Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 marca 2025 08:12
  • Data zakończenia: 19 marca 2025 08:31

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Domyślny port, na którym działa usługa "Pulpit zdalny", to

A. 3379
B. 3389
C. 3390
D. 3369
Odpowiedzi związane z portami 3369, 3379 oraz 3390 są niepoprawne, ponieważ nie są one związane z domyślnym działaniem protokołu RDP. Port 3369 jest używany przez inne aplikacje i usługi, ale nie ma związku z pulpitem zdalnym. Podobnie, port 3379 również nie jest standardowym portem dla RDP, a jego przypisanie do jakiejkolwiek usługi zdalnego dostępu jest rzadkie i niekonwencjonalne. Port 3390 także nie jest związany z Pulpitem zdalnym, co może prowadzić do mylnych przekonań na temat jego zastosowania w kontekście zdalnego dostępu do systemu. Typowym błędem jest przyjęcie, że porty są uniwersalne i stosują się do różnych protokołów bez uwzględnienia ich specyficznych zastosowań. Zrozumienie, które porty są standardowe dla konkretnych usług, jest kluczowe dla prawidłowej konfiguracji sieci oraz zapewnienia bezpieczeństwa. W praktyce, nieznajomość domyślnych portów i ich przypisania do odpowiednich protokołów może prowadzić do problemów z dostępem oraz do nieautoryzowanego wykorzystywania portów, co powinno być unikane w każdej dobrze zarządzanej infrastrukturze IT.

Pytanie 2

Urządzenie elektryczne lub elektroniczne, które zostało zużyte i posiada znak widoczny na ilustracji, powinno być

Ilustracja do pytania
A. Wyrzucone do pojemników z tym oznaczeniem
B. Przekazane do punktu skupującego złom
C. Wyrzucone do kontenerów na odpady komunalne
D. Przekazane do miejsca odbioru zużytej elektroniki
Znak przekreślonego kosza na śmieci umieszczony na urządzeniach elektrycznych i elektronicznych oznacza, że nie wolno ich wyrzucać do zwykłych pojemników na odpady komunalne. Jest to zgodne z dyrektywą WEEE (Waste Electrical and Electronic Equipment Directive) obowiązującą w krajach Unii Europejskiej. Celem dyrektywy jest minimalizacja negatywnego wpływu e-odpadów na środowisko oraz promowanie ich recyklingu i odzysku. Zużyte urządzenia mogą zawierać substancje szkodliwe dla środowiska, takie jak ołów, rtęć czy kadm, które mogą przedostać się do gleby i wody. Oddawanie ich do punktów odbioru zużytej elektroniki gwarantuje, że zostaną odpowiednio przetworzone i poddane recyklingowi. Dzięki temu możliwe jest odzyskanie cennych surowców, takich jak metale szlachetne, i ograniczenie zużycia surowców pierwotnych. Oddawanie sprzętu do odpowiednich punktów jest także zgodne z zasadami gospodarki o obiegu zamkniętym, która dąży do minimalizacji odpadów i optymalizacji użycia zasobów.

Pytanie 3

W przypadku drukarki igłowej, jaki materiał eksploatacyjny jest używany?

A. atrament
B. pigment
C. taśma barwiąca
D. toner
Drukarka igłowa wykorzystuje taśmę barwiącą jako materiał eksploatacyjny, co jest kluczowe dla procesu drukowania. Taśma barwiąca składa się z materiału, który w trakcie pracy drukarki styka się z papierem, a igły drukujące przenoszą farbę na powierzchnię papieru, tworząc obraz lub tekst. Ten typ drukarki jest często wykorzystywany w zastosowaniach, gdzie wymagana jest trwałość druku, na przykład w fakturach, dokumentach i etykietach. Przykładem są drukarki igłowe, które znajdują zastosowanie w biurach do drukowania dokumentów księgowych lub w systemach punktów sprzedaży, gdzie szybkość i niezawodność są kluczowe. Warto zaznaczyć, że taśmy barwiące charakteryzują się różnorodną kolorystyką oraz długością życia, co sprawia, że ich dobór powinien być dostosowany do specyficznych potrzeb użytkownika. Ponadto, w kontekście standardów branżowych, zastosowanie taśmy barwiącej jest zgodne z wymogami jakości druku i efektywności kosztowej.

Pytanie 4

W modelu RGB, kolor w systemie szesnastkowym przedstawia się w ten sposób: ABCDEF. Wartość natężenia koloru niebieskiego w tym zapisie odpowiada liczbie dziesiętnej

A. 205
B. 171
C. 186
D. 239
Odpowiedź 239 jest poprawna, ponieważ natężenie koloru niebieskiego w modelu RGB jest reprezentowane przez ostatnie dwa znaki zapisu szesnastkowego. W przypadku koloru ABCDEF, oznacza to, że wartości składowe są: A (czerwony) = 10, B (zielony) = 11, a F (niebieski) = 15. Szesnastkowe F to 15 w systemie dziesiętnym. Jednak w kontekście całego koloru, aby uzyskać wartość intensywności koloru niebieskiego, musimy zrozumieć, że 'EF' w zapisie hex oznacza 239 w systemie dziesiętnym, co możemy obliczyć jako 14 * 16^1 + 15 * 16^0 = 224 + 15 = 239. Zrozumienie konwersji z systemu szesnastkowego na dziesiętny jest kluczowe w pracy z kolorami w grafice komputerowej, programowaniu oraz projektowaniu stron internetowych. W praktyce, znajomość modelu RGB oraz umiejętność przeliczania wartości pozwala na precyzyjne dobieranie kolorów w różnych aplikacjach, co jest niezbędne dla uzyskania odpowiednich efektów wizualnych. Tego rodzaju umiejętności są istotne w branżach związanych z grafiką, web designem oraz tworzeniem aplikacji multimedialnych.

Pytanie 5

Na schemacie przedstawiono układ urządzenia. Do jakich portów należy podłączyć serwer o adresie IP 192.168.20.254/24 oraz stację roboczą o adresie IP 192.168.20.10/24, aby umożliwić ich komunikację w sieci?

Ilustracja do pytania
A. Do portów 3 i 4
B. Do portów 1 i 3
C. Do portów 2 i 3
D. Do portów 1 i 2
Odpowiedź 3 jest prawidłowa, ponieważ porty 1 i 3 są przypisane do VLAN 33. VLAN, czyli Virtual Local Area Network, to technologia umożliwiająca podział jednej fizycznej sieci na kilka logicznie odseparowanych sieci. Dzięki temu urządzenia podłączone do różnych VLANów nie mogą się ze sobą komunikować, chyba że skonfigurowana jest odpowiednia trasa routingu między VLANami. W tym przypadku serwer i stacja robocza muszą znajdować się w tej samej sieci VLAN, aby mogły się komunikować. Porty 1 i 3 przypisane do tego samego VLAN 33 oznaczają, że każde urządzenie podłączone do tych portów znajduje się w tej samej logicznej sieci, co umożliwia swobodną komunikację. To podejście jest zgodne z dobrymi praktykami projektowania sieci, które zalecają wykorzystanie VLANów do zarządzania ruchem oraz zwiększenia bezpieczeństwa i wydajności w sieci lokalnej. Umożliwia to również lepsze zarządzanie zasobami sieciowymi poprzez segmentację ruchu i jego izolację w ramach różnych grup roboczych.

