trojany, konieczne jest zainstalowanie oprogramowania

A. antyspam.
B. antymalware.
C. adblok.
D. antyspyware.
Odpowiedź 'antymalware' jest naprawdę trafna. To oprogramowanie ma za zadanie wykrywać, blokować i usuwać różne rodzaje szkodliwego oprogramowania, takie jak exploity, robaki czy trojany. Działa na zasadzie skanowania systemów w poszukiwaniu znanych zagrożeń i wykorzystuje różne techniki, żeby znaleźć nowe, które jeszcze nikomu się nie trafiły. Myślę, że dobrym przykładem użycia antymalware jest regularne przeszukiwanie komputera, żeby upewnić się, że jest on bezpieczny. Ważne jest, żeby każda firma miała coś takiego zainstalowanego i aktualizowanego, bo to pomaga chronić dane przed najnowszymi zagrożeniami. Oprócz samego antymalware, warto też mieć dodatkowe zabezpieczenia, takie jak zapory ogniowe czy systemy wykrywania intruzów, co jeszcze bardziej zwiększa naszą ochranę przed atakami.

Pytanie 14

Okablowanie pionowe w sieci strukturalnej łączy jakie elementy?

A. dwa gniazda abonenckie
B. główny punkt rozdzielczy z gniazdem abonenckim
C. pośredni punkt rozdzielczy z gniazdem abonenckim
D. główny punkt rozdzielczy z pośrednimi punktami rozdzielczymi
Okablowanie pionowe w sieci strukturalnej jest kluczowym elementem architektury sieci, ponieważ łączy główny punkt rozdzielczy (MDF) z pośrednimi punktami rozdzielczymi (IDF). Taka struktura pozwala na skuteczne zarządzanie ruchem danych oraz zwiększa skalowalność sieci. W praktyce oznacza to, że główny punkt rozdzielczy, gdzie zazwyczaj znajdują się urządzenia takie jak serwery czy przełączniki, jest połączony z pośrednimi punktami rozdzielczymi, które z kolei dystrybuują sygnał do poszczególnych gniazd abonenckich. W zgodności z normami ANSI/TIA-568 oraz ISO/IEC 11801, okablowanie powinno być odpowiednio zaprojektowane, aby zapewnić optymalną wydajność i minimalizować straty sygnału. Poprawne wykonanie okablowania pionowego pozwala na elastyczność w rozbudowie sieci i łatwą lokalizację potencjalnych usterek. Warto zauważyć, że takie podejście umożliwia centralne zarządzanie siecią oraz lepsze wykorzystanie zasobów, co jest niezbędne w większych instalacjach biurowych czy w obiektach komercyjnych.

Pytanie 15

Kiedy podczas startu systemu z BIOSu firmy AWARD komputer wyemitował długi dźwięk oraz dwa krótkie, to oznacza, że wystąpił błąd?

A. pamięci FLASH - BIOS
B. karty graficznej
C. kontrolera klawiatury
D. płyty głównej
Długi sygnał i dwa krótkie sygnały wydawane przez system BIOS firmy AWARD wskazują na problem związany z kartą graficzną. W standardach sygnalizacji POST (Power-On Self-Test) każdy rodzaj sygnału odpowiada konkretnemu błędowi sprzętowemu. W przypadku karty graficznej, problemy mogą wynikać z braku fizycznego połączenia, uszkodzenia samej karty lub niewłaściwego umiejscowienia w slocie PCI Express. Aby zdiagnozować problem, można wyłączyć komputer, sprawdzić połączenie karty graficznej oraz przetestować ją w innym slocie lub na innym komputerze. Praktyczne zastosowanie tej wiedzy polega na umiejętnym odczytywaniu sygnałów diagnostycznych, co jest kluczowe w przypadku rozwiązywania problemów ze sprzętem. Znajomość kodów błędów sygnalizowanych przez BIOS jest istotna zarówno dla techników, jak i dla użytkowników, którzy chcą samodzielnie zdiagnozować problemy z komputerem.

Pytanie 16

Na zdjęciu przedstawiono

Ilustracja do pytania
A. taśmę barwiącą
B. toner
C. tusz
D. kartridż
Taśma barwiąca jest kluczowym komponentem stosowanym w drukarkach igłowych oraz maszynach do pisania które wykorzystują technologię druku igłowego. Składa się z cienkiej taśmy nasączonej tuszem która jest montowana w specjalnym kartridżu. Podczas drukowania igły uderzają w taśmę przenosząc tusz na papier co pozwala na tworzenie czytelnych wydruków. Taśmy barwiące są niezwykle trwałe i wydajne co czyni je idealnym rozwiązaniem w środowiskach gdzie wymagana jest długa żywotność i niski koszt eksploatacji. Zastosowanie taśmy barwiącej jest powszechne w terminalach POS drukarkach liniowych oraz urządzeniach do druku paragonów. Standardy branżowe takie jak ISO 9001 wymagają aby taśmy barwiące były produkowane zgodnie z określonymi normami jakości co zapewnia ich niezawodność i zgodność z różnymi urządzeniami. Warto zaznaczyć że wybór odpowiedniej taśmy barwiącej ma istotne znaczenie dla jakości wydruków oraz trwałości urządzeń co jest szczególnie ważne w zastosowaniach przemysłowych i handlowych.

