Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 12:51
  • Data zakończenia: 22 maja 2025 13:04

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. termistor
C. wyłącznik silnikowy
D. przekaźnik termiczny
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 2

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zwiększenia lepkości oleju
B. zwiększenia efektywności układu
C. zmniejszenia lepkości oleju
D. zmniejszenia objętości oleju
Jak temperatura oleju w hydraulice rośnie, to jego lepkość spada. Fajnie, bo to zjawisko można zobaczyć nie tylko w olejach hydraulicznych, ale i w innych cieczach. Po prostu, im wyższa temperatura, tym cząsteczki oleju mają więcej energii i szybciej się poruszają. W praktyce, olej staje się bardziej płynny, co znaczy, że lepiej krąży w układzie hydraulicznym. Dzięki mniejszej lepkości łatwiej pokonywane są opory, co sprawia, że wszystko działa lepiej. W branży hydraulicznej dobrze jest pilnować temperatury oleju. Jak pracuje długo w wysokich temperaturach, to warto pomyśleć o wymianie lub użyciu innego oleju, który lepiej znosi upały. Te wszystkie standardy, jak ISO 4406 dotyczący czystości oleju, są mega ważne, by olej zachował swoje właściwości w trudniejszych warunkach.

Pytanie 3

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. exe
B. bmp
C. ini
D. sys
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 4

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. NAND
B. AND
C. NOR
D. OR
Wybór odpowiedzi innej niż AND może wynikać z nieporozumienia dotyczącego różnych funkcji logicznych i ich zastosowań. Funkcja NAND, oznaczająca negację AND, daje na wyjściu wartość fałsz (0) tylko wtedy, gdy wszystkie wejścia mają wartość prawda (1). Użytkownicy mogą mylić te dwie funkcje, szczególnie gdy nie są świadomi różnicy między negacją a koniunkcją. Funkcja OR działa w odwrotny sposób i daje wartość prawda (1), jeśli przynajmniej jedno z wejść jest prawdą. Często można spotkać się z sytuacjami, gdzie osoby przypisują funkcję OR do bloków, które są w rzeczywistości zaprojektowane do działania jako AND, co prowadzi do błędnych wniosków w projektowaniu obwodów. Z kolei funkcja NOR jest negacją OR i również nie jest zgodna z przedstawionym rysunkiem, ponieważ wymaga, aby wszystkie wejścia były fałszem (0), aby wyjście było prawdą (1). Typowym błędem w myśleniu jest zakładanie, że wszystkie bloki muszą reprezentować funkcje, które są intuicyjnie zrozumiałe, podczas gdy w rzeczywistości mogą one być bardziej złożone. W kontekście projektowania układów logicznych, zrozumienie różnic między tymi funkcjami jest kluczowe do osiągnięcia poprawnych wyników i niezawodności działania systemów elektronicznych.

Pytanie 5

Jaką rolę pełni multiplekser?

A. Kodowanie sygnałów na wejściach
B. Porównywanie sygnałów podawanych na wejścia
C. Przesyłanie danych z jednego wejścia do wybranego wyjścia
D. Przesyłanie danych z wybranego wejścia na jedno wyjście
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 6

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 51,0 kW
B. 85,0 kW
C. 5,1 kW
D. 8,5 kW
Obliczanie mocy hydraulicznej siłownika wymaga zrozumienia podstawowych wzorów oraz jednostek, co często prowadzi do błędnych interpretacji wśród osób mniej doświadczonych. Na przykład, przyjęcie mocy 5,1 kW bywa wynikiem nieprawidłowego przeliczenia ciśnienia lub natężenia przepływu. Niektórzy mogą błędnie zakładać, że ilość energii zużytej przez siłownik jest po prostu suma ciśnienia i przepływu bez uwzględnienia jednostek, co prowadzi do mylnych konkluzji. Z kolei odpowiedź 51,0 kW może wynikać z błędnego pomnożenia ciśnienia przez natężenie bez właściwej konwersji jednostek, co jest kluczowym krokiem w tego typu obliczeniach. Często w takich błędach ludzie zapominają, że moc hydrauliczna jest inna od mocy mechanicznej, co może prowadzić do nieporozumień przy projektowaniu systemów hydraulicznych. Ostatecznie, ignorując odpowiednie konwersje jednostek oraz właściwe zastosowanie wzorów, można nadmiernie ocenić moc siłownika, co skutkuje niewłaściwym doborem komponentów i potencjalnymi problemami w operacyjności systemu hydraulicznego. W związku z tym, kluczowe jest, aby inżynierowie stosowali się do odpowiednich norm i dobrych praktyk, takich jak te zawarte w normach ISO oraz normach branżowych dotyczących hydrauliki, aby uniknąć takich pułapek w obliczeniach.

