Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 2 maja 2025 15:59
  • Data zakończenia: 2 maja 2025 16:14

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas przeprowadzania testu drogowego po naprawie głowicy silnika, należy szczególnie zwrócić uwagę na

A. regulację składu mieszanki
B. ciśnienie sprężania
C. osiągane przyspieszenie
D. temperaturę pracy silnika
Regulacja składu mieszanki, osiągane przyspieszenie oraz ciśnienie sprężania to parametry, które oczywiście mają istotne znaczenie w kontekście ogólnej wydajności silnika, jednak nie są one kluczowe w pierwszej kolejności po naprawie głowicy silnika. Skład mieszanki paliwowo-powietrznej jest istotny dla uzyskania odpowiedniej mocy i efektywności paliwowej, ale jego regulacja powinna być przeprowadzana w kontekście całego systemu zasilania silnika, a nie tylko na etapie prób drogowych po naprawie. Osiągane przyspieszenie może być wskaźnikiem mocy silnika, ale nie dostarcza informacji o jego stanie technicznym, szczególnie po naprawach. W końcu, ciśnienie sprężania to ważny parametr, ale jego zmiany nie zawsze są bezpośrednio związane z bieżącą temperaturą pracy silnika. Niezrozumienie hierarchii tych parametrach oraz ich wpływu na działanie silnika po naprawie może prowadzić do błędnych ocen stanu technicznego pojazdu. Kluczowym aspektem jest to, że każdy z tych elementów powinien być monitorowany w odpowiednim kontekście, a temperatura pracy silnika powinna być priorytetem, aby zapewnić jego optymalne funkcjonowanie i zapobiegać poważnym uszkodzeniom. Właściwe zrozumienie i monitorowanie temperatury pozwala na szybką reakcję w przypadku wykrycia jakichkolwiek nieprawidłowości, co jest zgodne z najlepszymi praktykami w zakresie obsługi i konserwacji silników.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Podczas wizyty w ASO wykonano obsługę okresową w pojeździe. Łączny czas pracy został określony jako 3,5 roboczogodziny. Uwzględniając zawarte w tabeli ceny wykorzystanych części i materiałów eksploatacyjnych oraz koszt wykonanych czynności, wskaż ile klient zapłaci za wykonanie obsługi.

Nazwa części/materiałuWymagana ilośćCena jednostkowa [zł]
Filtr oleju1 szt.19,00
Olej silnikowy4,0 l*30,00
Płyn hamulcowy0,5 l*18,00
Płyn chłodniczy5,5 l*20,00
Koszt jednej roboczogodziny 1,0 rbg = 125,00 zł
*płyny eksploatacyjne są pobierane z opakowań zbiorczych z dokładnością do 0,5 l

A. 704,50 zł
B. 705,50 zł
C. 685,50 zł
D. 695,50 zł
Błędne odpowiedzi wynikają z nieprawidłowego zrozumienia mechanizmu kalkulacji kosztów usług serwisowych pojazdów. Wiele osób może skupić się jedynie na stawce robocizny lub na kosztach części zamiennych, pomijając ważne aspekty, takie jak odpowiednie uwzględnienie wszystkich elementów kosztowych. Przy obliczeniach często występuje błąd polegający na niedoszacowaniu lub przeszacowaniu czasu pracy, co prowadzi do nieprawidłowych wniosków dotyczących całkowitych wydatków. Niezrozumienie, że koszt robocizny powinien być łączony z wydatkami na części i materiały, jest powszechnym błędem. Dodatkowo, niektórzy mogą przyjąć nieaktualne stawki lub nieprawidłowo oszacować zużycie materiałów, co również wpływa na końcowy wynik. Edukacja na temat standardów i dobrych praktyk w zakresie kalkulacji kosztów, takich jak normy ustalane przez branżę motoryzacyjną, może pomóc uniknąć tych błędów. Klienci powinni również sprawdzać szczegółowe faktury i zrozumieć, jakie składniki wchodzą w skład całkowitych kosztów, co pozwoli im lepiej ocenić oferty różnych warsztatów oraz zrozumieć, dlaczego dany koszt może wydawać się wyższy lub niższy w porównaniu do innych usług.