Pytanie 17

Do efektywnego zrealizowania macierzy RAID 1 wymagane jest minimum

A. 5 dysków
B. 2 dysków
C. 3 dysków
D. 4 dysków
RAID 1, czyli mirroring, potrzebuje co najmniej dwóch dysków. W tym układzie wszystkie dane są kopiowane na oba dyski, co daje nam naprawdę dobry poziom bezpieczeństwa i dostępności. Jak jeden z dysków padnie, to system dalej działa dzięki temu, co jest na drugim. To dlatego RAID 1 jest często wybierany tam, gdzie bezpieczeństwo danych jest mega ważne, na przykład w serwerach plików czy bazach danych. Co ciekawe, RAID 1 ma też lepsze czasy odczytu, bo możesz zczytywać dane z dwóch dysków jednocześnie. Z mojego doświadczenia wynika, że korzystanie z RAID 1 to bardzo dobra praktyka, gdy chcemy mieć pewność, że nasze dane są w bezpiecznych rękach.

Pytanie 18

Osoba korzystająca z systemu Linux, która chce odnaleźć pliki o konkretnej nazwie przy użyciu polecenia systemowego, może wykorzystać komendę

A. find
B. pwd
C. pine
D. search
Polecenie 'find' jest jednym z najpotężniejszych narzędzi w systemie Linux, które służy do wyszukiwania plików i katalogów na podstawie różnych kryteriów. Umożliwia użytkownikom przeszukiwanie hierarchii katalogów, a także zastosowanie filtrów, takich jak nazwa pliku, typ, rozmiar czy data modyfikacji. Na przykład, aby znaleźć plik o nazwie 'dokument.txt' w bieżącym katalogu i wszystkich podkatalogach, można użyć polecenia 'find . -name "dokument.txt"'. Ponadto, 'find' wspiera różnorodne opcje, które pozwalają na wykonywanie akcji na znalezionych plikach, co zwiększa jego przydatność w zautomatyzowanych skryptach. Użycie tego narzędzia jest zgodne z dobrymi praktykami administracji systemami, gdzie efektywne zarządzanie zasobami i szybkie wyszukiwanie plików są kluczowe dla utrzymania wydajności i porządku w systemie.

Pytanie 19

Na ilustracji przedstawiono złącze

Ilustracja do pytania
A. FIRE WIRE
B. HDMI
C. DVI
D. D-SUB
Wybrałeś prawidłową odpowiedź D-SUB co oznacza że rozpoznałeś złącze które jest standardowym interfejsem stosowanym w komputerach i sprzęcie elektronicznym. D-SUB znany również jako D-subminiature to złącze często używane do przesyłania sygnałów analogowych i danych. Najbardziej powszechną wersją jest złącze DB-9 wykorzystywane w połączeniach szeregowych RS-232 które były standardem w komunikacji komputerowej jeszcze w latach 80. i 90. D-SUB znajduje zastosowanie w urządzeniach takich jak monitory gdzie wykorzystuje się złącze VGA będące jego wariantem. D-SUB charakteryzuje się trwałą konstrukcją i łatwością w użyciu co czyni go odpornym na zużycie w środowiskach przemysłowych. Stosowanie D-SUB w aplikacjach przemysłowych wynika z jego zdolności do utrzymywania stabilnego połączenia nawet w trudnych warunkach. Dodatkowo jego design pozwala na tworzenie połączeń o wyższej sile mechanicznej dzięki zastosowaniu śrub mocujących co jest zgodne z dobrymi praktykami inżynierskimi w zakresie niezawodności połączeń. Warto pamiętać że mimo iż nowe technologie często zastępują starsze standardy D-SUB wciąż znajduje szerokie zastosowanie dzięki swojej wszechstronności i niezawodności. Jego użycie jest szeroko rozpowszechnione w branżach gdzie stabilność i trwałość połączeń są kluczowe jak w automatyce przemysłowej czy systemach komunikacji kolejowej.

Pytanie 20

Jaki system operacyjny funkcjonuje w trybie tekstowym i umożliwia uruchomienie środowiska graficznego KDE?

A. DOS
B. Linux
C. Windows 95
D. Windows XP
Linux to naprawdę ciekawy system operacyjny. Działa głównie w trybie tekstowym, ale możesz też ściągnąć różne środowiska graficzne, z których jedno z najpopularniejszych to KDE. To, co czyni Linuxa fajnym, to jego otwarta architektura, więc każdy może sobie dostosować to środowisko według własnych potrzeb. W praktyce często spotyka się Linuxa na serwerach, gdzie administratorzy wolą korzystać z terminala, a dopiero później dodają coś graficznego, żeby łatwiej zarządzać systemem. Co więcej, Linux ma super poziom bezpieczeństwa i jest stabilny, dlatego wielu programistów i firm wybiera właśnie ten system. Moim zdaniem, korzystanie z Linuxa to świetny sposób, żeby rozwinąć umiejętności związane z administrowaniem systemami i programowaniem. Umożliwia to lepsze zrozumienie tego, jak działają komputery i sieci. Na dodatek, masz dostęp do masy oprogramowania open source, co sprzyja innowacjom w programowaniu i współpracy między użytkownikami.

