Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 maja 2025 21:33
  • Data zakończenia: 17 maja 2025 21:41

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. indukcyjnego
B. piezoelektrycznego
C. refleksyjnego
D. ultradźwiękowego
Pomiar poziomu cieczy przezroczystej i nieprzewodzącej przy użyciu czujników refleksyjnych to nie najlepszy pomysł. Dlaczego? Bo te urządzenia działają na zasadzie odbicia światła, a kiedy mamy do czynienia z przezroczystymi cieczami, takimi jak woda, światło po prostu przechodzi przez medium. To prowadzi do tego, że mamy bardzo małe odbicie, więc pomiary są mało dokładne. Czujniki indukcyjne z kolei są stworzone do wykrywania materiałów przewodzących prąd, a więc do nieprzewodzących cieczy się zupełnie nie nadają. Ich użycie ogranicza się głównie do pomiarów poziomu metalowych obiektów, co zupełnie nie działa w przypadku cieczy. A czujniki piezoelektryczne, chociaż są w różnych aplikacjach, to nie sprawdzają się do pomiaru poziomu cieczy - działają na zasadzie mierzenia ciśnienia, a ich zastosowanie w przypadku przezroczystych cieczy może prowadzić do błędów, bo mają inne właściwości fizyczne. Czasem użytkownicy mogą myśleć, że te czujniki są do wszystkiego, a to nieprawda. Kluczowe jest zrozumienie, co mierzymy i dostosowanie technologii pomiarowej do właściwości cieczy, bo to naprawdę ważne w inżynierii pomiarowej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który z elementów tyrystora ma funkcję sterowania?

A. Źródło
B. Katoda
C. Anoda
D. Bramka
W kontekście działania tyrystora, źródło, anoda i katoda pełnią fundamentalne role, jednak żadna z tych opcji nie jest odpowiedzialna za funkcję sterującą. Źródło, w którym podawane jest zasilanie, dostarcza energię do układu, ale nie ma wpływu na przełączanie stanu tyrystora. Anoda i katoda są terminalami, przez które przepływa prąd, jednak to brak sygnału sterującego z bramki decyduje o tym, czy tyrystor pozostaje w stanie nieprzewodzącym czy przewodzącym. Typowym błędem myślowym jest mylenie pojęcia przewodzenia prądu z jego inicjowaniem. Przewodzenie zaczyna się dopiero po zastosowaniu sygnału na bramkę, co czyni ją kluczowym elementem do kontrolowania pracy tyrystora. Zrozumienie roli bramki jest fundamentem dla projektowania układów elektronicznych wykorzystujących tyrystory, dlatego każdy inny element układu nie ma możliwości samodzielnego włączenia lub wyłączenia przewodzenia. Właściwa konfiguracja układów z tyrystorami wymaga znajomości ich charakterystyk oraz umiejętności stosowania ich w praktycznych aplikacjach, takich jak sterowanie silnikami czy regulacja napięcia.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20

A. 3 urządzenia.
B. 1 urządzenie.
C. 2 urządzenia.
D. 4 urządzenia.
Wybór niewłaściwej odpowiedzi może wynikać z błędnego zrozumienia liczby dostępnych interfejsów w module CSM 1277. Istnieje mylne przekonanie, że wszystkie 4 interfejsy są dostępne do podłączenia urządzeń, co prowadzi do wniosków, że można podłączyć np. 4 lub 2 urządzenia. To podejście ignoruje kluczowy fakt, że jeden interfejs jest zarezerwowany dla połączenia z sterownikiem. Zatem, w przypadku wyboru odpowiedzi wskazującej na większą liczbę urządzeń, np. 4, użytkownik pomija fundamentalną zasadę dotycząca alokacji zasobów w sieciach. Warto również zauważyć, że niektóre odpowiedzi, takie jak 1 urządzenie, wskazują na zbyt restrykcyjne podejście do zasobów dostępnych w module. Dobrą praktyką jest zawsze mieć na uwadze, ile interfejsów jest faktycznie dostępnych po uwzględnieniu połączeń z innymi urządzeniami. Na przykład w sytuacjach, gdzie zasoby sieciowe są ograniczone, projektanci muszą podejmować decyzje oparte na rzeczywistej dostępności portów, aby uniknąć problemów z komunikacją oraz przeładowaniem sieci. W związku z tym, kluczowe jest nie tylko zapoznanie się z parametrami technicznymi, ale także zrozumienie zasad działania sieci i ich struktury. Tylko w ten sposób można skutecznie projektować i wdrażać systemy, które będą funkcjonowały zgodnie z oczekiwaniami i wymaganiami branżowymi.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s

