Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 26 maja 2025 16:28
  • Data zakończenia: 26 maja 2025 16:33

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie podanych w tabeli wyników pomiarów rezystancji izolacji silnika asynchronicznego trójfazowego o danych UN = 230/400 V i PN = 3 kW można stwierdzić, że

RPE-U1RPE-V1RPE-W1RU1-V1RV1-W1RW1-U1
6,2 MΩ5,4 MΩ3,9 MΩ6,9 MΩ4,4 MΩ4,8 MΩ

A. wystąpiło zwarcie między uzwojeniami V i W.
B. pogorszyła się izolacja uzwojenia W.
C. w uzwojeniu V występuje przerwa.
D. w uzwojeniu U występuje zwarcie do obudowy.
Prawidłowa odpowiedź wskazuje na to, że pogorszenie izolacji uzwojenia W jest dostrzegalne w analizowanych wynikach pomiarów. Rezystancja izolacji między uzwojeniami powinna być zbliżona, co jest zgodne z normami bezpieczeństwa i jakości, takimi jak IEC 60364. W przypadku, gdy rezystancja izolacji uzwojenia W jest znacznie niższa niż dla uzwojeń U i V, świadczy to o osłabieniu izolacji, co może prowadzić do niebezpiecznych warunków pracy silnika. W praktyce, niezidentyfikowane problemy związane z izolacją mogą prowadzić do zwarć, przegrzewania się i w końcu awarii silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy maszyn. Regularne pomiary rezystancji izolacji są kluczowe dla zapewnienia niezawodności urządzeń elektrycznych, a odpowiednia dokumentacja wyników pozwala na monitorowanie stanu technicznego uzwojeń. W przypadku wykrycia niskiej rezystancji, należy natychmiast podjąć kroki w celu oceny i naprawy uszkodzeń izolacji, co jest zgodne z dobrą praktyką w konserwacji urządzeń elektrycznych.

Pytanie 2

W przypadku instalacji o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω funkcjonującej w systemie TN-C nie ma efektywnej dodatkowej ochrony przed porażeniem prądem elektrycznym, ponieważ

A. impedancja sieci zasilającej jest zbyt niska
B. opór izolacji miejsca pracy jest zbyt wysoki
C. impedancja pętli zwarcia jest zbyt wysoka
D. opór uziomu jest zbyt niski
Impedancja pętli zwarcia jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznych. W systemie TN-C, gdzie zneutralizowane przewody są połączone, niska impedancja pętli zwarcia jest niezbędna do szybkiego wyłączenia zasilania w przypadku wystąpienia zwarcia. W omawianym przypadku, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być zbyt niski, aby wyzwolić odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. To prowadzi do sytuacji, w której czas reakcji zabezpieczeń jest zbyt długi, co w konsekwencji zwiększa ryzyko porażenia prądem elektrycznym. Przykładowo, w praktyce inżynieryjnej, zaleca się, aby impedancja pętli zwarcia nie przekraczała 1 Ω dla instalacji zasilających o napięciu 230 V, co pozwala na wyłączenie obwodu w czasie nieprzekraczającym 0,4 s. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61439, które podkreślają znaczenie odpowiednich wartości impedancji dla bezpieczeństwa użytkowników.

Pytanie 3

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Rdzeń magnetyczny
B. Silnik synchroniczny
C. Izolatory ceramiczne
D. Uchwyty do podłączenia przewodów
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 4

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. zmierzyć temperaturę uzwojenia stojana
B. sprawdzić rezystancję przewodu ochronnego
C. ocenić stan szczotek
D. zmierzyć rezystancję izolacji kabla zasilającego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 5

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. dwa lata
B. pół roku
C. pięć lat
D. jeden rok
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 6