Pytanie 21

Aby zabezpieczyć system przed oprogramowaniem mającym możliwość reprodukcji, konieczne jest zainstalowanie

A. programu narzędziowego
B. programu szpiegowskiego
C. programu diagnostycznego
D. programu antywirusowego
Program antywirusowy to naprawdę ważna rzecz, jeśli chodzi o ochronę komputerów przed różnymi zagrożeniami, jak wirusy czy robaki. Jego główną rolą jest znajdowanie i usuwanie tych problemów. Żeby to działało dobrze, programy antywirusowe muszą być regularnie aktualizowane, bo tylko wtedy mogą rozpoznać nowe zagrożenia. W praktyce, programy te nie tylko skanują pliki na dysku, ale też analizują ruch w sieci. Dzięki temu można szybko wykryć i zablokować coś podejrzanego. Dobrze jest też pamiętać o aktualizowaniu systemu operacyjnego i programów, bo to zmniejsza ryzyko ataków. Ważne jest, żeby mieć kilka różnych warstw zabezpieczeń oraz nauczyć się, jak rozpoznawać potencjalne zagrożenia. W dzisiejszych czasach, kiedy zagrożeń jest coraz więcej, posiadanie sprawnego programu antywirusowego to podstawa, jeśli chodzi o bezpieczeństwo w sieci.

Pytanie 22

Po zainstalowaniu systemu Windows 7 zmieniono konfigurację dysku SATA w BIOS-ie komputera z AHCI na IDE. Przy ponownym uruchomieniu komputera system będzie

A. uruchamiał się bez zmian
B. działał wolniej
C. działał szybciej
D. restartował się podczas uruchamiania
Przekonanie, że po zmianie konfiguracji dysku z AHCI na IDE system Windows 7 uruchomi się bez zmian jest błędne. System operacyjny, który został zainstalowany w trybie AHCI, korzysta z dedykowanych sterowników, które są dostosowane do tego trybu komunikacji z dyskiem. Kiedy zmieniamy tę konfigurację na IDE, próbujemy używać niekompatybilnych sterowników, co prowadzi do niemożności uruchomienia systemu. Wiele osób może myśleć, że zmiana trybu pracy dysku poprawi wydajność, jednak w rzeczywistości, AHCI oferuje lepszą wydajność i możliwości, takie jak obsługa większej liczby dysków oraz lepsze zarządzanie pamięcią. Z kolei założenie, że system będzie działał wolniej w IDE, nie ma zastosowania, ponieważ system po prostu nie uruchomi się w ogóle. Tego rodzaju błędy często wynikają z braku zrozumienia, jak różne tryby pracy dysków wpływają na działanie systemu operacyjnego. Kluczowe jest uwzględnienie, że zmiany w BIOSie powinny być dokonywane z pełną świadomością konsekwencji, jakie niosą, aby uniknąć problemów z uruchamianiem oraz wydajnością.

Pytanie 23

Podaj prefiks, który identyfikuje adresy globalne w protokole IPv6?

A. 20::/3
B. 200::/3
C. 2000::/3
D. 2::/3
Inne odpowiedzi, takie jak 2::/3, 200::/3 i 20::/3, są niepoprawne, ponieważ nie identyfikują adresów globalnych w protokole IPv6. Prefiks 2::/3 w rzeczywistości nie jest przydzielany do żadnej znanej klasy adresów, co czyni go nieprzydatnym w praktycznych zastosowaniach. Adres 200::/3 obejmuje tylko mały zakres adresów, a nie pełne spektrum potrzebne dla globalnej komunikacji; z kolei prefiks 20::/3 jest również zbyt wąski do efektywnego adresowania globalnego. Użytkownicy często mylą prefiksy z lokalnymi adresami prywatnymi, które są używane w zamkniętych sieciach i nie są routowalne w Internecie. To może prowadzić do nieporozumień przy projektowaniu architektury sieci. Kluczowe jest zrozumienie, że adresy globalne muszą być routowalne przez Internet, co oznacza, że muszą należeć do odpowiednich prefiksów zgodnych z przydziałami RIR. Zastosowanie niewłaściwych adresów może skutkować brakiem łączności z siecią, co w praktyce uniemożliwia komunikację z innymi urządzeniami w Internecie. Dlatego ważne jest, aby zrozumieć różnice pomiędzy tymi prefiksami oraz ich zastosowanie w praktyce, co również podkreśla znaczenie stosowania standardów i najlepszych praktyk w projektowaniu i wdrażaniu infrastruktury sieciowej.