Pytanie 4

Częstym symptomem wskazującym na poślizg sprzęgła jest

A. nierównomierna praca silnika na biegu jałowym
B. niemożność zmiany biegów
C. spadek prędkości pojazdu w trakcie jazdy pod górkę
D. drgania pojawiające się podczas hamowania
Spadek prędkości pojazdu podczas jazdy pod górkę jest typowym objawem poślizgu sprzęgła, ponieważ w momencie, gdy kierowca przyspiesza, silnik nie przekazuje odpowiedniej mocy na koła, co prowadzi do opóźnienia w ruchu pojazdu. W przypadku prawidłowej pracy sprzęgła, moc silnika powinna być efektywnie przenoszona na skrzynię biegów, co z kolei umożliwia pokonanie wzniesienia. W praktyce, jeżeli zauważamy, że pojazd traci prędkość, mimo że kierowca wciska pedał przyspieszenia, może to sugerować, że tarcze sprzęgła są zużyte lub uszkodzone. W branży motoryzacyjnej standardem jest regularne sprawdzanie stanu sprzęgła, co pozwala na wczesne wykrycie problemów i uniknięcie kosztownych napraw. Warto również pamiętać, że inne objawy, takie jak zwiększone obroty silnika przy niewielkim przyspieszeniu, mogą również wskazywać na poślizg sprzęgła, co dodatkowo podkreśla znaczenie regularnej konserwacji.

Pytanie 5

Do zadań tarczy sprzęgłowej należy przekazywanie momentu obrotowego?

A. z wałka sprzęgłowego na wałek atakujący
B. z wałka pośredniego na wałek sprzęgłowy
C. z wałka sprzęgłowego na koło zamachowe
D. z koła zamachowego na wałek sprzęgłowy
Tarcza sprzęgłowa odgrywa kluczową rolę w przenoszeniu momentu obrotowego z koła zamachowego na wałek sprzęgłowy. To połączenie jest niezbędne do efektywnego przekazywania energii mechanicznej w układzie napędowym pojazdu. W praktyce, tarcza sprzęgłowa działa na zasadzie tarcia, co pozwala na synchronizację obrotów silnika z ruchem kół. W momencie, gdy kierowca naciska pedał sprzęgła, tarcza sprzęgłowa odłącza silnik od skrzyni biegów, co umożliwia zmianę biegów. Dobre praktyki w zakresie konserwacji sprzęgła obejmują regularne sprawdzanie stanu tarczy oraz odpowiednie użytkowanie, aby zminimalizować zużycie. Zrozumienie działania tarczy sprzęgłowej jest kluczowe dla diagnozowania problemów z układem napędowym oraz dla świadomego użytkowania pojazdu, co może poprawić jego wydajność i żywotność podzespołów.

Pytanie 6

Woda używana do mycia aut w myjni musi być odprowadzana

A. do wykopu w ziemi na zewnątrz myjni
B. do separatorów ściekowych
C. bezpośrednio do systemu kanalizacji komunalnej
D. bezpośrednio do kanalizacji deszczowej
Odpowiedzi sugerujące odprowadzanie wody do kanalizacji ścieków komunalnych, wykopu w ziemi czy kanalizacji burzowej są niepoprawne z kilku kluczowych powodów. Odprowadzanie wody z myjni samochodowej bezpośrednio do kanalizacji ścieków komunalnych jest niewłaściwe, ponieważ woda ta zawiera substancje chemiczne, które mogą negatywnie wpływać na system oczyszczania ścieków oraz jakość wody w odbiornikach. Zanieczyszczenia mogą przekraczać dopuszczalne normy, co stawia pod znakiem zapytania zgodność z regulacjami ochrony środowiska. Przeniesienie odpowiedzialności za oczyszczanie zanieczyszczonej wody na system komunalny jest nieetyczne i może skutkować wysokimi karami finansowymi. Odprowadzanie wody do wykopu w ziemi poza pomieszczeniem myjni również budzi poważne wątpliwości, ponieważ może prowadzić do bezpośredniego zanieczyszczenia gleb i wód gruntowych, co jest zabronione przepisami ochrony środowiska. Natomiast kierowanie ścieków do kanalizacji burzowej jest kolejnym błędem, gdyż nie jest ona przystosowana do odbioru zanieczyszczonych wód, co może prowadzić do ich wypływu do rzek czy jezior, zagrażając lokalnym ekosystemom. Kluczowe jest, aby myjnie samochodowe stosowały odpowiednie technologie, takie jak separatorów ściekowych, które zgodnie z normami środowiskowymi, skutecznie usuwały zanieczyszczenia przed ich odprowadzeniem.