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji przewodu ochronnego
B. rezystancji uzwojeń stojana
C. prądu stanu jałowego
D. prądu upływu
Pomiary prądu stanu jałowego, rezystancji przewodu ochronnego oraz rezystancji uzwojeń stojana nie są odpowiednie do skutecznego wykrywania przebicia izolacji uzwojeń silnika indukcyjnego względem obudowy. Prąd stanu jałowego odnosi się do prądu, który silnik pobiera, gdy nie jest obciążony, co nie dostarcza informacji o stanie izolacji. Wysoka wartość tego prądu może być spowodowana innymi czynnikami, takimi jak straty w rdzeniu czy niewłaściwe parametry zasilania, co może prowadzić do błędnych wniosków na temat stanu izolacji. Z kolei pomiar rezystancji przewodu ochronnego służy głównie do zapewnienia bezpieczeństwa w systemach uziemienia, ale nie wskazuje bezpośrednio na stan izolacji uzwojeń. Rezystancja uzwojeń stojana z kolei jest istotna przy ocenie sprawności silnika, ale nie jest odpowiednia do wykrywania przebicia izolacji, ponieważ nie uwzględnia wydajności materiałów izolacyjnych. W praktyce, mylenie tych pojęć może prowadzić do fałszywego poczucia bezpieczeństwa, a nieprawidłowe interpretacje wyników pomiarów mogą skutkować poważnymi konsekwencjami w zakresie bezpieczeństwa i niezawodności pracy silników elektrycznych.

Pytanie 7

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Nagle zwiększone napięcie zasilające
B. Pęknięcie pierścieni zwierających pręty wirnika
C. Nagle zmniejszone napięcie zasilające
D. Poluzowanie tabliczki zaciskowej
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 8

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. SM 3x2,5 mm2
B. YDY 4x2,5 mm2
C. OP 4x2,5 mm2
D. YLY 3x2,5 mm2
Odpowiedź OP 4x2,5 mm2 jest prawidłowa, ponieważ ten typ przewodu jest odpowiedni do zasilania silników trójfazowych, zwłaszcza w aplikacjach, gdzie przewód ma być elastyczny i odporny na różne warunki pracy. Przewód OP (Ochronny Przewód) charakteryzuje się podwyższoną odpornością na działanie czynników zewnętrznych, co czyni go idealnym do zastosowań w odbiornikach ruchomych, gdzie przewód może być narażony na zginanie i tarcie. Zastosowanie przewodu o przekroju 4x2,5 mm2 oznacza, że mamy do czynienia z czterema żyłami, co jest typowe dla instalacji trójfazowych, gdzie potrzebne są trzy żyły fazowe i jedna żyła ochronna. Wybór odpowiedniego przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności działania silnika, a także minimalizowania ryzyka awarii. Przewody OP są zgodne z normami PN-EN 60228 oraz PN-EN 50525, co potwierdza ich wysoką jakość i odpowiednie parametry elektryczne w zastosowaniach przemysłowych.

Pytanie 9

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Zbyt wysoka rezystancja przewodu uziemiającego
B. Pogorszenie stanu mechanicznego złącz przewodów
C. Brak ciągłości przewodu neutralnego
D. Brak ciągłości przewodu ochronnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 10

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających zmniejszy się.
B. Spadek napięcia na przewodach zasilających wzrośnie.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Moc wydobywana w piecu zmaleje 1,5 raza.
Pojęcie spadku napięcia jest kluczowe w kontekście efektywności instalacji elektrycznych i w niniejszym przypadku odpowiedzi, które sugerują zwiększenie spadku napięcia, są niepoprawne, ponieważ nie uwzględniają zasady związanej z oporem przewodów. W rzeczywistości, gdy przekrój przewodu wzrasta, opór maleje, co prowadzi do zmniejszenia spadku napięcia na przewodach. Odpowiedzi, które mówią o zmniejszeniu mocy wydzielanej w piecu, mogą wynikać z błędnego zrozumienia relacji między napięciem, prądem a mocą. Moc wydobywana przez urządzenia elektryczne zależy od napięcia i prądu, a zatem jeśli spadek napięcia maleje, urządzenie ma szansę na stabilniejsze zasilanie, a nie jego zmniejszenie. Podobnie, twierdzenie o zwiększeniu mocy wydzielanej w piecu jest mylące, ponieważ moc pieca elektrycznego jest ustalana przez parametry zasilania i nie wzrośnie w wyniku wymiany przewodu, lecz pozostaje na poziomie 12 kW, zgodnie z jego specyfikacją. Użytkownicy często nie rozumieją, że zmiana przekroju przewodu nie zmienia wymagań dotyczących mocy urządzenia, lecz wpływa korzystnie na parametry przesyłowe energii, co powinno być kluczowym elementem w analizie tego przypadku.