Pytanie 6

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 16 bitów
B. 4 bity
C. 9 bitów
D. 3 bity
Wybór innych odpowiedzi często wynika z błędnych założeń dotyczących przeliczeń między systemami liczbowymi. Na przykład, 4 bity są wystarczające do zapisania wartości od 0 do 15, ponieważ 2^4 = 16, co nie obejmuje liczby 256. Takie podejście do tematu wydaje się logiczne, jednak nie uwzględnia faktu, że liczby heksadecymalne mogą przekraczać ten zakres. Podobnie, 3 bity mogą reprezentować tylko liczby z zakresu 0-7 (2^3 = 8), co w żadnym wypadku nie pokrywa wartości 256. Odpowiedź 16 bitów również nie jest uzasadniona w tym kontekście, ponieważ 16 bitów jest w stanie reprezentować liczby z zakresu od 0 do 65535, co jest nadmiarem dla danej liczby, ale nie jest to minimalna ilość bitów, która jest wymagana. Zrozumienie, że do prawidłowego przeliczenia liczby heksadecymalnej do binarnej należy uwzględnić najmniejszą potęgę liczby 2, jest kluczowym aspektem, który pozwala uniknąć typowych błędów myślowych związanych z konwersją numerów. W rzeczywistości, umiejętność efektywnego przekształcania systemów liczbowych jest niezbędna w inżynierii komputerowej oraz informatyce, gdzie precyzyjne obliczenia i reprezentacje danych mają ogromne znaczenie.

Pytanie 7

W którym trybie działania procesora Intel x86 uruchamiane były aplikacje 16-bitowe?

A. W trybie rzeczywistym
B. W trybie chronionym
C. W trybie chronionym, rzeczywistym i wirtualnym
D. W trybie wirtualnym
Wybór trybu chronionego, trybu wirtualnego lub kombinacji tych dwóch nie jest odpowiedni dla uruchamiania programów 16-bitowych w architekturze x86. W trybie chronionym, który został wprowadzony z procesorami Intel 80286, system operacyjny zyskuje możliwość zarządzania pamięcią w sposób bardziej złożony i bezpieczny. Pozwala on na obsługę współczesnych, wielozadaniowych systemów operacyjnych, ale nie jest zgodny z 16-bitowymi aplikacjami, które wymagają bezpośredniego dostępu do pamięci. Ten tryb obsługuje aplikacje 32-bitowe i wyżej, co czyni go nieodpowiednim dla starszych programów. Tryb wirtualny, z drugiej strony, jest funkcjonalnością, która umożliwia uruchamianie różnych instancji systemu operacyjnego i aplikacji równolegle w izolowanych środowiskach, ale także nie jest zgodny z 16-bitowymi aplikacjami. Często błędy myślowe w tym zakresie pochodzą z mylnego przekonania, że nowsze tryby są wstecznie kompatybilne. W rzeczywistości, programy 16-bitowe mogą działać tylko w trybie rzeczywistym, co jest ważne z perspektywy architektury procesora i kompatybilności aplikacji. Dlatego kluczowe jest zrozumienie różnic między tymi trybami, aby właściwie zarządzać aplikacjami w systemach operacyjnych opartych na architekturze x86.

Pytanie 8

Urządzenie sieciowe nazywane mostem (ang. bridge) to:

A. działa w zerowej warstwie modelu OSI
B. nie przeprowadza analizy ramki w odniesieniu do adresu MAC
C. funkcjonuje w ósmej warstwie modelu OSI
D. jest klasą urządzenia typu store and forward
Analizując niepoprawne odpowiedzi, warto zwrócić uwagę na kilka kluczowych aspektów dotyczących funkcji i działania mostów w sieciach komputerowych. Pierwsza z błędnych koncepcji sugeruje, że most nie analizuje ramki pod kątem adresu MAC. Jest to nieprawda, ponieważ jednym z głównych zadań mostu jest właśnie monitorowanie adresów MAC, co pozwala mu podejmować decyzje o przekazywaniu lub blokowaniu ruchu. Analiza ta jest kluczowa dla prawidłowego filtrowania ruchu i efektywnego zarządzania pasmem. Kolejna fałszywa teza dotyczy poziomu modelu OSI, na którym działa most. Mosty pracują na drugiej warstwie modelu OSI, a nie na zerowej czy ósmej, co jest fundamentalnym błędem w zrozumieniu architektury sieci. Warstwa zerowa odnosi się do warstwy fizycznej, odpowiedzialnej za przesył sygnałów, podczas gdy ósma warstwa nie istnieje w modelu OSI; model ten ma jedynie siedem warstw. Ostatnia nieprawidłowa odpowiedź sugeruje, że mosty nie są urządzeniami typu store and forward. W rzeczywistości, wiele mostów wykorzystuje tę metodę do efektywnego zarządzania ruchem w sieci, co oznacza, że przechowują dane do momentu ich analizy przed podjęciem decyzji o dalszym przesyłaniu. Typowe błędy myślowe, które prowadzą do tych niepoprawnych wniosków, to brak zrozumienia podstawowych zasad działania urządzeń sieciowych oraz pomylenie różnych warstw modelu OSI, co może prowadzić do mylnych interpretacji funkcji mostów w kontekście architektury sieci.

Pytanie 9

Wskaź na błędny układ dysku z użyciem tablicy partycji MBR?

A. 3 partycje podstawowe oraz 1 rozszerzona
B. 1 partycja podstawowa oraz 2 rozszerzone
C. 1 partycja podstawowa oraz 1 rozszerzona
D. 2 partycje podstawowe i 1 rozszerzona
W przypadku tablicy partycji MBR (Master Boot Record), maksymalna liczba partycji podstawowych, które można utworzyć, wynosi cztery. Można jednak tworzyć partycje rozszerzone, które pozwalają na dalsze tworzenie partycji logicznych. W scenariuszu, w którym mamy jedną partycję podstawową i dwie partycje rozszerzone, nie spełnia to wymogów MBR, ponieważ jedna partycja rozszerzona może zawierać wiele partycji logicznych, ale nie może być więcej niż jedna partycja rozszerzona. W praktyce oznacza to, że w scenariuszu MBR można mieć do trzech partycji podstawowych i jedną rozszerzoną, co pozwala na utworzenie wielu partycji logicznych w ramach tej partycji rozszerzonej. Standard MBR ogranicza się do 2 TB dla dysków, co w większości przypadków nie jest już wystarczające, dlatego obecnie częściej korzysta się z GPT (GUID Partition Table), która obsługuje większe dyski oraz większą liczbę partycji. Zrozumienie ograniczeń MBR jest kluczowe dla prawidłowego zarządzania przestrzenią dyskową w systemach operacyjnych.

Pytanie 10

Zasadniczym sposobem zabezpieczenia danych przechowywanych na serwerze jest

A. tworzenie kopii zapasowej
B. automatyczne wykonywanie kompresji danych
C. ustawienie punktu przywracania systemu
D. uruchomienie ochrony systemu
Tworzenie kopii bezpieczeństwa danych jest podstawowym mechanizmem ochrony danych znajdujących się na serwerze, ponieważ pozwala na ich odzyskanie w przypadku awarii, ataku cybernetycznego czy przypadkowego usunięcia. Regularne tworzenie kopii zapasowych jest uznawane za najlepszą praktykę w zarządzaniu danymi, a standardy takie jak ISO 27001 podkreślają znaczenie bezpieczeństwa danych. Przykładem wdrożenia tej praktyki może być stosowanie rozwiązań takich jak systemy RAID, które przechowują dane na wielu dyskach, lub zewnętrzne systemy kopii zapasowych, które wykonują automatyczne backupy. Oprócz tego, ważne jest, aby kopie bezpieczeństwa były przechowywane w różnych lokalizacjach, co zwiększa ich odporność na awarie fizyczne. Nie należy również zapominać o regularnym testowaniu odtwarzania danych z kopii zapasowych, co zapewnia pewność ich integralności i użyteczności w krytycznych momentach. Takie podejście nie tylko minimalizuje ryzyko utraty danych, ale także pozwala na szybsze przywrócenie ciągłości działania organizacji.