Pytanie 24

W architekturze sieci lokalnych opartej na modelu klient-serwer

A. każdy komputer udostępnia i korzysta z zasobów innych komputerów
B. żaden z komputerów nie ma nadrzędnej roli względem pozostałych
C. wszystkie komputery klienckie mają możliwość dostępu do zasobów komputerowych
D. wyspecjalizowane komputery pełnią rolę serwerów oferujących zasoby, a inne komputery z tych zasobów korzystają
W architekturze sieci lokalnych typu klient-serwer, wyróżnione komputery pełnią rolę serwerów, które są odpowiedzialne za udostępnianie zasobów, takich jak pliki, aplikacje czy usługi, a pozostałe komputery, nazywane klientami, korzystają z tych zasobów. Taki model pozwala na centralizację zarządzania danymi i ułatwia ich dostępność dla użytkowników. Przykładami zastosowania tej architektury są serwery plików w biurach, które umożliwiają pracownikom dostęp do wspólnych dokumentów, oraz serwery aplikacji, które dostarczają oprogramowanie w chmurze. W branży IT model klient-serwer jest szeroko stosowany, ponieważ pozwala na lepsze zabezpieczenie danych, łatwiejsze aktualizacje oprogramowania oraz efektywniejsze wykorzystanie zasobów. Warto również zwrócić uwagę na standardy takie jak TCP/IP, które regulują sposób komunikacji między serwerami a klientami oraz pozwalają na interoperacyjność różnych systemów operacyjnych i urządzeń sieciowych.

Pytanie 25

Jaki protokół jest używany przez komendę ping?

A. IPX
B. FTP
C. ICMP
D. SMTP
Odpowiedź ICMP (Internet Control Message Protocol) jest poprawna, ponieważ to właśnie ten protokół jest wykorzystywany przez polecenie ping do testowania łączności między urządzeniami w sieci. Ping wysyła pakiety ICMP Echo Request do określonego adresu IP i oczekuje na odpowiedź w postaci pakietu ICMP Echo Reply. Dzięki temu administratorzy sieci mogą szybko zdiagnozować problemy z połączeniami sieciowymi, takie jak niska jakość sygnału czy przerwy w komunikacji. ICMP jest częścią zestawu protokołów TCP/IP i działa na poziomie sieci, co pozwala na wymianę informacji o błędach oraz statusie trasowania. W praktyce, używając narzędzia ping, można uzyskać cenny wgląd w stan sieci, co jest zgodne z najlepszymi praktykami w zarządzaniu sieciami komputerowymi. Należy pamiętać, że ICMP może być ograniczany przez zapory sieciowe, co może wpłynąć na wyniki testów ping.

Pytanie 26

Analizując zrzut ekranu prezentujący ustawienia przełącznika, można zauważyć, że

Ilustracja do pytania
A. maksymalny interwał pomiędzy zmianami stanu łącza wynosi 5 sekund
B. czas pomiędzy wysyłaniem kolejnych wiadomości o prawidłowej pracy urządzenia wynosi 3 sekundy
C. maksymalny czas obiegu komunikatów protokołu BPDU w sieci wynosi 20 sekund
D. minimalny czas obiegu komunikatów protokołu BPDU w sieci wynosi 25 sekund
Konfiguracja przełącznika pokazuje wartość Hello Time ustawioną na 3 sekundy co oznacza że czas między wysyłaniem kolejnych komunikatów BPDU (Bridge Protocol Data Unit) w protokole Spanning Tree wynosi właśnie 3 sekundy. Protokół STP jest kluczowy w zapobieganiu powstawaniu pętli w sieciach Ethernet i poprawie stabilności sieci. Hello Time to parametr określający jak często główny most (root bridge) wysyła komunikaty BPDU do innych mostów w sieci. Regularne wysyłanie BPDU pozwala na utrzymanie aktualnej topologii sieci i szybką reakcję na zmiany takie jak dodanie lub usunięcie urządzenia w sieci. Praktyczne zastosowanie tej wiedzy znajduje się w dużych sieciach gdzie wymagana jest niezawodność i minimalizacja opóźnień związanych z rekonfiguracją sieci. Ustawienie właściwego Hello Time jest częścią dobrych praktyk zarządzania siecią gdyż zbyt długi czas może prowadzić do opóźnionego wykrywania zmian topologii a zbyt krótki do niepotrzebnego zwiększenia ruchu sieciowego. Przyjęte standardy często sugerują ustawienie tego parametru na wartość 2-3 sekundy co balansuje między wydajnością a stabilnością.

Pytanie 27

Wykorzystując narzędzie diagnostyczne Tracert, można zidentyfikować trasę do określonego celu. Ile routerów pokonał pakiet wysłany do hosta 172.16.0.99?

C:\>tracert 172.16.0.99 -d
Trasa śledzenia od 172.16.0.99 z maksymalną liczbą przeskoków 30
1      2 ms     3 ms     2 ms    10.0.0.1
2     12 ms     8 ms     8 ms    192.168.0.1
3     10 ms    15 ms    10 ms    172.17.0.2
4     11 ms    11 ms    20 ms    172.17.48.14
5     21 ms    18 ms    24 ms    172.16.0.99
Śledzenie zakończone.