Pytanie 11

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 200 MΩ, 1000 V
B. 2000 MΩ, 1000 V
C. 2000 MΩ, 2500 V
D. 200 MΩ, 2500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji kabli elektroenergetycznych jest kluczowym elementem diagnostyki stanu technicznego instalacji. Użycie zakresu 2000 MΩ oraz napięcia 2500 V zapewnia, że wykonany pomiar będzie zarówno bezpieczny, jak i precyzyjny. Wysoka wartość rezystancji izolacji (2000 MΩ) jest niezbędna w kontekście kabli wysokiego napięcia, gdzie izolacja musi utrzymywać wyjątkowo dużą odporność elektryczną, aby zapobiec przebiciom i innym awariom. Napięcie 2500 V jest standardowym wyborem w branży do testowania izolacji, ponieważ pozwala na uzyskanie wiarygodnych wyników, które odzwierciedlają rzeczywistą kondycję izolacji. Przykładowe zastosowanie to regularne pomiary przed rozpoczęciem sezonu zimowego, co pozwala na zidentyfikowanie ewentualnych defektów izolacji, które mogą prowadzić do awarii w trudnych warunkach atmosferycznych. Dobrą praktyką w branży elektroenergetycznej jest przestrzeganie norm IEC 60216 oraz PN-EN 60529, które określają wymagania dotyczące pomiarów izolacji.

Pytanie 12

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Podłączyć urządzenie do sieci
B. Zmierzyć napięcie zasilania
C. Uziemić megomierz
D. Odłączyć zasilanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przed pomiarem rezystancji izolacji za pomocą megomierza należy bezwzględnie odłączyć zasilanie badanego obwodu. To kluczowy krok, który zapewnia bezpieczeństwo zarówno osoby wykonującej pomiar, jak i chroni sprzęt przed uszkodzeniem. Megomierz generuje wysokie napięcie, które w połączeniu z istniejącym zasilaniem mogłoby spowodować porażenie elektryczne lub uszkodzenie izolacji. Dodatkowo, odłączenie zasilania pozwala na uzyskanie dokładnych wyników, ponieważ eliminuje wpływ napięcia zasilającego na pomiar. W praktyce, przed rozpoczęciem pomiarów, należy również upewnić się, że obwód nie jest pod napięciem za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa pracy z urządzeniami elektrycznymi, które podkreślają znaczenie odłączenia zasilania przed jakimikolwiek pracami serwisowymi czy pomiarowymi.

Pytanie 13

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Drgania skrajnych blach rdzenia
B. Niesymetryczność obciążenia
C. Nieszczelność kadzi transformatora
D. Praca na biegu jałowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Te drgania blach w rdzeniu transformatora to chyba główny powód, dla którego słychać to nienormalne brzęczenie, gdy on pracuje. Rdzeń składa się z cienkich blach, które są połączone, żeby zminimalizować straty energii i zjawisko histerezy. Kiedy transformator działa, zmieniające się pole magnetyczne może powodować drgania tych blach. Jak blachy nie są odpowiednio spasowane albo mają jakieś wady produkcyjne, to mogą zacząć rezonować, co prowadzi do tych nieprzyjemnych dźwięków. Moim zdaniem, żeby ograniczyć te drgania, warto regularnie konserwować transformatory i sprawdzać jakość tych blach, zwłaszcza według norm IEC 60076. Dobrze wykonany rdzeń i jego fachowy montaż mogą naprawdę wpłynąć na to, jak cicho i efektywnie pracuje transformator, co ma spore znaczenie w systemach energetycznych, gdzie hałas może być problematyczny.

Pytanie 14

W instalacji elektrycznej z napięciem nominalnym 230 V, skonstruowanej w systemie TN-S, działa urządzenie, które należy do pierwszej klasy ochronności. Jakie środki powinny być wdrożone, aby zapewnić dodatkową ochronę przed porażeniem w tym urządzeniu?

A. Wykonać lokalne połączenia wyrównawcze
B. Zainstalować transformator redukcyjny
C. Ułożyć dodatkową warstwę izolacyjną na podłożu
D. Połączyć obudowę z przewodem ochronnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Połączenie obudowy urządzenia z przewodem ochronnym jest kluczowym środkiem zabezpieczającym przed porażeniem elektrycznym w instalacjach elektrycznych. W przypadku urządzeń klasy I, które polegają na ochronie poprzez uziemienie, takie połączenie ma na celu zapewnienie, że w przypadku awarii izolacji, prąd upływowy zostanie skierowany do ziemi, co zminimalizuje ryzyko porażenia prądem. W instalacjach TN-S, gdzie przewód ochronny (PE) jest oddzielony od przewodu neutralnego (N), jest to szczególnie istotne. Przykładem praktycznym może być sprzęt AGD, jak lodówka czy pralka, które muszą mieć pewne połączenia ochronne, aby zapewnić bezpieczeństwo użytkowników. Standardy takie jak PN-IEC 60364 stanowią podstawę dla projektowania i wykonania instalacji elektrycznych, a także definiują wymagania dotyczące ochrony przed porażeniem elektrycznym, co podkreśla znaczenie właściwego połączenia obudowy z przewodem ochronnym.