Pytanie 11

Użytkownik napotyka trudności z uruchomieniem systemu Windows. W celu rozwiązania tego problemu skorzystał z narzędzia System Image Recovery, które

A. przywraca system, wykorzystując punkty przywracania
B. odtwarza system na podstawie kopii zapasowej
C. naprawia pliki startowe, używając płyty Recovery
D. odzyskuje ustawienia systemowe, korzystając z kopii rejestru systemowego backup.reg
Nieprawidłowe odpowiedzi opierają się na mylnych założeniach dotyczących funkcji narzędzi dostępnych w systemie Windows. Naprawa plików startowych przy użyciu płyty Recovery dotyczy procesu, który ma na celu przywrócenie zdolności systemu do uruchamiania, ale nie odnosi się do pełnego przywracania systemu na podstawie obrazu. Takie podejście ma swoje zastosowanie w przypadku uszkodzenia plików systemowych, jednak nie przywraca wszystkich ustawień i danych, co czyni je mniej kompleksowym rozwiązaniem. Kolejną kwestią jest przywracanie systemu za pomocą punktów przywracania. Punkty te są tworzone automatycznie w momencie instalacji oprogramowania lub aktualizacji systemu, co oznacza, że działają na zasadzie zapisu stanu systemu, lecz nie obejmują pełnego obrazu, co ogranicza ich skuteczność w poważniejszych przypadkach. Ostatnia odpowiedź dotycząca odzyskiwania ustawień systemu z kopii rejestru wydaje się nieadekwatna, ponieważ rejestr systemowy nie jest samodzielnym elementem, który można po prostu przywrócić jako całość – jego złożoność i zależności z innymi komponentami sprawiają, że taki proces jest problematyczny i potencjalnie niebezpieczny, mogący prowadzić do dalszych uszkodzeń systemu. Właściwe podejście do rozwiązywania problemów z uruchamianiem systemu Windows obejmuje zrozumienie, które narzędzia są odpowiednie dla danych sytuacji oraz umiejętność ich odpowiedniego zastosowania. Dlatego ważne jest posiadanie wiedzy na temat różnych metod odzyskiwania i ich ograniczeń, co pozwoli na skuteczniejsze zarządzanie problemami związanymi z systemem operacyjnym.

Pytanie 12

Aby zweryfikować schemat połączeń kabla UTP Cat 5e w sieci lokalnej, należy zastosować

A. reflektometr kablowy TDR
B. reflektometr optyczny OTDR
C. analizatora protokołów sieciowych
D. testera okablowania
Reflektometr optyczny OTDR jest narzędziem wykorzystywanym głównie w sieciach światłowodowych, które pozwala na analizę stanu włókien optycznych oraz lokalizację uszkodzeń. Jego zastosowanie w kontekście kabli UTP Cat 5e jest nieadekwatne, ponieważ OTDR nie jest przystosowany do pomiarów elektrycznych w przewodach miedzianych. W przypadku reflektometru kablowego TDR, chociaż może on być stosowany do analizy linii miedzianych, to jednak jego funkcjonalność jest ograniczona do pomiaru długości kabli oraz lokalizacji przerw, co nie jest wystarczające do kompleksowej analizy podłączeń. Analizatory protokołów sieciowych, z drugiej strony, są narzędziami do monitorowania i analizy danych przesyłanych w sieci, co nie ma bezpośredniego związku z fizycznym stanem kabli czy ich podłączeniami. Użycie tych narzędzi w niewłaściwych kontekstach często prowadzi do mylnych wniosków oraz marnotrawienia czasu na błędne analizy. Typowe błędy polegają na myleniu funkcji narzędzi oraz zakładaniu, że ich zastosowanie jest uniwersalne, co może skutkować nieprawidłowym diagnozowaniem problemów w sieciach komputerowych. Kluczowe jest, aby zawsze dobrać odpowiednie narzędzie do konkretnego zadania, bazując na jego przeznaczeniu, co znacząco podnosi efektywność pracy oraz jakość realizowanych instalacji.

Pytanie 13

Który z poniższych mechanizmów zagwarantuje najwyższy poziom ochrony w sieciach bezprzewodowych opartych na standardzie 802.11n?

A. WEP
B. WPA2
C. WPA
D. Autoryzacja
WPA2 (Wi-Fi Protected Access 2) jest bardziej zaawansowanym protokołem bezpieczeństwa, który opiera się na standardzie IEEE 802.11i. Oferuje silniejsze szyfrowanie danych dzięki zastosowaniu algorytmu AES (Advanced Encryption Standard), co sprawia, że jest znacznie bardziej odporny na ataki niż wcześniejsze protokoły, jak WEP czy WPA. WEP (Wired Equivalent Privacy) jest przestarzałym standardem, który zapewnia minimalny poziom ochrony i jest podatny na różne ataki, takie jak ataki na klucz. WPA, będący poprawioną wersją WEP, również nie oferuje wystarczającego poziomu zabezpieczeń, ponieważ opiera się na TKIP (Temporal Key Integrity Protocol), który, choć lepszy od WEP, nadal zawiera luki. Zastosowanie WPA2 jest kluczowe w środowiskach, gdzie bezpieczeństwo danych jest priorytetem, takich jak sieci korporacyjne czy publiczne punkty dostępu. W praktyce, organizacje często wykorzystują WPA2-Enterprise, który dodatkowo integruje uwierzytelnianie oparte na serwerach RADIUS, co zwiększa bezpieczeństwo poprzez wprowadzenie indywidualnych poświadczeń dla użytkowników. Wybierając WPA2, można mieć pewność, że dane przesyłane w sieci bezprzewodowej są odpowiednio chronione, co jest zgodne z najlepszymi praktykami branżowymi w zakresie bezpieczeństwa sieci.

Pytanie 14

Odmianą pamięci, która zapewnia tylko odczyt i może być usunięta przy użyciu światła ultrafioletowego, jest pamięć

A. EPROM
B. PROM
C. ROM
D. EEPROM
Wydaje mi się, że wybranie EEPROM, PROM czy ROM to niezbyt dobry wybór, bo te pamięci mają różne funkcje, które nie pasują do pytania. EEPROM, czyli Electrically Erasable Programmable Read-Only Memory, to pamięć, która też umożliwia kasowanie i zapis, ale dokonuje się to elektrycznie, a nie przez światło ultrafioletowe jak w EPROM. Łatwo się pomylić, bo wiele osób myśli, że obie mają podobne funkcje, ale różnice w kasowaniu mają znaczenie w praktyce. PROM to pamięć, którą można zaprogramować tylko raz, więc nie nadaje się do niczego, co wymagałoby zmiany po programowaniu. No a ROM to pamięć, której zawartość jest stała, więc nie można jej zmieniać po wyprodukowaniu. Dlatego te typy pamięci nie pasują do wymagań pytania. Może to wynikać z niezbyt pełnego zrozumienia zastosowań i różnic w zapisie, co jest ważne przy projektowaniu systemów elektronicznych. Dla inżynierów kluczowe jest, by dobrze dobierać pamięci do konkretnych potrzeb, bo ma to wpływ na koszty i efektywność systemu.

Pytanie 15

Podczas skanowania reprodukcji obrazu z magazynu, na skanie pojawiły się regularne wzory, zwane morą. Jaką funkcję skanera należy zastosować, aby pozbyć się mory?