A. 5
B. 4
C. 24
D. 2
Narzędzie Tracert jest używane do śledzenia trasy pakietu sieciowego od źródła do celu poprzez sieć IP. Wskazuje każdy przeskok, jaki pakiet wykonuje, czyli każdy router, przez który przechodzi. W wyniku działania Tracert, na liście pojawiają się adresy każdego z routerów między punktami końcowymi. Patrząc na podany wynik dla adresu 172.16.0.99, możemy zobaczyć pięć linii wynikowych, z których każda reprezentuje przeskok przez kolejny router. Pierwszy router to często brama wyjściowa z sieci lokalnej, a kolejne to routery w sieci rozległej, które kierują ruchem do ostatecznego celu. W tym przypadku, łącznie cztery routery (10.0.0.1, 192.168.0.1, 172.17.0.2 oraz 172.17.48.14) zostały pokonane, zanim pakiet dotarł do adresata 172.16.0.99. Dobre praktyki w diagnozowaniu sieci obejmują regularne monitorowanie tras sieciowych, co pozwala na szybką identyfikację problemów związanych z opóźnieniami lub nieprawidłowym kierowaniem ruchu. Tracert jest również pomocny przy analizie tras w sieciach VPN oraz w rozwiązywaniu problemów z wydajnością sieci, gdyż umożliwia identyfikację źródeł opóźnień. Narzędzie to działa na zasadzie zwiększania wartości TTL (Time To Live) w nagłówkach IP, co powoduje, że każdy router na trasie odsyła komunikat ICMP typu „Time Exceeded”, dzięki czemu można odtworzyć pełną trasę pakietu sieciowego.

Pytanie 28

Na ilustracji widoczny jest symbol graficzny

Ilustracja do pytania
A. mostu
B. koncentratora
C. rutera
D. regeneratora
Symbol graficzny przedstawiony na rysunku to ikona rutera. Ruter jest urządzeniem sieciowym, które kieruje ruch danych w sieci komputerowej. Działa na warstwie trzeciej modelu OSI, co oznacza, że obsługuje adresowanie IP i trasowanie pakietów między różnymi sieciami. Ruter analizuje adresy IP w nagłówkach pakietów i używa tablic trasowania do określenia najlepszej ścieżki dla przesyłanego ruchu. Dzięki temu może łączyć różne sieci lokalne (LAN) i rozległe (WAN), umożliwiając efektywną transmisję danych. Praktyczne zastosowania ruterów obejmują zarówno sieci domowe, gdzie zarządzają ruchem między urządzeniami, jak i duże sieci korporacyjne, gdzie zapewniają redundancję i równoważenie obciążenia. Standardowe praktyki obejmują zabezpieczanie ruterów przed nieautoryzowanym dostępem poprzez użycie silnych haseł i szyfrowania. Ruter odgrywa kluczową rolę w zapewnieniu stabilności i bezpieczeństwa sieci, co czyni go integralnym elementem infrastruktury IT w każdej nowoczesnej firmie.

Pytanie 29

W sieciach komputerowych miarą prędkości przesyłu danych jest

A. byte
B. ips
C. bps
D. dpi
Odpowiedź 'bps' (bits per second) jest poprawna, ponieważ jest to jednostka używana do pomiaru szybkości transmisji danych w sieciach komputerowych. W kontekście sieci komputerowych, szybkość ta odnosi się do liczby bitów, które są przesyłane w ciągu jednej sekundy. Jest to kluczowy parametr, który pozwala ocenić wydajność sieci, a także porównywać różne technologie transmisji, takie jak Ethernet, Wi-Fi czy łączność mobilna. Na przykład, szybkie połączenia optyczne mogą osiągać prędkości rzędu kilku gigabitów na sekundę (Gbps), co jest istotne w zastosowaniach wymagających dużej przepustowości, jak strumieniowanie wideo w wysokiej rozdzielczości czy przesyłanie dużych plików. Warto także zaznaczyć, że standardy sieciowe, takie jak IEEE 802.3 dla Ethernetu, definiują minimalne i maksymalne wartości dla bps, co pozwala na standaryzację i zapewnienie interoperacyjności między urządzeniami.

Pytanie 30

Aby chronić sieć Wi-Fi przed nieupoważnionym dostępem, należy m.in.

A. włączyć filtrację adresów MAC
B. korzystać jedynie z częstotliwości używanych przez inne sieci WiFi
C. wyłączyć szyfrowanie informacji
D. ustalić identyfikator sieci SSID o długości co najmniej 16 znaków
Filtrowanie adresów MAC to jedna z fajniejszych metod na zabezpieczenie naszej sieci bezprzewodowej. Każde urządzenie ma swój unikalny adres MAC i można go użyć, żeby kontrolować, które sprzęty mogą się połączyć z siecią. Kiedy administrator włączy to filtrowanie, może stworzyć listę z dozwolonymi adresami. Dzięki temu, nawet jeśli ktoś zna hasło do naszej sieci, nie dostanie się do niej, jeśli jego adres MAC nie jest na liście. Ale trzeba pamiętać, że to nie daje 100% ochrony, bo adresy MAC da się sklonować. Mimo wszystko, to bardzo dobra dodatkowa metoda ochrony. Oczywiście, dobrze jest też korzystać z mocnych haseł i szyfrowania WPA2 lub WPA3, bo to są najlepsze praktyki w zabezpieczaniu sieci bezprzewodowych.