Pytanie 7

Olej hydrauliczny klasy HL to olej

A. syntetyczny
B. mineralny posiadający właściwości antykorozyjne
C. mineralny bez dodatków uszlachetniających
D. o polepszonych parametrach lepkości i temperatury
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 8

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Pirometr
B. Przepływomierz powietrza
C. Enkoder
D. Mostek tensometryczny
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 9

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. smarownica, filtr powietrza, manometr
B. filtr powietrza, zawór redukcyjny z manometrem, smarownica
C. manometr, filtr powietrza, smarownica
D. smarownica, filtr powietrza, zawór redukcyjny, manometr
Odpowiedź "filtr powietrza, zawór redukcyjny z manometrem, smarownica" jest prawidłowa, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla sprawności i bezpieczeństwa całego systemu przygotowania powietrza. Filtr powietrza powinien być zainstalowany jako pierwszy, ponieważ jego główną rolą jest usunięcie zanieczyszczeń i wilgoci z powietrza, co zapobiega ich przedostawaniu się do kolejnych komponentów systemu. Zawór redukcyjny, wyposażony w manometr, reguluje ciśnienie powietrza, co jest niezbędne do zapewnienia optymalnych warunków pracy dla maszyn i urządzeń odbierających sprężone powietrze. Na końcu montujemy smarownicę, która smaruje ruchome elementy urządzeń zasilanych sprężonym powietrzem, a jej umiejscowienie za zaworem redukcyjnym zapewnia, że smar znajduje się pod odpowiednim ciśnieniem. Taka kolejność montażu jest zgodna z najlepszymi praktykami branżowymi, co pozwala na długotrwałe i niezawodne działanie całego układu.

Pytanie 10

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. jednofazowym symetrycznym 2 x 115 V
B. stałym 24 V
C. trójfazowym 230 V/400 V
D. stałym 110 V
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 11

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (230)10
B. (255)10
C. (254)10
D. (231)10
Podczas rozwiązywania tego typu zadań kluczowe jest zrozumienie, jak działa konwersja między systemami liczbowymi. Odpowiedzi, które nie prowadzą do wyniku (231)10, mogą wynikać z błędów w obliczeniach lub mylnych założeń. Na przykład, zinterpretowanie wartości binarnej jako reprezentacji w innym systemie liczbowym, takim jak dziesiętny, bez odpowiedniego przeliczenia, prowadzi do niepoprawnych wyników. Zwracając uwagę na odpowiedzi (230)10, (255)10 oraz (254)10, widzimy, że każdy z tych wyników różni się od prawidłowego w istotny sposób. Może to być skutkiem pomyłki w dodawaniu wartości poszczególnych bitów lub pominięcia niektórych z nich. Na przykład, w przypadku odpowiedzi na (255)10, można zauważyć, że osoba rozwiązująca pytanie mogła nie uwzględnić, że wszystkie bity są w rzeczywistości aktywne i interpretuje samą ilość bitów 1 jako maksymalną wartość 8-bitowego systemu binarnego, co daje 255. Wartości te są krytyczne w kontekście projektowania systemów cyfrowych, gdzie precyzyjna konwersja wartości jest niezbędna do prawidłowego działania urządzeń. Dlatego tak ważne jest, aby szczegółowo zrozumieć proces konwersji i zastosować go w praktyce, aby unikać tych powszechnych pułapek myślowych.