A. Skanowania według krzywej tonalnej
B. Odrastrowywania
C. Korekcji Gamma
D. Rozdzielczości interpolowanej
Odpowiedzi, które podałeś, jak korekcja gamma, rozdzielczość interpolowana czy skanowanie według krzywej tonalnej, niestety nie są dobre do eliminacji efektu mori. Korekcja gamma to sprawa związana z jasnością i kontrastem obrazu, a nie z rozwiązywaniem problemów z nakładającymi się wzorami. To może poprawić widoczność detali, ale nie pomoże w przypadku strukturalnych problemów, jak mora. Rozdzielczość interpolowana to wypełnianie brakujących pikseli, co często prowadzi do rozmycia szczegółów, a w skanowaniu reprodukcji, gdzie detale są najważniejsze, to może wręcz pogorszyć jakość. A to skanowanie według krzywej tonalnej to po prostu manipulowanie tonami, co poprawia kontrast, ale nie ma nic wspólnego z usuwaniem wzorów mori. Fajnie jest znać różne techniki edycyjne, ale trzeba wiedzieć, że nie wszystkie mogą rozwiązać każdy problem z jakością obrazu. To zrozumienie funkcji skanera i ich zastosowań jest kluczowe, żeby osiągnąć dobre wyniki.

Pytanie 16

Jak brzmi nazwa portu umieszczonego na tylnym panelu komputera, który znajduje się na przedstawionym rysunku?

Ilustracja do pytania
A. FIRE WIRE
B. DVI
C. D-SUB
D. HDMI
Port DVI (Digital Visual Interface) jest standardem interfejsu cyfrowego używanego głównie do przesyłania sygnałów wideo do monitorów komputerowych i projektorów. DVI oferuje kilka wariantów złącza jak DVI-D (cyfrowe), DVI-A (analogowe) i DVI-I (cyfrowo-analogowe), które różnią się zastosowaniem. W przeciwieństwie do starszych portów VGA, DVI zapewnia lepszą jakość obrazu bez zakłóceń analogowych, dzięki czemu jest preferowany w środowiskach, gdzie jakość obrazu jest kluczowa. Port DVI umożliwia także obsługę wyższych rozdzielczości i częstotliwości odświeżania co jest istotne w profesjonalnych zastosowaniach graficznych i grach komputerowych. Choć nowsze standardy jak HDMI i DisplayPort oferują dodatkowe funkcje, DVI nadal jest popularny ze względu na swoją niezawodność i szeroką kompatybilność. W praktyce, porty DVI często są wykorzystywane w stacjach roboczych i systemach wymagających stabilnego, wysokiej jakości sygnału wideo. Zrozumienie różnic między typami złączy DVI oraz ich zastosowań jest kluczowe dla profesjonalistów IT i techników komputerowych.

Pytanie 17

Administrator powinien podzielić adres 10.0.0.0/16 na 4 jednorodne podsieci zawierające równą liczbę hostów. Jaką maskę będą miały te podsieci?

A. 255.255.128.0
B. 255.255.224.0
C. 255.255.192.0
D. 255.255.0.0
Odpowiedź 255.255.192.0 jest poprawna, ponieważ adres 10.0.0.0/16 oznacza, że mamy do czynienia z siecią o masce 16-bitowej, co daje 65,536 adresów IP (2^16). Aby podzielić tę sieć na 4 równe podsieci, musimy zwiększyć liczbę bitów używanych do identyfikacji podsieci. Każda z tych podsieci musi mieć swoją własną maskę. W przypadku 4 podsieci, potrzebujemy 2 dodatkowych bitów (2^2 = 4), co prowadzi do nowej maski /18 (16 + 2 = 18). Maskę /18 można przedstawić jako 255.255.192.0, co oznacza, że pierwsze 18 bitów jest używane do identyfikacji sieci, a pozostałe 14 bitów jest dostępnych dla adresów hostów. Zatem każda z tych podsieci będzie miała 16,382 dostępnych adresów (2^14 - 2, z uwagi na rezerwację adresu sieci oraz adresu rozgłoszeniowego) co jest wystarczające dla wielu zastosowań. W praktyce, takie podziały są powszechnie stosowane w dużych organizacjach, gdzie zarządzanie adresacją IP jest kluczowe dla wydajności sieci.

Pytanie 18

Podaj adres rozgłoszeniowy sieci, do której przynależy host o adresie 88.89.90.91/6?

A. 88.255.255.255
B. 88.89.255.255
C. 91.255.255.255
D. 91.89.255.255
Obliczenie adresu rozgłoszeniowego dla hosta z adresem 88.89.90.91/6 to niezła sztuka, ale spokojnie, damy radę! Zaczynamy od maski /6, co znaczy, że mamy 6 bitów, które identyfikują sieć, a pozostałe 26 to adresy hostów. Adres IP, 88.89.90.91 w postaci binarnej wygląda tak: 01011000.01011001.01011010.01011000.00000000. Przy tej masce, wszystkie adresy zaczynają się od 01011000. I co z tego mamy? Że adresy w sieci mieszczą się w przedziale od 88.0.0.0 do 91.255.255.255. A adres rozgłoszeniowy? To ostatni adres w tej sieci, czyli 91.255.255.255. Wiedza o rozgłoszeniowych adresach jest ważna, bo pomaga w zarządzaniu sieciami i ułatwia przesyłanie danych do wszystkich hostów. Przydaje się to m.in. przy konfigurowaniu routerów czy diagnozowaniu problemów z komunikacją.

Pytanie 19

Po uruchomieniu komputera, procedura POST wskazuje 512 MB RAM. Natomiast w ogólnych właściwościach systemu operacyjnego Windows wyświetla się wartość 480 MB RAM. Jakie są powody tej różnicy?

A. W komputerze znajduje się karta graficzna zintegrowana z płytą główną, która używa części pamięci RAM
B. Rozmiar pliku stronicowania został niewłaściwie przypisany w ustawieniach pamięci wirtualnej
C. System operacyjny jest niepoprawnie zainstalowany i nie potrafi obsłużyć całego dostępnego obszaru pamięci
D. Jedna z modułów pamięci może być uszkodzona lub jedno z gniazd pamięci RAM na płycie głównej może być niesprawne
Kiedy komputer uruchamia się, procedura POST (Power-On Self-Test) identyfikuje i testuje wszystkie komponenty sprzętowe, w tym pamięć RAM. W przypadku, gdy procedura POST wskazuje 512 MB RAM, a system operacyjny Windows pokazuje 480 MB, różnica ta najczęściej wynika z faktu, że część pamięci RAM jest wykorzystywana przez zintegrowaną kartę graficzną. Wiele płyt głównych z wbudowaną grafiką rezerwuje część dostępnej pamięci systemowej na potrzeby przetwarzania graficznego. To podejście jest standardową praktyką, szczególnie w komputerach, które nie są wyposażone w osobną kartę graficzną. W sytuacji, gdy zintegrowana grafika jest aktywna, system operacyjny ma dostęp tylko do pozostałej ilości pamięci, stąd różnica, która jest naturalnym zjawiskiem w architekturze komputerowej. Warto również zwrócić uwagę, że w BIOS-ie można często skonfigurować ilość pamięci RAM przydzielonej do grafiki, co pozwala na lepsze dopasowanie zasobów w zależności od potrzeb użytkownika.