Pytanie 31

Na rysunku ukazano diagram

Ilustracja do pytania
A. zasilacza impulsowego
B. przetwornika DAC
C. karty graficznej
D. przełącznika kopułkowego
Schemat przedstawia zasilacz impulsowy, który jest kluczowym elementem współczesnych urządzeń elektronicznych. Zasilacz impulsowy przekształca napięcie zmienne na napięcie stałe i charakteryzuje się wysoką sprawnością energetyczną dzięki wykorzystaniu przetworników kluczujących. W przedstawionym schemacie widzimy mostek prostowniczy, który zamienia prąd zmienny na stały, oraz tranzystor kluczujący, który steruje przepływem energii w transformatorze. Transformator ten ma za zadanie izolować obwody i dostosowywać napięcie wyjściowe. Następnie energia przepływa przez diody prostownicze i kondensatory filtrujące, które wygładzają napięcie wyjściowe. Zasilacze impulsowe są powszechnie stosowane w komputerach, telewizorach i ładowarkach z uwagi na ich efektywność i kompaktowy rozmiar. Standardy branżowe, takie jak IEC 60950, określają wymagania dotyczące bezpieczeństwa zasilaczy, a dobre praktyki obejmują odpowiednią filtrację zakłóceń i zabezpieczenie przed przepięciami, co poprawia niezawodność i trwałość urządzeń.

Pytanie 32

Po wykonaniu podanego polecenia w systemie Windows: ```net accounts /MINPWLEN:11``` liczba 11 zostanie przydzielona dla

A. minimalnej liczby znaków w hasłach użytkowników.
B. maksymalnej ilości dni ważności konta.
C. minimalnej liczby minut, przez które użytkownik może być zalogowany.
D. maksymalnej liczby dni pomiędzy zmianami haseł użytkowników.
Wartość 11 ustawiona przez komendę 'net accounts /MINPWLEN:11' odnosi się do minimalnej liczby znaków, które muszą być zawarte w hasłach użytkowników systemu Windows. Praktyka ustalania minimalnej długości haseł jest kluczowym elementem polityki bezpieczeństwa, mającym na celu ochronę kont użytkowników przed atakami typu brute force, w których hakerzy próbują odgadnąć hasła przez generowanie różnych kombinacji. Zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa, zaleca się, aby hasła miały co najmniej 12 znaków, co dodatkowo zwiększa ich odporność na przełamanie. Ustawienie minimalnej długości hasła na 11 znaków jest krokiem w kierunku zapewnienia użytkownikom większego poziomu bezpieczeństwa. Warto pamiętać, że im dłuższe i bardziej złożone hasło, tym trudniej je złamać, dlatego organizacje powinny regularnie aktualizować polityki haseł oraz edukować użytkowników na temat znaczenia silnych haseł oraz stosowania menedżerów haseł.

Pytanie 33

W sieciach bezprzewodowych Ad-Hoc (Independent Basic Service Set) wykorzystywana jest fizyczna struktura

A. magistrali
B. gwiazdy
C. siatki
D. pierścienia
W analizie sieci bezprzewodowych Ad-Hoc, ważne jest zrozumienie, jak różne topologie wpływają na działanie sieci. Topologia pierścienia, choć interesująca w kontekście tradycyjnych sieci przewodowych, nie jest efektywna w przypadku sieci bezprzewodowych Ad-Hoc. W topologii pierścienia każde urządzenie jest połączone z dwoma sąsiadami, co w sytuacjach zaników sygnału lub awarii jednego z węzłów, prowadzi do problemów z komunikacją w całej sieci. Podobnie, topologia magistrali, gdzie wszystkie urządzenia są podłączone do jednego kabla, nie jest odpowiednia dla sieci Ad-Hoc. Tego rodzaju architektura nie wspiera elastyczności i mobilności, które są kluczowe dla takich rozwiązań. Topologia gwiazdy, z kolei, wymaga centralnego punktu dostępowego, co stoi w sprzeczności z ideą Ad-Hoc, która opiera się na bezpośredniej komunikacji między urządzeniami. Użytkownicy mogą mylić dostępność w takich sieciach z ich strukturą, co prowadzi do błędnych wniosków. Kluczowym błędem jest założenie, że tradycyjne modele topologii mogą być bezpośrednio stosowane w dynamicznych sieciach bezprzewodowych, co prowadzi do nieefektywności w projektowaniu i implementacji systemów sieciowych.

Pytanie 34

W dokumentacji jednego z komponentów komputera zawarto informację, że urządzenie obsługuje OpenGL. Jakiego elementu dotyczy ta dokumentacja?