Pytanie 12

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. śruby mikrometrycznej
B. przymiaru średnicowego
C. mikroskopu technicznego
D. przymiaru kreskowego
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 13

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. chwytania elementu z odpowiednią siłą
B. ochrony ramienia robota przed zderzeniem z operatorem
C. ochrony ramienia robota przed przeciążeniem
D. umieszczania elementu w odpowiedniej lokalizacji
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 14

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
B. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
C. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
D. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
W przypadku krwotoku zewnętrznego, kluczowe jest podjęcie odpowiednich działań, aby zminimalizować utratę krwi i wspierać dalsze leczenie. Przygotowanie jałowego opatrunku i mocne uciskanie go na ranie to prawidłowa metoda postępowania, ponieważ ucisk na ranę pomaga zatrzymać krwawienie. Takie działanie jest zgodne z zasadami pierwszej pomocy, które zalecają stosowanie ucisku w miejscach krwawienia, zwłaszcza w przypadku krwotoków tętniczych i żylnych. W praktyce, zastosowanie jałowego opatrunku eliminuje ryzyko zakażenia, a mocne uciskanie sprzyja tworzeniu się skrzepu i stabilizuje ranę. Ważne jest również, aby nie zakładać opaski uciskowej powyżej rany, ponieważ może to prowadzić do dalszych uszkodzeń tkanek. W sytuacji, gdy krwawienie nie ustępuje, należy kontynuować ucisk oraz wezwać pomoc medyczną. Ponadto, znajomość techniki użytku opatrunków i ich właściwego stosowania w praktycznych sytuacjach jest niezbędna dla każdego, kto może być narażony na sytuacje wymagające udzielenia pierwszej pomocy.

Pytanie 15

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. symbolem podwójnego trójkąta z określoną wartością napięcia
B. symbolem kwadratu z określoną wartością napięcia
C. zielonym kolorem z żółtą obręczą
D. napisem "narzędzie bezpieczne"
Stosowanie narzędzi izolowanych w pracy z urządzeniami pod napięciem jest niezwykle istotne dla zapewnienia bezpieczeństwa, jednak nie wszystkie oznaczenia są równoznaczne z właściwym zabezpieczeniem. Odpowiedzi wskazujące na kolor zielony z żółtym pierścieniem, znak kwadratu z wartością napięcia czy napis "narzędzie bezpieczne" nie mają podstaw w powszechnie uznawanych standardach. Narzędzia oznaczone kolorem zielonym z żółtym pierścieniem mogą sugerować, że są one przeznaczone do użytku w określonych warunkach, ale nie dostarczają konkretnej informacji o ich odporności na napięcie, co jest kluczowe w pracy z elektrycznością. Z kolei oznaczenie kwadratu z wartością napięcia może być mylące, ponieważ nie określa ono, czy narzędzie jest rzeczywiście izolowane, a tylko wskazuje na parametry, które mogą być różne w zależności od zastosowania. Ponadto, napis "narzędzie bezpieczne" nie jest standardowym oznaczeniem w branży, co może prowadzić do fałszywego poczucia bezpieczeństwa u użytkowników. Wiele osób myśli, że wystarczy jedynie odpowiedni kolor lub napis, aby zapewnić sobie bezpieczeństwo. Takie myślenie jest błędne, ponieważ bezpieczeństwo w pracy z elektrycznością wymaga dokładnej znajomości specyfikacji narzędzi oraz ich zastosowania. Kluczowe jest, aby operatorzy sprzętu byli świadomi, że tylko narzędzia oznaczone z zachowaniem norm, takich jak podwójny trójkąt z określeniem wartości napięcia, mogą zagwarantować odpowiedni poziom ochrony przed porażeniem elektrycznym.

Pytanie 16

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. lutownicy
B. szczypiec
C. klucza
D. wkrętaka
Wybór narzędzi do podłączania czujników zbliżeniowych do sterownika PLC wymaga znajomości specyfiki zastosowania i odpowiednich praktyk w zakresie instalacji elektrycznych. Odpowiedzi takie jak "lutownica", "szczypce" czy "klucz" są niewłaściwe z kilku powodów. Lutownica jest narzędziem przeznaczonym do łączenia przewodów na stałe przez proces lutowania, co w przypadku czujników zbliżeniowych jest rzadko wymagane, gdyż zazwyczaj korzysta się z połączeń śrubowych, które można łatwo rozłączyć i wymienić w razie potrzeby. Stosowanie lutownicy do połączeń w instalacjach, które mogą wymagać serwisowania, jest niepraktyczne i może prowadzić do uszkodzenia komponentów. Szczypce, z kolei, są narzędziem przeznaczonym do trzymania lub cięcia materiałów, co nie ma zastosowania przy prawidłowym podłączaniu czujników. Użycie szczypiec do manipulacji przewodami może prowadzić do ich uszkodzenia lub niewłaściwego połączenia. Klucz, chociaż przydatny w wielu dziedzinach, jest stosowany głównie do dokręcania śrub o dużym momencie obrotowym, a nie do delikatnych połączeń elektrycznych. Każde z tych narzędzi w kontekście podłączania czujników do PLC wprowadza ryzyko niewłaściwego montażu lub uszkodzenia, co podkreśla znaczenie użycia odpowiednich narzędzi, takich jak wkrętak, w celu zapewnienia solidnych i niezawodnych połączeń w instalacjach automatyki przemysłowej.