Pytanie 20

W standardzie IEEE 802.3af metoda zasilania różnych urządzeń sieciowych została określona przez technologię

A. Power under Control
B. Power over Internet
C. Power over Classifications
D. Power over Ethernet
Power over Ethernet (PoE) to technologia, która pozwala na jednoczesne przesyłanie danych i energii elektrycznej przez standardowe kable Ethernet, co czyni ją niezwykle praktycznym rozwiązaniem w zastosowaniach sieciowych. W standardzie IEEE 802.3af, PoE umożliwia dostarczanie do 15,4 W energii do urządzeń, takich jak kamery IP, punkty dostępu bezprzewodowego oraz telefony VoIP. Dzięki zastosowaniu PoE, instalacja takich urządzeń jest znacznie uproszczona, ponieważ nie wymaga osobnego zasilania, co z kolei zmniejsza koszty oraz czas potrzebny na wdrożenie systemów. Przykłady praktycznego wykorzystania PoE obejmują instalacje w biurach, gdzie punkty dostępu Wi-Fi mogą być łatwo rozmieszczane bez konieczności dostępu do gniazdek elektrycznych. Standard IEEE 802.3af, wprowadzony w 2003 roku, stanowi podstawę dla wielu nowoczesnych rozwiązań sieciowych, a jego implementacja jest zgodna z zaleceniami innych standardów, co zapewnia kompatybilność i wydajność. To sprawia, że PoE stało się standardem w wielu branżach, w tym w systemach zabezpieczeń i automatyce budynkowej.

Pytanie 21

Symbol przedstawiony na ilustracji wskazuje na produkt

Ilustracja do pytania
A. niebezpieczny
B. przeznaczony do ponownego użycia
C. biodegradowalny
D. nadający się do powtórnego przetworzenia
Symbol, który widzisz na obrazku, to taki uniwersalny znak recyklingu, znany praktycznie wszędzie, jako znak produktów, które można przetworzyć ponownie. Składa się z trzech strzałek, które układają się w trójkąt, co nawiązuje do tego, że proces przetwarzania materiałów nigdy się nie kończy. Recykling to ważny sposób na odzyskiwanie surowców z odpadów, dzięki czemu można je znów wykorzystać do produkcji nowych rzeczy. Moim zdaniem, to kluczowy element w ochronie środowiska, bo pozwala zmniejszyć zużycie surowców naturalnych i zmniejsza ilość odpadów, które trafiają na wysypiska. Do często recyklingowanych materiałów zaliczają się papier, plastik, szkło i metale. Co ciekawe, są też różne międzynarodowe standardy, jak ISO 14001, które pomagają firmom w działaniu na rzecz środowiska. Dobrze jest projektować produkty z myślą o ich późniejszym recyklingu, wpisując się w ideę gospodarki o obiegu zamkniętym. Znajomość tego symbolu jest ważna nie tylko dla ekologów, ale też dla nas, konsumentów, bo dzięki naszym wyborom możemy wspierać zrównoważony rozwój.

Pytanie 22

Aby zablokować widoczność identyfikatora sieci Wi-Fi, konieczne jest dokonanie zmian w ustawieniach rutera w sekcji oznaczonej numerem

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Aby ukryć identyfikator sieci bezprzewodowej SSID w ruterze, należy skonfigurować opcję zwaną „Ukryj SSID”. Jest to bardzo popularna funkcja, która pozwala na zwiększenie bezpieczeństwa sieci bezprzewodowej poprzez niewyświetlanie jej nazwy w dostępnych sieciach. Ruter przestaje wtedy ogłaszać swój SSID w eterze, co teoretycznie utrudnia osobom niepowołanym zidentyfikowanie sieci. W praktyce ukrycie SSID nie jest jednak pełnoprawną metodą zabezpieczeń i nie zastępuje silnego szyfrowania, takiego jak WPA2 lub WPA3. Ukrywanie SSID może być używane jako dodatkowa warstwa zabezpieczeń, ale nie należy na tym polegać jako na jedynej formie ochrony sieci. Zastosowanie tej funkcji wymaga ręcznego wpisania nazwy sieci na każdym urządzeniu, które ma się z nią łączyć. Funkcjonalność ta jest zgodna z większością standardów konfiguracji ruterów takich jak IEEE 802.11. Warto również pamiętać, że ukrycie SSID nie chroni przed zaawansowanymi atakami, ponieważ doświadczony napastnik może używać narzędzi do sniffingu, aby wykryć ruch sieciowy i namierzyć ukryty SSID. Dlatego zawsze należy stosować kompleksowe zabezpieczenia sieci, w tym silne hasła i aktualizacje oprogramowania sprzętowego.

Pytanie 23

Która z poniższych opcji nie jest wykorzystywana do zdalnego zarządzania stacjami roboczymi?

A. pulpit zdalny
B. program TeamViewer
C. program Wireshark
D. program UltraVNC
Program Wireshark jest narzędziem do analizy ruchu sieciowego, które pozwala na monitorowanie i analizowanie danych przesyłanych przez sieci komputerowe. Używany jest głównie do diagnostyki problemów z siecią, analizy bezpieczeństwa oraz do nauki o protokołach komunikacyjnych. Wireshark działa na zasadzie przechwytywania pakietów, co pozwala na szczegółową analizę ruchu w czasie rzeczywistym. W kontekście zdalnego zarządzania stacjami roboczymi, Wireshark nie pełni funkcji umożliwiającej zdalną kontrolę nad komputerami. Zamiast tego, programy takie jak TeamViewer, pulpit zdalny czy UltraVNC są przeznaczone do tego celu, umożliwiając użytkownikom zdalny dostęp oraz interakcję z desktopem innego komputera. Warto podkreślić, że korzystając z Wiresharka, administratorzy sieci mogą identyfikować nieautoryzowane połączenia, co jest kluczowe dla utrzymania bezpieczeństwa infrastruktury IT.

Pytanie 24

W celu konserwacji elementów z łożyskami oraz ślizgami w urządzeniach peryferyjnych wykorzystuje się

A. smar syntetyczny
B. powłokę grafitową
C. sprężone powietrze
D. tetrową szmatkę
Smar syntetyczny jest optymalnym rozwiązaniem do konserwacji elementów łożyskowanych oraz ślizgowych w urządzeniach peryferyjnych ze względu na swoje wyjątkowe właściwości tribologiczne. Charakteryzuje się niskim współczynnikiem tarcia, wysoką odpornością na ścinanie oraz stabilnością termiczną, co sprawia, że jest idealny do zastosowań w warunkach wysokotemperaturowych i dużych obciążeń. Przykładowo, w silnikach elektrycznych lub napędach mechanicznych, smar syntetyczny zmniejsza zużycie elementów ściernych, co wydłuża żywotność urządzeń. Zgodnie z normą ISO 6743, smary syntetyczne są klasyfikowane według różnych wymagań aplikacyjnych, co pozwala na dobór odpowiedniego produktu do specyficznych warunków pracy. Użycie smaru syntetycznego jest również zgodne z najlepszymi praktykami w zakresie utrzymania ruchu, co przyczynia się do zwiększenia efektywności energetycznej oraz zmniejszenia kosztów operacyjnych.

Pytanie 25

Aby wymienić uszkodzony moduł pamięci RAM, najpierw trzeba

A. otworzyć obudowę komputera
B. wyłączyć monitor ekranowy
C. zdemontować uszkodzony moduł pamięci
D. odłączyć zasilanie komputera
Odłączenie zasilania komputera przed rozpoczęciem jakiejkolwiek pracy związanej z wymianą modułu pamięci RAM jest kluczowym krokiem w zapewnieniu bezpieczeństwa zarówno użytkownika, jak i sprzętu. Praca z elektroniką pod napięciem może być niebezpieczna i prowadzić do uszkodzenia komponentów, a nawet porażenia prądem. Standardy bezpieczeństwa, takie jak te opisane w normach IEC 60950-1 dotyczących bezpieczeństwa urządzeń IT, podkreślają znaczenie odłączania zasilania przed przeprowadzaniem serwisu. Przykładem praktycznego zastosowania tej zasady jest sytuacja, gdy nieodłączony komputer zostaje przez przypadek włączony podczas pracy, co może prowadzić do zwarcia lub uszkodzenia płyty głównej. Użytkownicy powinni również upewnić się, że wszystkie kondensatory na płycie głównej zostały rozładowane, co można osiągnąć przez przytrzymanie przycisku zasilania przez kilka sekund po odłączeniu zasilania. Zrozumienie tych procedur jest kluczowe dla bezpiecznej i efektywnej konserwacji sprzętu komputerowego.