Pytanie 7

Aby odczytać kod błędu pojazdu z systemem OBDII / EOBD, konieczne jest użycie

A. oscyloskopu
B. woltomierza
C. diagnoskopu
D. spektrofotometru
Odpowiedź "diagnoskopu" jest poprawna, ponieważ diagnoskop to specjalistyczne urządzenie służące do komunikacji z systemem OBDII/EOBD, które jest standardem diagnostyki w nowoczesnych pojazdach. OBDII (On-Board Diagnostics II) to system monitorujący stan najważniejszych podzespołów samochodu, a także kontrolujący emisję spalin. Umożliwia on odczytanie kodów błędów, które są generowane przez komputer pokładowy w przypadku wystąpienia problemów z silnikiem lub innymi istotnymi komponentami. W praktyce użycie diagnoskopu pozwala mechanikom szybko zidentyfikować źródło problemu, co prowadzi do efektywniejszej diagnostyki i naprawy pojazdu. Przykładowo, w przypadku, gdy kontrolka silnika zaświeci się na desce rozdzielczej, diagnoskop umożliwi odczytanie kodu błędu, co pozwoli na szybkie podjęcie działań naprawczych. Stosowanie diagnoskopów jest zgodne z najlepszymi praktykami branżowymi, ponieważ przyspiesza proces diagnostyki i poprawia jakość usług serwisowych, redukując jednocześnie koszty naprawy.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaką metodą należy przeprowadzić naprawę otworu, który w trakcie użytkowania stracił nominalne wymiary?

A. nitowania
B. lutowania
C. spawania
D. tulejowania
Tulejowanie to całkiem ciekawy sposób na naprawę otworów, który widzi się w przemyśle maszynowym, a także podczas remontów różnych urządzeń. Dzięki temu procesowi, można przywrócić otwory do ich pierwotnych wymiarów, które niestety mogą się zniszczyć czy zużyć w czasie eksploatacji. Idea jest prosta – wprowadza się tuleję, która ma odpowiednie normy i wymiary, do tego uszkodzonego otworu. Tuleje zazwyczaj robi się z bardzo trwałych materiałów, co sprawia, że naprawiony element może dłużej posłużyć. W praktyce tulejowanie jest wykorzystywane w różnych dziedzinach, takich jak motoryzacja, lotnictwo, a nawet budownictwo. Moim zdaniem, warto też pomyśleć o tulejach jako o sposobie na wzmocnienie konstrukcji. Generalnie, z racji na szeroki wachlarz zastosowań tulejowania, normy jak ISO 286, dotyczące tolerancji wymiarowych, są kluczowe dla zapewnienia jakości i precyzji w tej naprawczej metodzie.

Pytanie 10

Zawodnienie płynu hamulcowego na poziomie 4%

A. jest typowe po około 6 miesiącach użytkowania.
B. istotnie obniża jego temperaturę wrzenia.
C. praktycznie nie wpływa na jego właściwości.
D. istotnie zwiększa jego temperaturę wrzenia.
Zawodnienie płynu hamulcowego o wartości 4% ma istotny wpływ na jego właściwości, w tym na temperaturę wrzenia. Normalny płyn hamulcowy, zgodny z normami DOT, ma określoną temperaturę wrzenia, która jest krytyczna dla bezpiecznego funkcjonowania systemu hamulcowego. W przypadku obecności wody, która w tym przypadku stanowi 4% objętości, dochodzi do obniżenia temperatury wrzenia płynu. Woda ma znacznie niższą temperaturę wrzenia (100°C) niż typowe płyny hamulcowe, co oznacza, że w sytuacjach intensywnego hamowania, gdzie temperatura płynu może wzrosnąć, może to prowadzić do zjawiska wrzenia płynu hamulcowego. Praktycznym skutkiem tego jest ryzyko wystąpienia „spadku ciśnienia” w układzie hamulcowym, co może skutkować utratą skuteczności hamowania. Dlatego ważne jest regularne sprawdzanie stanu płynu hamulcowego oraz jego wymiana zgodnie z zaleceniami producenta pojazdu, aby zapewnić optymalne parametry pracy układu hamulcowego.