Pytanie 17

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. łożyskach ślizgowych
B. hamulcach tarczowych
C. zaworach kulowych
D. łożyskach kulkowych
Wybór hamulców klockowych, zaworów kulowych czy łożysk kulkowych jako odpowiedzi błędnej opiera się na ich zasadach działania, które nie są zgodne z koncepcją smarowania hydrostatycznego. Hamulce klockowe działają na zasadzie tarcia między klockiem a tarczą hamulcową, co nie wymaga smarowania w sposób, jaki ma miejsce w łożyskach ślizgowych. W przypadku hamulców, kluczową rolę odgrywa generowanie siły tarcia, a nie separacja części roboczych. Zawory kulowe wykorzystują kulkę do regulowania przepływu cieczy lub gazu, co również nie ma związku z tworzeniem klina smarnego, a ich działanie opiera się na mechanicznym zamykaniu lub otwieraniu przepływu. Łożyska kulkowe z kolei wykorzystują kulki do rozdzielenia powierzchni, co pozwala na ruch obrotowy, ale opierają się na mechanicznym tarciu oraz smarowaniu, które różni się od hydrostatycznego. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia zasad działania tych mechanizmów. W praktyce smarowanie hydrostatyczne ma zastosowanie wyłącznie w specyficznych aplikacjach, gdzie kluczowe jest unikanie bezpośredniego kontaktu metal-metal oraz redukcja tarcia, co jest typowe dla łożysk ślizgowych. Zrozumienie tych różnic jest istotne dla prawidłowego doboru elementów w systemach mechanicznych.

Pytanie 18

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Powiercanie
B. Wygładzanie
C. Szlifowanie
D. Gratowanie
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 19

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Stacja lutownicza
B. Lutownica z końcówką 'minifala'
C. Lutownica na gorące powietrze z dyszą w kształcie 7x7
D. Rozlutownica
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 20

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. reduktor ciśnienia
B. smarownica
C. sprężarka
D. filtr powietrza
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 21

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Spawanie gazowe
B. Spawanie elektryczne
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 22

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. ST (Structured Text) - tekst strukturalny
C. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
D. FBD (Function Block Diagram) - schemat bloków funkcyjnych
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 23

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Częstościomierz i miernik uniwersalny
B. Generator fali stojącej oraz woltomierz
C. Generator i oscyloskop
D. Amperomierz i oscyloskop
Wybór narzędzi do analizy filtrów pasmowych jest ważny, bo czasem można się pomylić. Amperomierz i oscyloskop przydają się w pomiarze prądu i analizie sygnałów, ale nie wystarczą do określenia parametrów filtrów pasmowych. Amperomierz mierzy tylko prąd, więc nie mówi nic o tym, jak filtr działa w kontekście częstotliwości. Dlatego ważne jest, żeby znać relacje między napięciem a częstotliwością. Z drugiej strony, generator fali stojącej i woltomierz też nie będą dobrym wyborem, bo ten pierwszy nie obsługuje sygnałów o zmiennych częstotliwościach, a to jest kluczowe w analizie filtrów. Miernik uniwersalny, choć może być użyteczny w wielu sytuacjach, nie daje wystarczających informacji o charakterystyce częstotliwościowej. Przez wybór złych narzędzi można przeoczyć ważne aspekty analizy, na przykład pasmo przenoszenia i tłumienie, co może prowadzić do błędnych wniosków o działaniu filtrów. Wiedza o odpowiednich narzędziach jest kluczowa, jeśli chodzi o projektowanie i testowanie układów elektronicznych. Użycie generatora i oscyloskopu w tym kontekście to dobra praktyka.