A. z opóźnieniem czasowym.
B. impulsowo.
C. z ograniczeniem czasowym.
D. warunkowo.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 13

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Obniżyć temperaturę koła pasowego i wału
B. Podgrzać koło pasowe i schłodzić wał
C. Podgrzać wał i schłodzić koło pasowe
D. Podgrzać koło pasowe oraz wał
Rozgrzanie koła pasowego i schłodzenie wału to technika stosowana w celu uzyskania odpowiedniego pasowania między tymi elementami. Kiedy koło pasowe jest podgrzewane, jego średnica zwiększa się, co pozwala na jego łatwe nałożenie na wał. Z kolei schłodzenie wału powoduje jego kurczenie, co dodatkowo ułatwia proces montażu. Po zakończeniu procesu chłodzenia wał wraca do pierwotnych wymiarów, a koło pasowe, które stygło, kurczy się, mocno przylegając do wału. Tego typu pasowanie nazywa się pasowaniem cieplnym i jest szeroko stosowane w przemyśle, zwłaszcza w przypadku montażu wałów napędowych i innych elementów ruchomych. Przykładem praktycznego zastosowania tej metody jest montaż kół pasowych w silnikach spalinowych, gdzie precyzyjne dopasowanie elementów ma kluczowe znaczenie dla ich wydajności oraz żywotności. Warto także zauważyć, że ta procedura powinna być przeprowadzana zgodnie z zaleceniami producentów, aby zapewnić optymalne efekty oraz uniknąć uszkodzenia elementów.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. adsorpcyjny
B. poprzez schładzanie
C. poprzez podgrzewanie
D. absorcyjny
Wybór odpowiedzi 'przez ogrzewanie' odnosi się do innego typu procesów, gdzie ciepło jest wykorzystywane do zwiększenia zdolności powietrza do wchłaniania wilgoci. Ogrzewanie powietrza upraszcza jego właściwości, ale nie eliminuje wilgoci, a jedynie zmienia jej stan. Z kolei 'przez oziębianie' to metoda, która polega na obniżeniu temperatury powietrza, co skutkuje skraplaniem wilgoci, ale nie jest to proces osuszania na poziomie absorpcyjnym. Oziębianie może prowadzić do kondensacji pary wodnej, ale wymaga dodatkowych środków, by ta skondensowana woda została usunięta. Wreszcie, 'adsorpcyjne' odnosi się do procesu, w którym cząsteczki wody przylegają do powierzchni materiału osuszającego, co jest różne od absorpcji, gdzie woda jest wchłaniana do wnętrza materiału. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego projektowania systemów osuszających. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych odpowiedzi, obejmują mylenie terminologii oraz niedostateczne zrozumienie mechanizmów działania środków osuszających.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
B. po poinformowaniu osoby przełożonej
C. po wezwaniu pomocy medycznej
D. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 19

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tachometru
B. termometru
C. tensometru
D. pirometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę optyczną
B. Zbierają energię w polu elektrycznym
C. Tworzą przeszkodę elektryczną
D. Zbierają energię w polu magnetycznym
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16

A. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. otwiera i zamyka przepływ oleju.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. steruje kierunkiem przepływu oleju.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji urządzeń hydraulicznych. Na przykład, odpowiedzi sugerujące, że urządzenie steruje kierunkiem przepływu oleju, otwiera i zamyka przepływ, lub utrzymuje stałe ciśnienie, dotyczą innych typów urządzeń, takich jak zawory. Zawory kierunkowe są używane do zmiany kierunku przepływu medium, a zawory ciśnieniowe regulują ciśnienie w systemie, ale nie są w stanie generować strumienia oleju. Typowy błąd w myśleniu polega na myleniu funkcji pompy z funkcją zaworów, co jest powszechnym problemem wśród osób uczących się hydrauliki. Kluczowe jest zrozumienie, że pompy służą do przemieszczania oleju, a nie jego regulacji. Aby poprawnie rozwiązywać takie zadania, warto zwrócić uwagę na parametry techniczne podawane w opisach urządzeń oraz na ich zastosowanie w praktyce. Znajomość typów urządzeń oraz ich specyficznych ról w układzie hydraulicznym jest fundamentalna dla zrozumienia i efektywnego wykorzystania technologii hydraulicznej.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRT - dwie osie obrotowe i jedną oś prostoliniową
B. RTT - jedną oś obrotową i dwie osie prostoliniowe
C. TTT - trzy osie prostoliniowe
D. RRR - trzy osie obrotowe
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Falownik
B. Chopper
C. Prostownik
D. Stycznik
Falownik jest urządzeniem, które konwertuje stałe napięcie na napięcie przemienne o regulowanej częstotliwości i amplitudzie. Dzięki temu pozwala na precyzyjne sterowanie prędkością obrotową silnika indukcyjnego, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak napędy elektryczne w robotyce, systemach HVAC czy transportery taśmowe. W praktyce, falowniki umożliwiają oszczędność energii poprzez dostosowanie mocy do rzeczywistych potrzeb, co jest zgodne z normami wydajności energetycznej. Dodatkowo, falowniki są zgodne z normami IEC i są szeroko stosowane w automatyzacji procesów przemysłowych, co potwierdza ich istotność w nowoczesnych rozwiązaniach inżynieryjnych. Warto zauważyć, że falowniki mogą również pełnić funkcje zabezpieczeń, takie jak ochrona przed przeciążeniem, co zwiększa trwałość systemów napędowych. W kontekście przemysłowym, ich zastosowanie prowadzi do znacznych oszczędności operacyjnych oraz zwiększenia efektywności procesów produkcyjnych.

Pytanie 28

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. zawór nadążny
B. tensometr
C. przepływomierz
D. manometr
Chociaż tensometry, zawory nadążne i przepływomierze pełnią ważne funkcje w systemach hydraulicznych, nie są one odpowiednie do bezpośredniego pomiaru ciśnienia. Tensometry służą do mierzenia odkształceń materiałów, co ma zastosowanie w kontrolach strukturalnych, ale nie dostarczają bezpośrednich informacji o ciśnieniu w układzie hydraulicznym. Z kolei zawory nadążne są mechanizmami regulacyjnymi, które kontrolują przepływ płynów, ale nie są urządzeniami pomiarowymi i nie mogą samodzielnie dostarczać danych o ciśnieniu. Przepływomierze natomiast mierzą przepływ cieczy lub gazu i dostarczają informacji o ilości medium przechodzącego przez dany punkt, ale nie informują o ciśnieniu, które jest kluczowym aspektem w monitorowaniu stanu układów hydraulicznych. Zrozumienie, jakie urządzenia służą do konkretnego zastosowania, jest kluczowe dla efektywności i bezpieczeństwa operacji w inżynierii hydraulicznej. Typowym błędem jest mylenie funkcji tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu oraz potencjalnych awarii systemów hydraulicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. klucza
B. wkrętaka
C. szczypiec
D. lutownicy
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku.
B. Dokładność pozycjonowania.
C. Liczba wrzecion.
D. Najwyższa prędkość ruchu dla poszczególnych osi.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 33