Pytanie 26

Jaką topologię fizyczną wykorzystuje się w sieciach o logice Token Ring?

A. Magistrali
B. Pierścienia
C. Gwiazdy
D. Siatki
Topologia fizyczna pierścienia jest kluczowym elementem w sieciach wykorzystujących topologię logiczną Token Ring. W tej architekturze, dane są przesyłane w formie tokenów, które krążą wokół zamkniętego pierścienia. Każde urządzenie w sieci ma dostęp do tokena, co zapewnia kontrolę nad transmisją danych i eliminację kolizji. To podejście jest szczególnie efektywne w środowiskach, gdzie wymagana jest stabilność i deterministyczny czas przesyłania danych, na przykład w aplikacjach przemysłowych i systemach automatyki. Standardy IEEE 802.5 definiują zasady działania sieci Token Ring, co czyni tę technologię zgodną z najlepszymi praktykami w zakresie projektowania sieci. Stosowanie topologii pierścienia sprawia, że sieć jest odporna na błędy; jeśli jedno urządzenie ulegnie awarii, pozostałe mogą nadal komunikować się, co jest kluczowe dla wysokiej dostępności systemów. W praktyce, sieci Token Ring znajdowały zastosowanie w różnych branżach, w tym w bankowości i telekomunikacji, gdzie niezawodność i bezpieczeństwo danych są priorytetowe.

Pytanie 27

Który adres IP jest przypisany do klasy A?

A. 119.0.0.1
B. 134.16.0.1
C. 192.0.2.1
D. 169.255.2.1
Adresy IP są klasyfikowane w pięciu klasach: A, B, C, D i E, w zależności od ich struktury. Klasa A, do której należy 119.0.0.1, charakteryzuje się tym, że jej pierwszy oktet mieści się w zakresie od 1 do 126. Odpowiedź 169.255.2.1 w rzeczywistości należy do klasy B, która obejmuje adresy z pierwszym oktetem od 128 do 191. Klasa B jest przeznaczona dla średnich organizacji i pozwala na alokację mniejszej liczby adresów niż klasa A, co może prowadzić do nieefektywnego wykorzystania przestrzeni adresowej. 134.16.0.1 również należy do klasy B, co oznacza, że jej wykorzystanie jest podobne do poprzedniego przypadku, ale wciąż nie spełnia warunków klasy A. Adres 192.0.2.1 to adres klasy C, z pierwszym oktetem w przedziale od 192 do 223. Klasa C jest najczęściej wykorzystywana dla małych organizacji, które potrzebują mniejszych sub-sieci. Typowe błędy myślowe prowadzące do wyboru błędnych odpowiedzi często obejmują niewłaściwe interpretowanie adresów IP i klasyfikacji, a także pomijanie podstawowych zasad dotyczących zakresów adresowych. Ponadto, niektórzy mogą nie być świadomi, że klasy adresów IP mają znaczące konsekwencje dla projektowania i zarządzania sieciami, co jest kluczowe w kontekście rozwoju rozwiązań sieciowych.

Pytanie 28

Jakim materiałem eksploatacyjnym posługuje się kolorowa drukarka laserowa?

A. kartridż z tonerem
B. pamięć wydruku
C. podajnik papieru
D. przetwornik CMOS
Kartridż z tonerem jest kluczowym materiałem eksploatacyjnym w kolorowych drukarkach laserowych. Toner, który jest w postaci proszku, zawiera specjalnie dobrane pigmenty oraz substancje chemiczne umożliwiające tworzenie wysokiej jakości wydruków kolorowych. Proces druku polega na naładowaniu elektrycznym bębna drukującego, który następnie przyciąga toner w odpowiednich miejscach, tworząc obraz, który jest przenoszony na papier. Korzystanie z kartridży z tonerem zapewnia nie tylko wysoką jakość wydruku, ale również efektywność operacyjną, ponieważ toner zużywa się w zależności od liczby wydrukowanych stron oraz ich skomplikowania. W praktyce, odpowiedni dobór tonerów i kartridży do danej drukarki ma zasadnicze znaczenie dla osiągnięcia optymalnej jakości druku oraz zredukowania problemów z zatykać się drukarki. Warto również dodać, że stosowanie oryginalnych kartridży, zgodnych z zaleceniami producenta, jest zgodne z normami ISO 9001, co gwarantuje ich wysoką jakość i niezawodność.

Pytanie 29

Jakie polecenie pozwala na uzyskanie informacji o bieżących połączeniach TCP oraz o portach źródłowych i docelowych?

A. ping
B. netstat
C. ipconfig
D. lookup
Odpowiedź 'netstat' jest prawidłowa, ponieważ jest to polecenie używane w systemach operacyjnych, które umożliwia monitorowanie połączeń sieciowych, w tym aktywnych połączeń TCP oraz informacji o portach źródłowych i docelowych. Narzędzie to jest niezwykle przydatne dla administratorów sieci, ponieważ pozwala na identyfikację bieżących połączeń, co może być kluczowe w diagnostyce problemów z siecią lub zabezpieczeń. Na przykład, uruchamiając 'netstat -ano', można uzyskać szczegółowe informacje o wszystkich aktywnych połączeniach, w tym identyfikatory procesów (PID), co ułatwia zarządzanie i monitorowanie aplikacji korzystających z internetu. Rekomendowane jest także korzystanie z opcji 'netstat -tuln', która pokazuje nasłuchujące porty TCP oraz UDP, co jest kluczowe w kontekście zarządzania ruchem sieciowym oraz zabezpieczeń. Zastosowanie tego narzędzia jest zgodne z najlepszymi praktykami w zakresie analizy i zarządzania siecią, co czyni je niezbędnym elementem w arsenale każdego specjalisty IT.

Pytanie 30

Skrót określający translację adresów w sieciach to

A. DMZ
B. IDS
C. SPI
D. NAT
Translacja adresów sieciowych, znana jako NAT (Network Address Translation), jest techniką stosowaną w sieciach komputerowych, która umożliwia mapowanie adresów IP w jednej przestrzeni adresowej na adresy IP w innej przestrzeni. Dzięki NAT możliwe jest ukrycie adresów prywatnych w sieci lokalnej przed światem zewnętrznym, co zwiększa bezpieczeństwo oraz oszczędza cenne adresy IPv4. NAT jest powszechnie stosowany w routerach domowych, które pozwalają wielu urządzeniom w sieci lokalnej korzystać z jednego publicznego adresu IP. W praktyce, gdy urządzenie w sieci lokalnej wysyła dane do internetu, router zmienia jego lokalny adres IP na publiczny adres IP, zachowując przy tym informacje o źródłowym adresie w tabeli NAT. Gdy odpowiedź wraca, router używa tej tabeli do przetłumaczenia publicznego adresu IP z powrotem na lokalny adres IP zleceniodawcy. NAT jest zgodny z najlepszymi praktykami w zakresie projektowania sieci, wspierając bezpieczeństwo oraz efektywność wykorzystania adresów IP.

Pytanie 31

Jakie elementy wchodzą w skład dokumentacji powykonawczej?