Pytanie 11

Za dostarczenie paliwa do cylindra w silniku Diesla odpowiada

A. gaźnik
B. pompa paliwowa
C. wtryskiwacz
D. pompa wtryskowa
Wtryskiwacz jest kluczowym elementem układu zasilania silnika wysokoprężnego, odpowiedzialnym za precyzyjne wtryskiwanie paliwa do cylindrów. W przeciwieństwie do silników benzynowych, w których stosuje się gaźniki, silniki wysokoprężne korzystają z bezpośredniego wtrysku, co pozwala na osiągnięcie lepszej wydajności spalania i niższej emisji spalin. Wtryskiwacze działają na zasadzie atomizacji paliwa, co zwiększa powierzchnię kontaktu paliwa z powietrzem, umożliwiając efektywne spalanie. Przykładem zastosowania wtryskiwaczy są nowoczesne silniki diesla, które wykorzystują wtryskiwacze piezoelektryczne, umożliwiające bardzo szybkie i dokładne wtryskiwanie paliwa, co jest kluczowe w kontekście osiągania wysokiej sprawności energetycznej oraz spełniania rygorystycznych norm emisji. W branży motoryzacyjnej, standardy takie jak Euro 6 wymuszają stosowanie zaawansowanych technologii wtrysku, co podkreśla znaczenie wtryskiwaczy w nowoczesnych konstrukcjach silnikowych.

Pytanie 12

W jakim układzie lub systemie może być użyty czujnik Halla?

A. zasilania
B. cofania
C. zapłonowym
D. komfortu jazdy
Czujnik Halla, choć ma wiele zastosowań w automatyce i elektronice, nie jest odpowiednim rozwiązaniem do układów cofania, zasilania ani komfortu jazdy. W układzie cofania, typowo wykorzystuje się różnego rodzaju czujniki ultradźwiękowe lub kamery, które monitorują otoczenie pojazdu i pozwalają na detekcję przeszkód. Użycie czujnika Halla w tym kontekście mogłoby prowadzić do nieprecyzyjnych odczytów, ponieważ jego działanie opiera się na pomiarze pola magnetycznego, a nie na bezpośredniej detekcji obiektów. W przypadku zasilania, czujniki Halla mogą być stosowane do pomiaru natężenia prądu, ale nie stanowią kluczowego elementu układu zasilania w pojazdach. Z kolei w systemach komfortu jazdy, takich jak klimatyzacja czy automatyczna regulacja siedzeń, dominują inne technologie, takie jak czujniki temperatury czy przełączniki elektryczne. Wybierając niewłaściwe zastosowanie czujnika Halla, można wpaść w pułapkę nieprawidłowej diagnozy i naprawy, co może prowadzić do poważnych problemów w działaniu pojazdu. Zrozumienie specyfiki zastosowań czujników w różnych układach jest kluczowe dla ich prawidłowego użytkowania i utrzymania skuteczności systemów w samochodach.

Pytanie 13

Układ hamulcowy należy odpowietrzyć

A. w przeciwnym kierunku do wskazówek zegara
B. rozpoczynając od koła najbliższego pompie hamulcowej
C. rozpoczynając od koła najdalszego od pompy hamulcowej
D. w tym samym kierunku co wskazówki zegara
Odpowietrzanie układu hamulcowego należy przeprowadzać zaczynając od najdalszego koła od pompy hamulcowej, ponieważ w takim układzie powietrze, które ma tendencję do gromadzenia się w najdalszych częściach systemu, zostanie usunięte w pierwszej kolejności. Ta metoda zapewnia, że wszelkie zanieczyszczenia i powietrze są eliminowane w sposób efektywny, co umożliwia uzyskanie pełnej efektywności hamowania. Standardowe praktyki w branży motoryzacyjnej wskazują, że odpowiednie odpowietrzenie układu hamulcowego nie tylko poprawia jego wydajność, ale także zwiększa bezpieczeństwo pojazdu. W wielu warsztatach korzysta się z instrukcji producenta, które zazwyczaj zalecają tę metodę. Przykładowo, przy odpowietrzaniu układu hamulcowego w samochodach osobowych, technicy często rozpoczynają od tylnego koła po przeciwnej stronie od pompy, aby uniknąć ponownego wprowadzenia powietrza do systemu. Prawidłowo wykonane odpowietrzanie skutkuje sztywniejszym pedale hamulca oraz lepszą reakcją na nacisk.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W pojazdach używany jest układ ACC (aktywny tempomat), znany też jako Distronic (DTR) lub ICC, którego zadaniem jest