A. karty graficznej
B. mikroprocesora
C. karty sieciowej
D. dysku twardego
Odpowiedź dotycząca karty graficznej jest poprawna, ponieważ OpenGL (Open Graphics Library) to standardowy interfejs programowania aplikacji (API) służący do renderowania grafiki 2D i 3D. Karty graficzne są kluczowymi komponentami komputerów, które wykorzystują OpenGL do przetwarzania i renderowania grafiki w grach, aplikacjach inżynieryjnych oraz wizualizacjach naukowych. Przykładowo, w grach komputerowych, OpenGL pozwala na tworzenie złożonych scen 3D oraz efekty wizualne, co wpływa na jakość i immersyjność rozgrywki. Karty graficzne współczesnych komputerów, takich jak te od firm NVIDIA czy AMD, oferują pełne wsparcie dla OpenGL, co jest standardem w branży gier i grafiki komputerowej. Dobre praktyki przy projektowaniu aplikacji z wykorzystaniem OpenGL obejmują optymalizację renderowania, zarządzanie pamięcią oraz efektywne korzystanie z zasobów GPU, co przekłada się na lepszą wydajność i jakość wizualną.

Pytanie 35

Dodatkowe właściwości wyniku operacji przeprowadzanej przez jednostkę arytmetyczno-logiczna ALU zawiera

A. akumulator
B. licznik rozkazów
C. rejestr flagowy
D. wskaźnik stosu
Rejestr flagowy jest kluczowym elementem jednostki arytmetyczno-logicznej (ALU), który przechowuje informacje o wynikach ostatnich operacji arytmetycznych i logicznych. Flagi w rejestrze flagowym informują o stanach takich jak: przeniesienie, zero, parzystość czy znak. Na przykład, jeśli operacja doda dwie liczby i wynik przekroczy maksymalną wartość, flaga przeniesienia zostanie ustawiona. Praktycznie, rejestr flagowy umożliwia procesorowi podejmowanie decyzji na podstawie wyników operacji, co jest kluczowe w kontrolowaniu przepływu programów. W standardach architektury komputerowej, takich jak x86, rejestr flagowy jest niezbędny do realizacji instrukcji skoków warunkowych, co pozwala na implementację złożonych algorytmów. Zrozumienie działania rejestru flagowego pozwala programistom optymalizować kod i skutecznie zarządzać logiką operacyjną w aplikacjach o wysokiej wydajności.

Pytanie 36

W przypadku okablowania strukturalnego opartego na skrętce UTP kat.6, jakie gniazda sieciowe powinny być używane?

A. RJ-11
B. BNC
C. F
D. 8P8C
Odpowiedź 8P8C jest poprawna, ponieważ gniazda tego typu są standardowo używane w okablowaniu strukturalnym opartym na skrętce UTP kat.6. 8P8C, znane również jako RJ45, posiada osiem pinów, co pozwala na efektywne przesyłanie danych z dużą prędkością, zgodnie z normami Ethernetu. Gniazda te są zaprojektowane do obsługi różnych protokołów sieciowych, w tym 10BASE-T, 100BASE-TX oraz 1000BASE-T, co czyni je wszechstronnym rozwiązaniem w nowoczesnych instalacjach sieciowych. Stosowanie 8P8C w kablach kat.6 jest rekomendowane przez organizacje takie jak TIA (Telecommunications Industry Association) oraz ISO/IEC, które ustalają standardy dotyczące okablowania sieciowego. Użycie odpowiednich gniazd zapewnia nie tylko wysoką wydajność, ale również stabilność połączeń, co jest kluczowe w środowisku biurowym, gdzie zbyt duża ilość strat danych lub przerw w połączeniach może prowadzić do znacznych problemów operacyjnych. Przykładem zastosowania 8P8C może być budowa nowego biura, gdzie połączenia sieciowe w oparciu o skrętkę kat.6 i gniazda 8P8C zapewniają szybki dostęp do Internetu i lokalnej sieci.

Pytanie 37

Który protokół zamienia adresy IP na adresy MAC, używane w sieciach Ethernet?

A. SNMP
B. IP
C. ARP
D. IRC
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem w komunikacji sieciowej, który umożliwia przekształcenie logicznych adresów IP na fizyczne adresy MAC (Media Access Control). Gdy urządzenie w sieci potrzebuje wysłać dane do innego urządzenia, musi znać jego adres MAC, ale zazwyczaj ma jedynie jego adres IP. Protokół ARP rozwiązuje ten problem, wysyłając zapytanie do lokalnej sieci, pytając, który z podłączonych urządzeń ma dany adres IP. Urządzenie, które rozpozna swój adres IP, odpowiada swoim adresem MAC. ARP działa w warstwie drugiej modelu OSI, co oznacza, że jest bezpośrednio związany z komunikacją na poziomie dostępu do sieci. Przykładem zastosowania ARP jest sytuacja, gdy komputer łączy się z routerem, aby uzyskać dostęp do internetu. ARP pozwala na wydajne przesyłanie danych w sieci Ethernet, co jest zgodne z normami IEEE 802.3. Bez ARP, komunikacja w sieciach opartych na protokole IP byłaby znacznie bardziej skomplikowana i mniej efektywna, co podkreśla jego fundamentalne znaczenie w architekturze sieciowej.