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0 V
B. 0,3 V
C. 1,4 V
D. 0,6 V
Wartości spadku napięcia na złączu półprzewodnikowym mogą być mylnie interpretowane, co prowadzi do błędnych wniosków w analizie odpowiedzi. Odpowiedzi takie jak 0,6 V i 0,3 V mogą wynikać z niepełnego zrozumienia działania diod oraz ich właściwości. Spadek napięcia 0,6 V odnosi się do pojedynczego złącza p-n, ale w kontekście podwójnego złącza opartego na krzemie, który składa się z dwóch takich złącz, wartość ta powinna być podwojona, co daje około 1,4 V. Inna odpowiedź, 0 V, sugeruje brak przewodzenia, co jest niemożliwe dla diody w odpowiednich warunkach, gdyż złącze p-n przewodzi prąd po osiągnięciu minimalnego napięcia. Ponadto, spadek napięcia 1,4 V jest typowy dla diod, gdyż przy takim napięciu obie diody w złączu są aktywne. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, obejmują ignorowanie zasad dotyczących szeregowego i równoległego połączenia złącz oraz niezrozumienie, w jaki sposób diody wpływają na spadek napięcia. Zrozumienie tych aspektów jest kluczowe w zastosowaniach takich jak projektowanie obwodów elektronicznych czy analiza układów półprzewodnikowych. Wiedza ta pomoże w lepszym zrozumieniu zachowań różnych komponentów elektronicznych oraz ich interakcji w obwodach.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
B. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
C. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
D. wylutowania uszkodzonej diody oraz wlutowania nowej diody
Wiele błędnych odpowiedzi opiera się na niedostatecznym zrozumieniu całego procesu wymiany diody prostowniczej. Na przykład, niektóre odpowiedzi sugerują wycięcie uszkodzonej diody, co może być zrozumiane jako metoda na szybkie usunięcie elementu, ale nie uwzględniają one kluczowego etapu, jakim jest wylutowanie. Proces wylutowania jest zdecydowanie bardziej zalecany, ponieważ pozwala to na bezpieczne usunięcie diody bez uszkadzania ścieżek na płycie. Oczyszczenie otworów jest również kluczowym krokiem, którego brakuje w wielu odpowiedziach. Pozwoli to na uzyskanie pewnych połączeń, co jest krytyczne dla niezawodności w zastosowaniach elektronicznych. Wiele osób może pominąć etap formowania i pobielenia końcówek nowej diody, co prowadzi do ryzyka złego połączenia. Bez tych kroków, nowa dioda może nie działać poprawnie lub może ulec uszkodzeniu w krótkim czasie. W praktyce, nieprzestrzeganie tych szczegółowych kroków może prowadzić do poważnych problemów z funkcjonalnością urządzenia, co z kolei może generować dodatkowe koszty związane z naprawami i konserwacją. Dlatego istotne jest, aby każdy, kto pracuje z elektroniką, zrozumiał znaczenie przestrzegania pełnego procesu wymiany elementów oraz stosowania ustalonych standardów, aby unikać typowych błędów i zapewnić długotrwałą niezawodność urządzeń.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. wkrętaka płaskiego
B. wkrętaka krzyżowego
C. klucza płaskiego
D. klucza imbusowego
Wkrętak płaski to najlepsze narzędzie do demontowania sterowników PLC z szyny DIN. Dlaczego? Bo te sterowniki mają często specjalne zatrzaski, które można łatwo zwolnić właśnie tym wkrętakiem. Jak to robić? Wystarczy delikatnie wsunąć końcówkę wkrętaka w szczelinę zatrzasku i lekko pchnąć, żeby go odczepić. To naprawdę działa. Używanie wkrętaka płaskiego jest też zgodne z zasadami bezpieczeństwa, bo pozwala na dokładne działanie bez ryzyka uszkodzenia zarówno sterownika, jak i szyny. W automatyce przemysłowej, jak wiadomo, odpowiednie narzędzia to podstawa, żeby urządzenia działały długo i aby nie wydawać kasy na naprawy. No i nie zapominajmy, że wkrętaki płaskie są mega uniwersalne. Można je stosować nie tylko do demontażu, ale też do instalacji i konserwacji różnych sprzętów elektrycznych. Naprawdę warto mieć je w swoim warsztacie, bo ułatwiają pracę.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Podczas użytkowania urządzenia laserowego do obróbki metali, ryzyko dla zdrowia pracownika może wynikać między innymi z

A. zanieczyszczenia pyłem wdychanego powietrza
B. hałasu generowanego w trakcie obróbki
C. zanieczyszczenia powietrza wdychanego oparami metalu
D. odprysków cząsteczek metalu
W analizie zagrożeń w czasie eksploatacji urządzeń laserowych do cięcia metali, różne warianty odpowiedzi wskazują na różne rodzaje potencjalnych zagrożeń, jednak nie wszystkie z nich są związane bezpośrednio z poważnymi konsekwencjami dla zdrowia. Zanieczyszczenie wdychanego powietrza pyłem, chociaż istotne, zazwyczaj w przypadku laserowego cięcia nie przekłada się na tak dramatyczne skutki zdrowotne jak opary metalu. Wysoka temperatura generowana podczas cięcia prowadzi do utleniania metalu i tworzenia się toksycznych oparów, co jest znacznie bardziej niebezpieczne. Emisja hałasu w czasie obróbki, choć sama w sobie jest uciążliwa i może prowadzić do uszkodzenia słuchu, niekoniecznie stanowi bezpośrednie zagrożenie zdrowia w kontekście ekspozycji na substancje chemiczne. Odpryski drobin metalu, mimo że mogą powodować urazy mechaniczne, nie mają tak istotnego wpływu na zdrowie w kontekście zagrożeń chemicznych związanych z oparami. Często mylące mogą być również postrzegane zagrożenia związane z hałasem i odpryskami, które choć istotne, nie są głównym źródłem zagrożeń zdrowotnych w tym kontekście, co prowadzi do błędnych konkluzji, że dotyczą one zdrowia na równi z oparami metalu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.