Pytanie 24

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. wysokim napięciu i dużym prądzie
B. niskim napięciu i dużym prądzie
C. niskim napięciu i małym prądzie
D. wysokim napięciu i małym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 25

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 75 obr/min
B. 7 obr/min
C. 7500 obr/min
D. 750 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 26

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HR
B. HL
C. HG
D. HH
Ciecze hydrauliczne typu HL, HG i HR mocno różnią się od HH i mogą wprowadzać w błąd, jeśli chodzi o zastosowanie. Ciecze HL mają dodatki, które chronią przed korozją i smarują, więc są lepsze tam, gdzie trzeba dbać o elementy przed zużyciem. Gdy są stosowane w warunkach wysokiego ciśnienia i temperatury, ich smarujące właściwości mogą bardzo wpłynąć na żywotność hydrauliki. Jeśli chodzi o ciecze HG, to one są stworzone z myślą o ryzykownych środowiskach, jak przemysł petrochemiczny, gdzie istnieje większe zagrożenie pożarem. Z kolei ciecze HR, też chroniące przed korozją, sprawdzają się w bardziej skomplikowanych układach hydraulicznych, gdzie obciążenia są większe i warunki pracy trudniejsze. Często mylimy się przy wyborze cieczy hydraulicznych, bo nie rozumiemy ich specyficznych potrzeb, dlatego warto znać klasyfikacje i właściwości płynów, żeby dopasować je do wymagań, a takie normy jak ISO 11158 są tu bardzo pomocne.

Pytanie 27

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Panel operatorski HMI
B. Sterownik PLC
C. Przekaźnik programowalny
D. Robot przemysłowy
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w komunikacji pomiędzy urządzeniem mechatronicznym a jego operatorem. Działa jako interfejs, który umożliwia użytkownikowi monitorowanie i kontrolowanie procesów technologicznych w czasie rzeczywistym. Dzięki panelom HMI, operatorzy mogą łatwo odczytywać dane, takie jak temperatura, ciśnienie czy prędkość, a także wprowadzać zmiany w ustawieniach systemu. Przykładem zastosowania panelu HMI może być linia produkcyjna, gdzie operatorzy mogą zarządzać maszynami, przeglądać alarmy oraz dostosowywać parametry produkcji. W kontekście standardów branżowych, panele HMI są zgodne z normami takimi jak ISA-101, które określają zasady projektowania interfejsów użytkownika w systemach sterowania. Wspierają także dobre praktyki w zakresie ergonomii, co wpływa na bezpieczeństwo i efektywność pracy operatorów.

Pytanie 28

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 15 V
B. 5 V
C. 6 V
D. 3 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 29

Zainstalowanie dodatkowych zaworów bezpieczeństwa w systemie zasilającym zbiornik ciśnieniowy?

A. powiększa ryzyko związane z możliwością rozerwania zbiornika
B. ogranicza ryzyko wynikające z możliwości rozerwania zbiornika
C. nie wywiera wpływu na wzrost lub zmniejszenie ryzyka, jakie wynika z możliwości rozerwania zbiornika
D. całkowicie redukuje ryzyko, jakie wiąże się z możliwością rozerwania zbiornika
Moim zdaniem, stwierdzenie, że montaż dodatkowych zaworów bezpieczeństwa nie ma wpływu na ryzyko związane z rozerwaniem zbiornika, jest po prostu błędne. W rzeczywistości brak takich zaworów może prowadzić do niebezpiecznych warunków, bo ciśnienie wewnętrzne zbiornika może urosnąć do niebezpiecznego poziomu. Wiele osób myśli, że sama konstrukcja zbiornika wystarczy, ale nie doceniają roli, jaką odgrywają zawory w kontroli ciśnienia. A to, że zawory eliminują całkowicie ryzyko rozerwania, też jest nieporozumieniem. W końcu, żaden system nie jest w 100% niezawodny, dlatego zawory są tylko częścią całego systemu zabezpieczeń, do którego należy też regularna kontrola i konserwacja. Twierdzenie, że dodatkowe zawory zwiększają zagrożenie, może pochodzić z niewłaściwego zrozumienia tego, jak one działają. Zawory są projektowane z myślą o sytuacjach awaryjnych, a ich brak lub złe działanie mogą tylko zwiększyć ryzyko. Edukacja na temat zaworów bezpieczeństwa jest naprawdę kluczowa, żeby wiedzieć, jak ważne są w zapobieganiu wypadkom w instalacjach ciśnieniowych.