Pytanie 15

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Podwojony moment obciążenia
B. Kilku procentowy wzrost napięcia zasilania
C. Odłączenie przewodu ochronnego od zacisku PE
D. Brak napięcia w jednej z faz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zanik napięcia w jednej z faz silnika indukcyjnego trójfazowego prowadzi do nierównomiernego przepływu prądu w uzwojeniach, co skutkuje spadkiem momentu obrotowego oraz zwiększeniem prędkości ślizgu. Silnik, zamiast stabilnie pracować, zaczyna generować wibracje i dźwięki, co objawia się charakterystycznym "buczeniem". W przypadku pracy z obciążeniem wynoszącym połowę mocy znamionowej, silnik może być w stanie tolerować pewne zakłócenia, ale zanik napięcia w jednej fazie jest krytycznym problemem. Przykładowo, w przemyśle, awarie zasilania w jednej fazie mogą prowadzić do uszkodzeń silników oraz innych komponentów systemu, dlatego ważne jest stosowanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe oraz monitoring jakości zasilania. Aby poprawić niezawodność systemów elektrycznych, stosuje się również układy równoważące obciążenia międzyfazowe. Stosując te zasady, można znacząco zwiększyć bezpieczeństwo i efektywność pracy silników.

Pytanie 16

Który z podanych przewodów jest przeznaczony do instalacji wtynkowej?

A. LYg
B. YADYn
C. OMYp
D. YDYt

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź YDYt jest poprawna, ponieważ ten typ przewodu jest specjalnie zaprojektowany do instalacji wtynkowych. Przewody YDYt są izolowane i osłonięte, co czyni je odpowiednimi do układania w ścianach oraz innych strukturach budowlanych. Zbudowane z miedzi, posiadają wielowarstwową izolację, która chroni je przed uszkodzeniami mechanicznymi oraz wpływem niekorzystnych warunków atmosferycznych, co jest kluczowe w kontekście ich zastosowania w budynkach. Przewody te są zgodne z normami PN-IEC 60227, co potwierdza ich wysoką jakość oraz bezpieczeństwo użytkowania. Przykładem zastosowania YDYt może być instalacja oświetlenia w pomieszczeniach biurowych, gdzie przewody te są układane w ścianach, co zapewnia estetykę oraz bezpieczeństwo. Warto również zaznaczyć, że przewody te są dostępne w różnych przekrojach, co pozwala na dopasowanie do specyficznych wymagań instalacyjnych.

Pytanie 17

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF

A. Ciągłej.
B. Dorywczej.
C. Przerywanej z hamowaniem elektrycznym.
D. Przerywanej z rozruchem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 18

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. DC-4
B. AC-3
C. DC-2
D. AC-1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.

Pytanie 19

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zawilgocenie izolacji przewodów AFL do odbiorców
C. Zwarcie doziemne jednej fazy
D. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 20

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Przerwa w uzwojeniu pierwotnym
B. Zwarcie w uzwojeniu wtórnym
C. Przerwa w uzwojeniu wtórnym
D. Zwarcie w uzwojeniu pierwotnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie w uzwojeniu pierwotnym transformatora obniżającego napięcie powoduje, że przy braku obciążenia (stan jałowy) napięcie na uzwojeniu pierwotnym nie może osiągnąć wartości znamionowej. W przypadku transformatora o przekładni napięciowej wynoszącej 5, napięcie wtórne powinno wynosić pięć razy mniejsze niż pierwotne, czyli przy napięciu 230 V na uzwojeniu pierwotnym, napięcie wtórne powinno wynosić 46 V. Jednak w omawianym przypadku zmierzono napięcia 230 V i 460 V, co sugeruje, że doszło do zwarcia w uzwojeniu pierwotnym. Takie uszkodzenie może prowadzić do znacznego wzrostu prądu, co jest niebezpieczne dla transformatora, a także dla sieci zasilającej. W praktyce, w celu weryfikacji stanu uzwojeń, stosuje się pomiary impedancji oraz testy napięciowe, które są zgodne z normami IEC i ANSI. W przypadku stwierdzenia zwarcia, konieczne jest szybkie odłączenie zasilania i przeprowadzenie naprawy oraz wymiany uszkodzonych elementów, aby przywrócić prawidłowe funkcjonowanie transformatora.