A. ułatwianie zjeżdżania ze wzniesienia
B. utrzymywanie toru jazdy
C. wsparcie przy ruszaniu pod górę
D. zapewnienie odstępu pomiędzy pojazdami
Ten system ACC, czyli aktywny tempomat, ma na celu to, żeby auto samo trzymało zadaną prędkość oraz bezpieczny odstęp od innych pojazdów. Działa to dzięki czujnikom radarowym lub kamerom, które non stop skanują drogę przed nami. Jak włączysz ten tempomat, auto się dostosowuje – jeśli auto przed tobą zwolni, to Twoje też automatycznie zwolni, żeby zachować bezpieczny dystans. A gdy droga jest wolna, to znów przyspiesza do prędkości, którą ustawiłeś. Taki system jest mega przydatny, zwłaszcza w korkach, gdzie ciągle trzeba zmieniać prędkość. Dzięki temu mniej stresu przy prowadzeniu, a to przecież ważne. Systemy jak ACC przyczyniają się do poprawy bezpieczeństwa na drogach, co w rezultacie zmniejsza liczbę wypadków spowodowanych niewłaściwym zachowaniem kierowców. I wiecie co? Organizacje takie jak Euro NCAP potwierdzają, że te systemy naprawdę działają i zwiększają bezpieczeństwo samochodów.

Pytanie 16

Honowanie to zabieg wykańczający, który stosuje się w procesie naprawy

A. powierzchni krzywek wału rozrządu
B. tulei cylindrowych
C. gniazd zaworów
D. czopów wału korbowego
Honowanie to precyzyjna obróbka wykańczająca, która ma na celu uzyskanie powierzchni o bardzo wysokiej jakości, szczególnie w przypadku tulei cylindrowych. Proces ten polega na usuwaniu niewielkich ilości materiału, co pozwala na poprawę wymiarów, kształtu oraz chropowatości powierzchni. W przypadku tulei cylindrowych honowanie jest kluczowe, ponieważ zapewnia odpowiednią geometrię, co jest niezbędne dla prawidłowego działania silnika. Przykładem zastosowania honowania może być przygotowanie tulei cylindrowych silnika spalinowego, gdzie precyzyjne dopasowanie do tłoków ma kluczowe znaczenie dla efektywności pracy silnika oraz jego żywotności. Dobrze przeprowadzone honowanie wpływa na zmniejszenie zużycia paliwa, obniżenie emisji spalin oraz zwiększenie mocy silnika. W branży motoryzacyjnej honowanie jest standardem, który pozwala na uzyskanie wysokiej jakości komponentów, co przekłada się na lepsze osiągi i niezawodność pojazdów.

Pytanie 17

Stosunek rzeczywistej objętości powietrza w cylindrze do objętości powietrza niezbędnej do całkowitego spalenia paliwa znajdującego się w danym momencie w cylindrze nazywa się współczynnikiem

A. nadmiaru powietrza
B. wzmocnienia
C. oporu powietrza
D. wypełnienia impulsu
Współczynnik nadmiaru powietrza to kluczowy parametr w procesie spalania, który definiuje stosunek rzeczywistej ilości powietrza dostarczonego do silnika do ilości powietrza potrzebnej do całkowitego spalenia paliwa. W praktyce, gdy współczynnik nadmiaru powietrza wynosi 1, oznacza to, że do silnika dostarczono dokładnie tyle powietrza, ile potrzeba do spalenia całego paliwa. Wartości powyżej 1 wskazują na nadmiar powietrza, co jest korzystne z punktu widzenia redukcji emisji szkodliwych substancji, ponieważ sprzyja całkowitemu spalaniu paliwa. Przykładowo, w silnikach spalinowych, takich jak te stosowane w pojazdach, optymalizacja tego współczynnika pozwala na osiągnięcie lepszej efektywności paliwowej oraz zmniejszenie emisji tlenków azotu. Normy emisji, takie jak Euro 6, wymagają stosowania technologii, które pozwalają na kontrolowanie współczynnika nadmiaru powietrza w celu spełnienia rygorystycznych standardów dotyczących czystości spalin. Dobra praktyka w zakresie projektowania silników i układów wydechowych polega na monitorowaniu tego współczynnika w czasie rzeczywistym, co umożliwia dostosowanie parametrów pracy silnika do zmieniających się warunków eksploatacji.