Pytanie 30

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 150 N
B. 130 N
C. 140 N
D. 160 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 31

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Narzynka
B. Tłocznik
C. Gwintownik
D. Skrobak
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 32

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. Q
B. R
C. I
D. T
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 33

Transoptor wykorzystuje się do

A. sygnalizowania transmisji
B. konwersji impulsów elektrycznych na promieniowanie świetlne
C. galwanicznej izolacji obwodów
D. galwanicznego połączenia obwodów
Zamiana impulsów elektrycznych na promieniowanie świetlne jest funkcją, którą pełnią diody LED, a nie transoptory. Transoptor to urządzenie, które wykorzystuje światło do przesyłania sygnałów, ale nie zamienia energii elektrycznej na promieniowanie, tylko używa wewnętrznego źródła światła do aktywacji detektora, co zapewnia separację galwaniczną. Sygnalizacja transmisji, choć może sugerować pewne aspekty działania transoptora, nie oddaje głównego celu tego komponentu, którym jest izolacja. Izolacja galwaniczna jest kluczowym aspektem w wielu aplikacjach, gdzie różne poziomy napięcia muszą być oddzielone, a nie tylko sygnalizowane. W praktyce, transoptory są projektowane specjalnie do tej funkcji, aby chronić obwody przed szkodliwymi skutkami zakłóceń i różnic potencjałów. W związku z tym, odpowiedzi sugerujące sygnalizację czy zamianę energii są mylne i nie odzwierciedlają rzeczywistego zastosowania transoptorów w nowoczesnej elektronice, gdzie kluczowa jest ochrona i niezawodność obwodów.

Pytanie 34

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. termometru
B. tensometru
C. pirometru
D. tachometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 35

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. okularów ochronnych i fartucha ochronnego
B. szczypiec oraz zestawu wkrętaków
C. nienaruszonych narzędzi izolowanych
D. rękawic ochronnych i fartucha ochronnego
Wybór okularów i fartucha ochronnego, rękawic oraz szczypiec i kompletu wkrętaków, choć istotny dla ogólnego bezpieczeństwa w miejscu pracy, nie rozwiązuje problemu związanego z bezpiecznym posługiwaniem się urządzeniami mechatronicznymi, w których istnieje ryzyko wystąpienia napięcia elektrycznego. Okulary ochronne i fartuchy są ważnymi elementami odzieży ochronnej, jednak ich głównym celem jest ochrona przed mechanicznymi uszkodzeniami i substancjami chemicznymi, a nie przed porażeniem prądem. Rękawice, choć mogą oferować pewien poziom izolacji, nie są wystarczające, jeśli nie są specjalnie przystosowane do pracy z urządzeniami elektrycznymi. Ponadto, używanie narzędzi, które nie są odpowiednio izolowane, stwarza poważne zagrożenie. Typowym błędem myślowym jest założenie, że wystarczające jest posiadanie wyposażenia ochronnego bez uwzględnienia specyfiki pracy z napięciem elektrycznym. Aby skutecznie minimalizować ryzyko porażenia prądem, mechatronik powinien korzystać wyłącznie z narzędzi z odpowiednią izolacją, a także przestrzegać standardów bezpieczeństwa, takich jak zalecenia zawarte w normach IEC. Ignorowanie tej zasady może prowadzić do tragicznych konsekwencji, dlatego zawsze należy upewnić się, że narzędzia są właściwie dobrane do rodzaju wykonywanej pracy.