Pytanie 21

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Separacja elektryczna odbiornika
B. Ochronne miejscowe połączenia wyrównawcze
C. Podwójna lub wzmocniona izolacja elektryczna
D. Umieszczenie części czynnych poza zasięgiem ręki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ochronne miejscowe połączenia wyrównawcze stanowią kluczowy element systemów ochrony przeciwporażeniowej, zwłaszcza w instalacjach elektrycznych niskich napięć. Działają one w celu minimalizacji różnic potencjałów między różnymi metalowymi elementami instalacji, co zmniejsza ryzyko porażenia prądem elektrycznym. W sytuacji awaryjnej, gdy dojdzie do uszkodzenia izolacji lub innej awarii, połączenia wyrównawcze zapewniają alternatywną drogę dla prądu, co przyczynia się do szybszego działania zabezpieczeń. Przykładowo, w obiektach użyteczności publicznej, takich jak szkoły czy szpitale, implementacja miejscowych połączeń wyrównawczych jest zgodna z normami PN-EN 61140, które podkreślają znaczenie zachowania niskiego poziomu ryzyka w zakresie bezpieczeństwa elektrycznego. Dobrą praktyką jest również regularne sprawdzanie stanu technicznego tych połączeń, aby zapewnić ich pełną funkcjonalność w razie potrzeby.

Pytanie 22

Która z wymienionych przyczyn może powodować przegrzewanie się uzwojenia stojana w trakcie działania trójfazowego silnika indukcyjnego?

A. Nierównomierna szczelina powietrzna
B. Zmiana kolejności faz zasilających
C. Zbyt niska częstotliwość napięcia zasilającego
D. Nieprawidłowe połączenie grup zezwojów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błędne połączenie grup zezwojów w trójfazowym silniku indukcyjnym może prowadzić do przegrzewania się uzwojenia stojana z kilku powodów. Połączenia te są kluczowe dla prawidłowego działania silnika, ponieważ decydują o fazowej synchronizacji przepływu prądu w uzwojeniach. Nieprawidłowe połączenia mogą prowadzić do nierównomiernego obciążenia faz, co z kolei skutkuje nadmiernym nagrzewaniem się niektórych uzwojeń. W praktyce, aby uniknąć takich problemów, należy stosować się do norm, takich jak IEC 60034 dotyczących maszyn elektrycznych, które zalecają odpowiednie procedury montażu i testowania silników. W przypadku wykrycia przegrzewania się silnika, kluczowe jest przeprowadzenie analizy połączeń oraz wykonanie badań termograficznych w celu zidentyfikowania miejsc o podwyższonej temperaturze. Prawidłowe połączenie grup zezwojów zapewnia równomierne rozkładanie obciążenia, co jest kluczowe dla wydajności oraz trwałości silnika.

Pytanie 23

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 1 rok
B. 2 lata
C. 4 lata
D. 3 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 24

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Autotransformator
B. Softstart
C. Rozrusznik
D. Falownik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Falownik to urządzenie elektroniczne, które pozwala na płynną regulację obrotów silników indukcyjnych poprzez modulację częstotliwości i napięcia zasilającego. Dzięki zastosowaniu falowników, można precyzyjnie dostosować prędkość obrotową silnika do aktualnych potrzeb aplikacji, co jest szczególnie istotne w procesach przemysłowych, gdzie zmiana prędkości ma kluczowe znaczenie dla efektywności działania. Na przykład, w systemach transportowych, takich jak przenośniki taśmowe, regulacja prędkości pozwala na optymalizację przepływu materiałów. Falowniki są zgodne z normami IEC 61800, które określają wymagania dotyczące regulacji napędów elektrycznych. Ponadto, zastosowanie falowników wpływa na zmniejszenie zużycia energii, co jest zgodne z aktualnymi trendami w kierunku zrównoważonego rozwoju i efektywności energetycznej. Dzięki swojej wszechstronności, falowniki są wykorzystywane w różnych gałęziach przemysłu, w tym w automatyce budynkowej, klimatyzacji i wentylacji, co czyni je niewątpliwie najlepszym wyborem do regulacji obrotów silników indukcyjnych.