A. Wstępny kosztorys ofertowy
B. Analiza biznesowa potrzeb zamawiającego
C. Wyniki testów sieci
D. Kalkulacja kosztów na podstawie katalogu nakładów rzeczowych KNR
Wyniki testów sieci stanowią kluczowy element dokumentacji powykonawczej, ponieważ dostarczają szczegółowych informacji na temat wydajności i funkcjonalności systemu po jego zainstalowaniu. Testy te są niezbędne, aby upewnić się, że wszystkie komponenty sieci działają zgodnie z wymaganiami technicznymi oraz specyfikacjami zamawiającego. Przykładowo, mogą obejmować testy przepustowości, opóźnienia, pakietów błędnych czy również testy obciążeniowe. W branży telekomunikacyjnej oraz IT, zgodnie z najlepszymi praktykami, takich jak ISO/IEC 27001 czy ITIL, dokumentacja powykonawcza powinna zawierać wyniki tych testów, ponieważ stanowią one podstawę do oceny jakości wdrożonego rozwiązania oraz jego zgodności z oczekiwaniami. Ponadto, wyniki testów są niezbędne do późniejszej analizy oraz ewentualnych działań serwisowych, co potwierdza ich istotne znaczenie w procesie zarządzania projektami.

Pytanie 32

Jakie polecenie w środowisku Linux pozwala na modyfikację uprawnień dostępu do pliku lub katalogu?

A. iptables
B. chattrib
C. chmod
D. attrib
Odpowiedź 'chmod' jest prawidłowa, ponieważ jest to standardowe polecenie w systemie Linux służące do zmiany praw dostępu do plików i katalogów. 'chmod' pozwala na modyfikację uprawnień zarówno dla właściciela pliku, grupy, jak i dla innych użytkowników. Uprawnienia te są definiowane w trzech kategoriach: odczyt (r), zapis (w) i wykonanie (x). Można je ustawiać na trzy poziomy: dla właściciela pliku, grupy oraz dla wszystkich użytkowników. Przykładowo, polecenie 'chmod 755 plik.txt' nadaje pełne uprawnienia właścicielowi, natomiast grupie i innym użytkownikom pozwala tylko na odczyt i wykonanie. Dobre praktyki w zarządzaniu uprawnieniami obejmują stosowanie zasady najmniejszych uprawnień, co oznacza, że użytkownicy powinni mieć dostęp tylko do tych zasobów, które są im niezbędne do pracy. Zrozumienie mechanizmów uprawnień w systemie Linux jest kluczowe dla bezpieczeństwa i zarządzania zasobami w każdym środowisku serwerowym.

Pytanie 33

Ilustrowany schemat obrazuje zasadę funkcjonowania

Ilustracja do pytania
A. drukarki 3D
B. drukarki laserowej
C. skanera płaskiego
D. plotera grawerującego
W tym schemacie pokazano, jak działa skaner płaski. Wiesz, skaner płaski używa lampy, która oświetla dokument lub obraz leżący na jego szkle. Światło, które odbija się od dokumentu, trafia na lustra kierujące je do soczewki. Potem obraz przechodzi przez soczewkę i trafia na czujnik CCD, który zamienia światło na sygnały elektryczne. Te sygnały są następnie przetwarzane przez przetwornik analogowo-cyfrowy na dane cyfrowe, które komputer rozumie. Dzięki temu możemy łatwo digitalizować dokumenty i zdjęcia, co jest super przydatne w biurach i domach, bo można robić kopie cyfrowe i przechowywać wszystko w porządku. Warto też pamiętać, żeby regularnie czyścić szybę skanera i kalibrować go, żeby jakość skanów była jak najlepsza. Ciekawym pomysłem jest też korzystanie z programów do zarządzania skanami, bo ułatwia to organizację i edytowanie zeskanowanych plików.

Pytanie 34

Czym jest kopia różnicowa?

A. polega na kopiowaniu jedynie plików, które zostały stworzone od momentu ostatniej kopii pełnej
B. polega na kopiowaniu jedynie plików, które zostały stworzone lub zmienione od momentu utworzenia ostatniej kopii pełnej
C. polega na kopiowaniu jedynie tej części plików, która została dodana od czasu utworzenia ostatniej kopii pełnej
D. polega na kopiowaniu jedynie plików, które zostały zmodyfikowane od chwili utworzenia ostatniej kopii pełnej
Kopia różnicowa to technika backupu, która polega na kopiowaniu wyłącznie tych plików, które zostały utworzone lub zmienione od momentu ostatniej pełnej kopii zapasowej. To podejście jest korzystne, ponieważ znacznie zmniejsza czas potrzebny na wykonanie kopii oraz ilość zajmowanego miejsca na nośniku. Przykładem zastosowania kopii różnicowej jest sytuacja, w której użytkownik wykonuje pełną kopię zapasową w każdy poniedziałek, a następnie różnicowe kopie w pozostałe dni. Dzięki temu, w przypadku awarii systemu, wystarczy przywrócić pełną kopię z poniedziałku oraz najnowszą różnicową, co jest szybszym i bardziej efektywnym procesem niż przywracanie wielu pełnych kopii. Warto zauważyć, że standardy branżowe, takie jak ITIL czy COBIT, podkreślają znaczenie regularnych kopii zapasowych i ich różnorodności w kontekście zarządzania ryzykiem i bezpieczeństwem danych.

Pytanie 35

Które z poniższych stwierdzeń NIE odnosi się do pamięci cache L1?

A. Jej wydajność jest równa częstotliwości procesora
B. Czas dostępu jest dłuższy niż w przypadku pamięci RAM
C. Zastosowano w niej pamięć typu SRAM
D. Znajduje się we wnętrzu układu procesora
Wybór odpowiedzi, że pamięć cache L1 ma dłuższy czas dostępu niż pamięć RAM jest poprawny, ponieważ pamięć cache, w tym L1, charakteryzuje się znacznie szybszym czasem dostępu niż tradycyjna pamięć RAM. Cache L1, będąca pamięcią typu SRAM (Static Random Access Memory), jest projektowana z myślą o minimalizowaniu opóźnień w dostępie do danych, co jest kluczowe dla wydajności procesora. Przykładem zastosowania tej technologii jest jej rola w architekturze procesorów, gdzie dane najczęściej używane są przechowywane w cache, co znacząco przyspiesza operacje obliczeniowe. Normalny czas dostępu do pamięci RAM wynosi kilka nanosekund, podczas gdy cache L1 operuje na poziomie około 1-3 nanosekund, co czyni ją znacznie szybszą. W praktyce, umiejscowienie pamięci cache wewnątrz rdzenia procesora oraz jej związane z tym szybkie połączenia z centralną jednostką obliczeniową (CPU) pozwala na znaczne zredukowanie czasu potrzebnego do wykonania operacji, co jest standardem w projektowaniu nowoczesnych mikroprocesorów. Dobre praktyki inżynieryjne zalecają maksymalne wykorzystanie pamięci cache, aby zminimalizować opóźnienia i zwiększyć efektywność energetyczną systemów obliczeniowych.

Pytanie 36

Jakie urządzenie należy zastosować do pomiaru mocy zużywanej przez komputer?

A. woltomierz
B. amperomierz
C. tester zasilaczy
D. watomierz
Zdecydowanie dobry wybór z tym watomierzem. To urządzenie jest super do sprawdzania, ile mocy komputer tak naprawdę bierze, bo mierzy to w watach, co jest mega ważne, gdy chcemy wiedzieć, jak nasz sprzęt zużywa energię. Watomierz łączy pomiar napięcia i natężenia prądu, co pozwala dokładnie obliczyć moc czynną. Na przykład, możesz zobaczyć, ile energii komputer potrzebuje w różnych sytuacjach, co może pomóc w optymalizacji jego działania i wyborze odpowiedniego zasilacza. Fajnie też, jak przy zakupie watomierza zwrócisz uwagę na normy, takie jak IEC 62053, bo to zapewnia, że pomiar będzie dokładny i bezpieczny. Z mojego doświadczenia, takie pomiary są super przydatne, zwłaszcza jeśli chcesz mieć kontrolę nad wydatkami na prąd, co jest istotne zarówno dla domów, jak i dla firm.