Pytanie 36

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 2,5 A
B. 3 A
C. 0,75 A
D. 10 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 37

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 100 lx
B. 800 lx
C. 600 lx
D. 300 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 38

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. kształtu
B. kolejności montażu
C. wielkości
D. poziomu złożoności
Wydaje mi się, że organizowanie podzespołów według ich wielkości, kształtu czy skomplikowania to nie jest najlepszy pomysł. Może to wyglądać na sensowne, ale w praktyce jest to dość mylące, bo nie bierze pod uwagę procesu montażu. Na przykład, mniejsze części czasem są kluczowe w konkretnych etapach i jak je poukładamy według wielkości, to można się pomylić. A jeśli chodzi o formy czy kształty, to też nie za bardzo to działa, bo to nie pokazuje, w jakiej kolejności te rzeczy powinny być składane. A klasyfikowanie według złożoności to już w ogóle może wprowadzać dodatkowy bałagan, zwłaszcza jak te trudniejsze elementy składa się w prostszy sposób. Takie nieprawidłowe podejścia mogą wynikać z braku pełnego zrozumienia zasad organizacji w pracy, co jest naprawdę kluczowe w produkcji. Warto by było spojrzeć na różne narzędzia i metody, jak diagramy pracy czy wizualne instrukcje, bo one naprawdę pomagają lepiej zorganizować proces montażu, w przeciwieństwie do innych kryteriów.

Pytanie 39

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 1
B. 3
C. 2
D. 4
Zastosowanie jednego watomierza do pomiaru mocy czynnej w układzie trójfazowym jest niewłaściwe, ponieważ nie jest w stanie zarejestrować pełnego obrazu obciążenia trzech faz. W przypadku użycia jednego przyrządu, pomiar będzie ograniczony i będzie dotyczył tylko jednej fazy, co prowadzi do zafałszowania wyników. Podobnie, wybór trzech watomierzy w tej metodzie byłby zbędny, ponieważ wprowadzałoby to dodatkowe koszty i złożoność w analizie danych, gdzie dwa watomierze są wystarczające. Wykorzystanie czterech watomierzy jest nadmiarowe i niepraktyczne, gdyż nie wprowadza żadnych korzyści w kontekście pomiaru ani analizy, a jedynie zwiększa ryzyko błędów pomiarowych i komplikacji operacyjnych. Kluczowym błędem myślowym jest przekonanie, że większa liczba watomierzy automatycznie poprawia jakość pomiaru; w rzeczywistości, dla uzyskania wiarygodnych wyników w systemach trójfazowych ważne jest, aby wykonać pomiary w sposób zorganizowany i zgodny z uznawanymi standardami pomiarowymi. Konsekwencje błędnych wyborów mogą prowadzić do nieefektywności w zarządzaniu energią oraz trudności w identyfikacji źródeł strat energii w systemie. W praktyce, stosowanie dwóch watomierzy dąży do równowagi pomiędzy dokładnością pomiarów a prostotą konfiguracji.

Pytanie 40

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Spust kondensatu
B. Poziom oleju
C. Wilgotność powietrza
D. Ciśnienie w systemie
Choć wilgotność powietrza, ciśnienie w instalacji oraz spust kondensatu są istotnymi parametrami w kontekście utrzymania sprawności systemu pneumatycznego, koncentrowanie się wyłącznie na tych aspektach może prowadzić do poważnych problemów. Wilgotność powietrza jest ważna, ponieważ nadmiar wilgoci może powodować korozję i uszkodzenia elementów pneumatycznych. Jednak sama kontrola wilgotności nie wystarczy, jeżeli nie zapewnimy odpowiedniego smarowania. Ciśnienie w instalacji jest kluczowym wskaźnikiem wydajności, ale jego monitorowanie nie zastąpi regularnego sprawdzania poziomu oleju w smarownicy. Zbyt wysokie lub zbyt niskie ciśnienie mogą świadczyć o problemach w systemie, lecz bez odpowiedniego smarowania, nawet prawidłowe ciśnienie nie ochroni elementów przed zużyciem. Spust kondensatu to ważny proces, który zapobiega gromadzeniu się wody w instalacji, ale również nie eliminuje ryzyka wynikającego z niewystarczającego poziomu oleju. Ignorowanie tej sytuacji może prowadzić do niewłaściwej pracy narzędzi pneumatycznych, ich uszkodzenia, a w konsekwencji do przestojów produkcyjnych. W branży przemysłowej, gdzie efektywność i bezpieczeństwo są kluczowe, należy podchodzić do kontroli smarownic z pełną powagą, co obejmuje regularne sprawdzanie poziomu oleju oraz jego wymiany zgodnie z zaleceniami producentów. Błędem jest niedocenianie znaczenia smarowania, co może prowadzić do kosztownych napraw i przestojów.