Pytanie 25

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. uruchomienie ochronnika przeciwprzepięciowego
B. pojawienie się napięcia na obudowie silnika
C. obniżenie prędkości obrotowej wirnika
D. wzrost prędkości obrotowej wirnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 26

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Umieszczenie części czynnych poza zasięgiem ręki
B. Obudowa
C. Ogrodzenie
D. Samoczynne wyłączenie zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 27

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24

A. B.
B. D.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obwód C został zidentyfikowany jako ten, który nie spełnia warunków ochrony przeciwporażeniowej ze względu na prąd różnicowy równy 68,45A, który jest niższy niż prąd wyzwalający zabezpieczenia wynoszący 80A. Zgodnie z normą IEC 60364-4-41, prąd różnicowy powinien być wystarczająco duży, aby zapewnić skuteczne zadziałanie zabezpieczenia w przypadku awarii. W praktyce oznacza to, że jeśli wystąpiłby prąd upływowy, zabezpieczenie nie zadziałałoby, co stwarzałoby ryzyko porażenia prądem. Przykładem zastosowania tych norm może być instalacja zabezpieczeń różnicowoprądowych w budynkach mieszkalnych. Wysokiej jakości zabezpieczenia są niezbędne, aby zminimalizować ryzyko porażenia i pożaru, co jest kluczowe dla bezpieczeństwa użytkowników. Ponadto, regularne kontrole i testy tych zabezpieczeń są zalecane w celu upewnienia się, że działają one prawidłowo, co jest zgodne z praktykami utrzymania bezpieczeństwa elektrycznego.

Pytanie 28

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Pracownia szkolna
B. Plac budowy
C. Warsztat sprzętu RTV
D. Laboratorium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 29

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Opornik
B. Kondensator
C. Bezpiecznik silnikowy
D. Wyłącznik różnicowoprądowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensator jest niezbędnym elementem dla silnika indukcyjnego trójfazowego zasilanego napięciem jednofazowym, ponieważ umożliwia on utworzenie sztucznego przesunięcia fazowego. Silnik indukcyjny trójfazowy wymaga trzech faz zasilania do prawidłowego działania, a zasilanie jednofazowe dostarcza tylko jedną. Dodanie kondensatora do obwodu silnika pozwala na wytworzenie dodatkowej fazy, co z kolei umożliwia rozwinięcie momentu obrotowego i rozpoczęcie pracy silnika. W praktyce zastosowanie kondensatorów jest powszechne w układach, gdzie konieczne jest zasilanie silników trójfazowych z jednofazowych źródeł energii, na przykład w małych warsztatach czy w domach jednorodzinnych. Warto również zaznaczyć, że przy doborze kondensatora należy kierować się jego pojemnością, która powinna być odpowiednia do konkretnego silnika, aby zapewnić optymalne parametry pracy oraz uniknąć uszkodzenia urządzenia. Dobre praktyki wskazują na konieczność stosowania kondensatorów o odpowiedniej klasie i znamionach, aby zapewnić długotrwałą i bezpieczną pracę silnika.

Pytanie 30

Jaki jest cel uziemienia ochronnego w instalacjach elektrycznych?

A. Zabezpieczenie ludzi przed porażeniem elektrycznym
B. Redukcja zużycia energii elektrycznej w instalacjach elektrycznych
C. Poprawa jakości sygnału w instalacjach telekomunikacyjnych
D. Zwiększenie mocy znamionowej urządzeń elektrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uziemienie ochronne ma na celu przede wszystkim zabezpieczenie ludzi przed porażeniem elektrycznym, co jest jednym z najważniejszych aspektów bezpieczeństwa w instalacjach elektrycznych. W praktyce oznacza to, że obudowy urządzeń elektrycznych są połączone z ziemią, co umożliwia szybkie odprowadzenie prądu w przypadku zwarcia lub uszkodzenia izolacji. Dzięki temu, jeżeli np. przewód fazowy zetknie się z metalową obudową urządzenia, prąd popłynie do ziemi, a nie przez ciało człowieka, co znacząco zmniejsza ryzyko porażenia. Takie uziemienie jest wymagane przez normy bezpieczeństwa elektrycznego, takie jak PN-IEC 60364. W skrócie, uziemienie ochronne działa jako środek zapobiegawczy, który minimalizuje ryzyko wypadków i zwiększa ogólne bezpieczeństwo użytkowników instalacji elektrycznych. Dodatkowo, uziemienie ochronne pomaga w stabilizacji napięcia sieci i eliminuje potencjalne różnice napięcia, co jest kluczowe w utrzymaniu właściwego działania urządzeń elektrycznych. To nie tylko praktyka, ale też standard w branży, który musi być przestrzegany, by zapewnić bezpieczne i efektywne działanie instalacji.