Pytanie 18

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. układem wtryskowo-zapłonowym
B. centralnym systemem blokady drzwi
C. układem przeciwpoślizgowym
D. skrzynką biegów
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 19

W oznaczeniu 245/40 R17 91Y, które widnieje na oponie, liczba

A. 91 to indeks prędkości.
B. 40 oznacza wysokość profilu opony wyrażoną w % szerokości bieżnika
C. 17 wskazuje średnicę zewnętrzną felgi.
D. 40 definiuje wysokość profilu opony w milimetrach
Oznaczenie 245/40 R17 91Y ma swoje znaczenie. Liczba 40 oznacza wysokość profilu opony, i jest to 40% szerokości bieżnika, który wynosi 245 mm. Tak więc, jeśli policzymy wysokość boku tej opony, to wyjdzie nam 98 mm (245 mm razy 0,40). Wiedza o tym jest mega ważna, bo wpływa na to, jak auto się prowadzi, komfort jazdy i różne właściwości jezdne. Opony z niższym profilem, jak 35 czy 30, są często stabilniejsze w zakrętach, ale jazda nimi może być mniej komfortowa. Rozumienie tych rzeczy to podstawa dla każdego, kto interesuje się samochodami, np. mechaników albo sprzedawców opon. Wiedza ta pozwala na lepszy dobór opon do konkretnego auta, biorąc pod uwagę styl jazdy i warunki, w jakich się jeździ.

Pytanie 20

Zanim przeprowadzisz pomiar ciśnienia oleju w silniku, powinieneś

A. wykręcić świece zapłonowe
B. zamknąć przepustnicę
C. odłączyć akumulator
D. rozgrzać silnik
Rozgrzewka silnika przed pomiarem ciśnienia oleju jest kluczowym krokiem, który zapewnia dokładność i rzetelność pomiarów. W trakcie pracy silnika, olej silnikowy osiąga odpowiednią temperaturę roboczą, co wpływa na jego lepkość i ciśnienie. Zimny olej ma wyższą lepkość, co może prowadzić do fałszywych odczytów ciśnienia. Ponadto, rozgrzanie silnika pozwala na pełne krążenie oleju w systemie, co jest istotne dla uzyskania właściwych warunków do pomiaru. Praktycznie, jeśli pomiar ciśnienia oleju zostanie wykonany na zimnym silniku, odczyt może być niższy niż rzeczywiste ciśnienie pracy, co może doprowadzić do błędnych diagnoz i nieodpowiednich działań serwisowych. Standardy branżowe zalecają, aby przed przystąpieniem do pomiaru oleju silnikowego, silnik był rozgrzany do temperatury pracy, co gwarantuje pełną efektywność układu smarowania oraz eliminuje ryzyko uszkodzeń związanych z niewłaściwym poziomem ciśnienia oleju.

Pytanie 21

Czym charakteryzuje się sprzęgło w samochodzie?

A. nie pozwala na płynne łączenie oraz rozłączanie części układu napędowego
B. nie pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
C. stanowi trwałe połączenie silnika spalinowego z innymi elementami układu napędowego
D. pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
Sprzęgło samochodowe jest kluczowym elementem układu napędowego, który umożliwia płynne łączenie i rozłączanie silnika spalinowego z pozostałymi komponentami, takimi jak skrzynia biegów. Główna funkcja sprzęgła polega na przenoszeniu momentu obrotowego z silnika na koła, co jest niezbędne podczas zmian biegów oraz uruchamiania pojazdu. Dzięki zastosowaniu sprzęgła, kierowca może kontrolować moment przeniesienia mocy, co pozwala na wygodne manewrowanie oraz uniknięcie szarpania podczas jazdy. W praktyce, dobrej jakości sprzęgło powinno charakteryzować się niskim zużyciem, odpornością na wysokie temperatury oraz zdolnością do przenoszenia dużych obciążeń. W branży motoryzacyjnej stosowane są różne typy sprzęgieł, w tym sprzęgła suche, mokre oraz wielotarczowe, z których każdy ma swoje zastosowanie w zależności od specyfikacji pojazdu. Warto również zaznaczyć, że regularna kontrola i serwisowanie sprzęgła są kluczowe dla utrzymania sprawności układu napędowego oraz zwiększenia bezpieczeństwa na drodze.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W przypadku zwichnięcia kończyny dolnej, jaką należy podjąć pierwszą pomoc przedlekarską?