Pytanie 37

Rodzaj połączenia VPN obsługiwany przez system Windows Server, w którym użytkownicy są uwierzytelniani za pomocą niezabezpieczonych połączeń, a szyfrowanie zaczyna się dopiero po wymianie uwierzytelnień, to

A. SSTP
B. PPTP
C. IPSEC
D. L2TP
Wybór SSTP, L2TP czy IPSEC do opisania połączenia VPN, które najpierw korzysta z niezabezpieczonego połączenia, a następnie przechodzi w szyfrowane, jest niewłaściwy. SSTP (Secure Socket Tunneling Protocol) to protokół, który wykorzystuje HTTPS do ustanowienia bezpiecznego tunelu, co oznacza, że uwierzytelnienie i szyfrowanie odbywają się równolegle. Charakteryzuje się dużym poziomem bezpieczeństwa, jednak jego działanie nie odpowiada opisowi pytania, ponieważ nie ma etapu niezabezpieczonego połączenia. L2TP (Layer 2 Tunneling Protocol) często mylony jest z IPSEC, ponieważ zazwyczaj jest używany razem z nim do zapewnienia bezpiecznego transportu danych. L2TP sam w sobie nie ma mechanizmu szyfrowania, a więc wymaga dodatkowych protokołów, co również nie wpisuje się w schemat opisany w pytaniu. IPSEC to standardowy protokół zabezpieczający, który działa na poziomie sieciowym i służy do szyfrowania i uwierzytelniania pakietów IP. Choć IPSEC jest niezwykle skuteczny, również nie pasuje do koncepcji stopniowego przejścia od niezabezpieczonego do zabezpieczonego połączenia. Mylne przekonanie o funkcjonalności tych protokołów często wynika z ich skomplikowanej natury oraz różnorodności zastosowań w praktyce. Ważne jest, aby zrozumieć, że wybór odpowiedniego protokołu VPN zależy od specyficznych potrzeb i wymaganych standardów bezpieczeństwa, co dodatkowo podkreśla znaczenie świadomości dotyczącej zastosowań każdego z tych protokołów.

Pytanie 38

Który protokół z warstwy aplikacji reguluje przesyłanie wiadomości e-mail?

A. DNS (Domain Name System)
B. HTTP (Hypertext Transfer Protocol)
C. SMTP (Simple Mail Transfer Protocol)
D. FTP (File Transfer Protocol)
SMTP, czyli Simple Mail Transfer Protocol, jest standardowym protokołem warstwy aplikacji używanym do wysyłania poczty elektronicznej przez Internet. Został zaprojektowany w celu transportowania wiadomości między serwerami pocztowymi, co czyni go kluczowym elementem komunikacji e-mailowej. SMTP działa głównie na porcie 25 (chociaż port 587 jest powszechnie używany do przesyłania wiadomości z autoryzacją). Protokół ten obsługuje przesyłanie wiadomości tekstowych oraz załączników, a jego działanie opiera się na modelu klient-serwer. Przykładem zastosowania SMTP jest sytuacja, gdy użytkownik wysyła e-maila za pomocą swojego klienta pocztowego, który następnie komunikuje się z serwerem SMTP dostawcy usług pocztowych. Dalsze przesyłanie wiadomości do skrzynek odbiorczych innych użytkowników również odbywa się z wykorzystaniem tego protokołu. Standardy takie jak RFC 5321 określają zasady działania SMTP, co zapewnia interoperacyjność między różnymi systemami i dostawcami usług. W praktyce, znajomość SMTP jest niezbędna dla administratorów sieci i programistów zajmujących się integracją systemów e-mailowych. Poznanie tego protokołu pomaga również w diagnozowaniu problemów z dostarczaniem wiadomości, co jest częstym wyzwaniem w administracji infrastruktury IT.

Pytanie 39

Jaką standardową wartość maksymalnej odległości można zastosować pomiędzy urządzeniami sieciowymi, które są ze sobą połączone przewodem UTP kat.5e?

A. 100 m
B. 500 m
C. 1000 m
D. 10 m
Standardowa maksymalna odległość dla przewodów UTP kategorii 5e wynosi 100 metrów. Ta wartość jest określona w standardzie ANSI/TIA-568, który reguluje wymagania dotyczące instalacji okablowania strukturalnego w budynkach. Utrzymanie tej odległości jest kluczowe dla zachowania odpowiedniej jakości sygnału oraz minimalizacji strat sygnałowych, co z kolei wpływa na wydajność sieci. W praktyce, przy projektowaniu sieci lokalnych, instalatorzy muszą zwrócić szczególną uwagę na długości kabli, aby zapewnić optymalną wydajność. Na przykład, w biurach, gdzie wiele urządzeń jest podłączonych do sieci, stosowanie kabli UTP kat. 5e w maksymalnej zalecanej długości pozwala na stabilne i szybkie połączenia internetowe oraz efektywne przesyłanie danych. Warto również zauważyć, że przy używaniu przełączników, rozgałęźników lub innych urządzeń sieciowych, maksymalna długość 100 metrów odnosi się do całkowitej długości segmentu kablowego, co oznacza, że połączenia między urządzeniami powinny być starannie planowane.

Pytanie 40

Jeżeli rozmiar jednostki alokacji wynosi 1024 bajty, to ile klastrów zajmą pliki umieszczone w tabeli na dysku?

NazwaWielkość
Ala.exe50 B
Dom.bat1024 B
Wirus.exe2 kB
Domes.exr350 B

A. 6 klastrów
B. 3 klastry
C. 5 klastrów
D. 4 klastry
W przypadku alokacji przestrzeni dyskowej w systemach plików każdy plik zajmuje co najmniej jeden klaster niezależnie od rzeczywistej wielkości pliku. Gdy przeliczamy ilość klastrów potrzebnych do przechowywania zestawu plików musimy znać wielkości plików i jednostki alokacji. Jednym z typowych błędów jest nieuwzględnienie faktu że nawet najmniejszy plik zajmuje cały klaster co prowadzi do błędnych oszacowań. Ważne jest zrozumienie że przykładowo plik o wielkości 1 bajta zajmie cały klaster dlatego myślenie że zajmie mniej niż jeden klaster jest błędne. Drugi częsty błąd to pomijanie konwersji jednostek np. mylenie bajtów z kilobajtami co wprowadza w błąd w ocenie potrzebnej przestrzeni dyskowej. Pominięcie faktu że plik o wielkości 2048 B wymaga dwóch klastrów a nie jednego jest właśnie takim błędem myślowym wynikającym z nieprawidłowej analizy jednostek alokacji. Należy także pamiętać że zrozumienie działania klastrów jest istotne dla efektywnego zarządzania przestrzenią dyskową co jest krytyczne w kontekście wydajności systemów plików i długoterminowej strategii przechowywania danych. Precyzyjna wiedza o tym jak pliki są zapisywane i jak systemy plików alokują przestrzeń jest kluczowa w codziennych zadaniach związanych z administrowaniem systemami komputerowymi i planowaniem infrastruktury IT. Dlatego ważne jest by dokładnie analizować jak wielkość plików przekłada się na wykorzystanie przestrzeni w jednostkach alokacji aby uniknąć typowych błędów w praktyce zawodowej.