Pytanie 31

Obwód typu SELV powinien być zasilany z sieci energetycznej poprzez

A. transformator bezpieczeństwa
B. rezystor w układzie szeregowym
C. dzielnik napięcia
D. autotransformator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformator bezpieczeństwa jest kluczowym elementem zasilania obwodów SELV (Separated Extra Low Voltage), który zapewnia izolację i bezpieczeństwo użytkowników. Takie zasilanie charakteryzuje się niskim napięciem, co minimalizuje ryzyko porażenia prądem oraz innych niebezpieczeństw. Transformator bezpieczeństwa działa poprzez separację obwodu niskonapięciowego od sieci zasilającej, dzięki czemu nie ma bezpośredniego połączenia ze źródłem wysokiego napięcia. Przykładem zastosowania transformatorów bezpieczeństwa mogą być systemy oświetlenia w obiektach użyteczności publicznej, gdzie zapewnia się wysokie bezpieczeństwo, zwłaszcza w miejscach narażonych na kontakt z wodą, takich jak łazienki czy baseny. Zastosowanie transformatora bezpieczeństwa jest zgodne z normami, takimi jak IEC 60364 oraz dyrektywami Unii Europejskiej, które podkreślają znaczenie stosowania urządzeń zapewniających bezpieczeństwo elektryczne. Dzięki tym rozwiązaniom można znacząco zredukować ryzyko wypadków związanych z elektrycznością.

Pytanie 32

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. C10
B. B20
C. B16
D. C16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'B16' jest prawidłowa, ponieważ dotyczy wyłącznika, który spełnia wymogi samoczynnego wyłączenia zasilania w przypadku uszkodzenia. W przypadku instalacji o napięciu 230 V, zasilanej z sieci TN-S, ważne jest, aby wyłącznik miał odpowiednią wartość prądową oraz aby czas zadziałania był krótki, co pozwoli na zabezpieczenie osób przed porażeniem prądem. Zgodnie z normą PN-EN 61008-1, dla instalacji o impedancji pętli zwarcia wynoszącej 2,5 Ω, maksymalny czas zadziałania wyłącznika powinien wynosić 0,4 sekundy. Wyłącznik typu B16, charakteryzujący się prądem znamionowym 16 A, jest w stanie skutecznie zadziałać w tym czasie, co czyni go odpowiednim do ochrony przed porażeniem. Przykładowo, w domowych instalacjach elektrycznych często stosuje się wyłączniki B16 do zabezpieczenia obwodów oświetleniowych lub gniazd zasilających, co dodatkowo wspiera bezpieczeństwo użytkowników.

Pytanie 33

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 4 lata
B. 1 rok
C. 3 lata
D. 5 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 34

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zwiększenie prędkości obrotowej wirnika silnika
B. Zmniejszenie prędkości obrotowej wirnika silnika
C. Nawrót wirnika silnika
D. Uszkodzenie wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 35

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. cewka stycznika działa prawidłowo
B. przewód neutralny jest odłączony
C. cewka stycznika jest uszkodzona
D. przewód fazowy jest odłączony