Pytanie 38

Jaką konfigurację sieciową może mieć komputer, który należy do tej samej sieci LAN, co komputer z adresem 10.8.1.10/24?

A. 10.8.0.101 i 255.255.0.0
B. 10.8.0.101 i 255.255.255.0
C. 10.8.1.101 i 255.255.0.0
D. 10.8.1.101 i 255.255.255.0
Odpowiedź 10.8.1.101 z maską podsieci 255.255.255.0 jest poprawna, ponieważ zarówno adres IP, jak i maska podsieci są zgodne z wymaganiami dla komputerów znajdujących się w tej samej sieci LAN. Adres 10.8.1.10 z maską 255.255.255.0 oznacza, że wszystkie urządzenia z adresami IP od 10.8.1.1 do 10.8.1.254 mogą się ze sobą komunikować. W praktyce oznacza to, że komputer z adresem 10.8.1.101 będzie w stanie wysłać i odbierać dane z komputera o adresie 10.8.1.10, co jest kluczowe dla zapewnienia efektywnej komunikacji w sieci lokalnej. Konfiguracja ta jest zgodna z zasadami subnettingu, które sugerują, że urządzenia w tej samej podsieci muszą mieć ten sam prefiks adresowy. Użycie standardowej maski 255.255.255.0 dla takiej sieci jest powszechne i zapewnia odpowiednie zasoby adresowe dla małych i średnich sieci. Dodatkowo, zrozumienie koncepcji adresacji IP oraz podziału na podsieci jest niezbędne w administracji sieciami komputerowymi oraz w projektowaniu infrastruktury IT.

Pytanie 39

Który z protokołów przesyła datagramy użytkownika BEZ GWARANCJI ich dostarczenia?

A. HTTP
B. ICMP
C. TCP
D. UDP
UDP (User Datagram Protocol) jest protokołem transportowym w zestawie protokołów internetowych, który nie zapewnia gwarancji dostarczenia datagramów. Jego podstawową cechą jest to, że przesyła dane w sposób bezpołączeniowy, co oznacza, że nie ustanawia żadnej sesji komunikacyjnej przed wysłaniem danych. To sprawia, że jest idealny do zastosowań, gdzie szybkość jest ważniejsza od niezawodności, takich jak transmisje wideo na żywo, gry online czy VoIP (Voice over Internet Protocol). W tych zastosowaniach opóźnienia mogą być bardziej krytyczne niż utrata niektórych pakietów danych. W praktyce, programiści często decydują się na użycie UDP tam, gdzie aplikacja może sama poradzić sobie z ewentualnymi błędami, np. przez ponowne wysyłanie zagubionych pakietów. W związku z tym, standardy RFC 768 definiują UDP jako protokół, który nie implementuje mechanizmów kontroli błędów ani retransmisji, co przyspiesza proces przesyłania danych i zmniejsza narzuty. Z tego powodu, UDP jest wszechobecny w aplikacjach wymagających niskich opóźnień i dużej przepustowości.

Pytanie 40

Jak nazywa się jednostka danych PDU w warstwie sieciowej modelu ISO/OSI?

A. segment
B. pakiet
C. bit
D. ramka
Chociaż segment, bit i ramka są terminami używanymi w kontekście przesyłania danych, to nie odnoszą się one do warstwy sieciowej modelu ISO/OSI, co czyni je niepoprawnymi odpowiedziami. Segment odnosi się do warstwy transportowej modelu, gdzie dane są dzielone na mniejsze kawałki, aby zapewnić ich niezawodną transmisję. Protokół TCP (Transmission Control Protocol) operuje na poziomie segmentów, dodając nagłówki zarządzające kontrolą błędów i porządkiem przesyłania. Bit to najmniejsza jednostka informacji w systemie komputerowym, ale nie jest specyficzny dla żadnej warstwy modelu ISO/OSI i nie może być traktowany jako jednostka PDU. Ramka natomiast jest jednostką danych w warstwie łącza danych, gdzie dane są opakowane w ramki zawierające adresy MAC oraz inne informacje potrzebne do przesyłu w sieci lokalnej. Niezrozumienie, które jednostki danych są przypisane do odpowiednich warstw modelu OSI, może prowadzić do błędnego pojmowania struktury komunikacji sieciowej. Ważne jest, aby zrozumieć, że każda z warstw modelu OSI pełni określoną funkcję, i błędne przypisanie terminów do niewłaściwych warstw może skutkować nieefektywnym projektowaniem sieci oraz problemami w diagnostyce i zarządzaniu komunikacją. Dlatego kluczowe jest przyswojenie sobie tych podstawowych koncepcji, aby lepiej zrozumieć, jak działa cały system komunikacji w sieciach komputerowych.