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji cewki stycznika wynoszący 0 Ω jednoznacznie wskazuje na zwarcie w tej cewce, co sugeruje jej uszkodzenie. W praktyce, cewka stycznika jest elementem wykonawczym, który za pomocą pola elektromagnetycznego kontroluje włączanie i wyłączanie obwodów elektrycznych. W przypadku, gdy wartość rezystancji cewki wynosi zero, oznacza to, że nie ma oporu dla przepływu prądu, co jest typowym objawem uszkodzenia. Stosując się do normy IEC 60204-1, która reguluje wymogi dotyczące bezpieczeństwa maszyn, należy regularnie kontrolować stan elementów sterujących, aby zapewnić ich prawidłowe funkcjonowanie i unikać sytuacji, które mogą prowadzić do awarii całego systemu. Przykładowo, w zastosowaniach przemysłowych, gdzie styczniki sterują silnikami, uszkodzenie cewki może prowadzić do poważnych problemów operacyjnych, jak zatrzymanie produkcji. Dlatego ważne jest, aby po zidentyfikowaniu takiej usterki, niezwłocznie przeprowadzić wymianę cewki na nową, aby przywrócić pełną funkcjonalność układu.

Pytanie 36

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zbyt wysoka temperatura uzwojeń
B. Przepalony bezpiecznik topikowy w jednej z faz
C. Zwarcie w obwodzie wirnika
D. Zadziałanie przekaźnika termicznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 37

W miejscu pracy, gdzie wykonywana jest naprawa urządzenia grzewczego, działają równocześnie elektrycy oraz hydraulicy. Jeśli instalacja elektryczna urządzenia została odłączona od zasilania za pomocą głównego odłącznika, który znajduje się w innym pomieszczeniu niż naprawiane urządzenie, to aby zabezpieczyć się przed niezamierzonym włączeniem napięcia, należy

A. użyć dwóch kłódek do zablokowania odłącznika w pozycji otwartej, każdą z nich zakładając osobno przez różne zespoły pracowników
B. zablokować odłącznik w pozycji otwartej kłódką założoną przez zespół elektryków
C. pozostawić odłącznik w pozycji otwartej bez blokady, ale umieścić obok niego tabliczkę ostrzegawczą o zakazie włączania napięcia
D. zablokować odłącznik w pozycji otwartej kłódką założoną przez ekipę hydraulików

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, w której zastosowano dwie kłódki do zablokowania odłącznika w stanie otwartym, jest prawidłowa, ponieważ w sytuacji, gdy w jednym miejscu pracują elektrycy i hydraulicy, konieczne jest zapewnienie maksymalnego bezpieczeństwa. Blokowanie odłącznika za pomocą kłódek, które są zakładane przez każdą z grup pracowników, jest zgodne z zasadami blokady i wyłączania (Lockout-Tagout - LOTO), które są kluczowe w zarządzaniu ryzykiem w miejscu pracy. Takie działanie gwarantuje, że żadna grupa nie może włączyć napięcia bez wiedzy drugiej grupy, a tym samym minimalizuje ryzyko porażenia prądem w trakcie naprawy. Przykładem zastosowania tej procedury jest sytuacja, w której hydraulik wykonuje prace przy rurach zasilających, podczas gdy elektryk zajmuje się instalacją elektryczną. Zastosowanie podwójnej blokady zapewnia, że obie grupy muszą współpracować, aby zdjąć blokadę, co zwiększa bezpieczeństwo i skuteczność. Tego typu praktyki są normą w branży, a ich stosowanie jest regulowane przez przepisy BHP oraz normy OSHA, co podkreśla ich znaczenie w codziennym funkcjonowaniu zakładów pracy.

Pytanie 38

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Zarządzanie czasem pracy
B. Włączanie i wyłączanie
C. Przeglądy wymagające demontażu
D. Oględziny wymagające demontażu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 39

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
C. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 40

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 66
B. IP 44
C. IP 22
D. IP 00

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IP 44 to dobry wybór. Oznacza, że osprzęt jest odporny na ciało stałe, które jest większe niż 1 mm, i nie przepuszcza wody. To sprawia, że nadaje się do miejsc, gdzie jest więcej wilgoci, jak w łazienkach czy kuchniach. W praktyce oznacza to, że możesz używać tego osprzętu tam, gdzie jest para wodna, kurz lub inne zanieczyszczenia. W pomieszczeniach przemysłowych, gdzie produkuje się dużo pyłu, IP 44 też się sprawdzi. Nasze normy, czyli IEC 60529, mówią, że IP 44 to dobry poziom ochrony, co jest istotne, żeby było bezpiecznie i trwało to dłużej. Ale jeśli potrzebujesz czegoś lepszego, to niektóre sytuacje mogą wymagać wyższych stopni ochrony, jak IP 54 czy IP 66. Jednak zazwyczaj IP 44 da radę w standardowych warunkach.