A. ustawieniu kończyny.
B. nałożeniu jałowego opatrunku.
C. aplikacji zimnego okładu.
D. sprawdzeniu tętna oraz oddechu.
W przypadku zwichnięcia kończyny dolnej, pierwszą pomocą przedlekarską jest wykonanie chłodnego okładu. To podejście ma na celu zmniejszenie obrzęku oraz łagodzenie bólu poprzez działanie przeciwzapalne i znieczulające. Chłodzenie miejscowe powinno być stosowane w sposób ostrożny, aby uniknąć odmrożeń. Należy używać worków z lodem lub chłodnych kompresów, które są owinięte w materiał, aby nie miały bezpośredniego kontaktu ze skórą. Zastosowanie chłodnego okładu powinno trwać około 15-20 minut, a następnie można powtórzyć co 1-2 godziny w ciągu pierwszych 48 godzin po urazie. W sytuacjach, gdy podejrzewamy zwichnięcie, kluczowe jest unikanie ruchów w stawie oraz niepróbowanie nastawiania kończyny, co może prowadzić do dalszych uszkodzeń. Warto również pamiętać o tym, że po zastosowaniu okładu, pacjent powinien być niezwłocznie przewieziony do placówki medycznej w celu dalszej diagnostyki i leczenia. Stosowanie chłodzenia jest zgodne z ogólnymi zasadami pierwszej pomocy, które kładą nacisk na minimalizowanie szkód oraz podejmowanie działań uspokajających pacjenta.

Pytanie 25

Aby ustalić stopień zużycia pierścieni tłokowych, tłoka, cylindra oraz gniazd zaworowych, nie jest konieczne przeprowadzanie pomiaru

A. podciśnienia w układzie dolotowym
B. szczelności cylindrów
C. ciśnienia smarowania
D. ciśnienia sprężania
Wybór odpowiedzi "ciśnienia smarowania" jako prawidłowej jest uzasadniony, ponieważ pomiar ciśnienia smarowania nie jest bezpośrednio związany z oceną stopnia zużycia pierścieni tłokowych, tłoka, cylindra czy gniazd zaworowych. Ciśnienie smarowania jest istotne dla zapewnienia odpowiedniego smarowania elementów silnika i minimalizacji tarcia, ale nie dostarcza informacji o ich fizycznym stanie. W praktyce, zużycie tych elementów można ocenić na podstawie pomiarów podciśnienia w układzie dolotowym, szczelności cylindrów oraz ciśnienia sprężania, które są bardziej odpowiednie do analizy stanu technicznego silnika. Przykładem może być pomiar ciśnienia sprężania, który pozwala na ocenę stanu uszczelnień i pierścieni tłokowych, co może wskazywać na ich zużycie. W dziedzinie motoryzacji, standardy diagnostyki silników często obejmują te pomiary jako kluczowe dla oceny stanu technicznego jednostki napędowej.

Pytanie 26

Jaki jest podstawowy cel regulacji geometrii zawieszenia?

A. Zapewnienie stabilności prowadzenia pojazdu
B. Zmniejszenie zużycia paliwa
C. Zwiększenie mocy silnika
D. Poprawa wyglądu pojazdu
Podstawowym celem regulacji geometrii zawieszenia jest zapewnienie stabilności prowadzenia pojazdu. Geometria zawieszenia odnosi się do ustawienia kątów kół w stosunku do siebie i do nawierzchni drogi. Prawidłowe ustawienie kątów, takich jak zbieżność, kąt pochylenia kół czy wyprzedzenie osi sworznia zwrotnicy, ma kluczowy wpływ na stabilność pojazdu podczas jazdy. Kiedy kąty te są prawidłowo ustawione, pojazd prowadzi się pewniej, zmniejsza się jego podatność na niekontrolowane zmiany toru jazdy oraz poprawia reakcję na ruchy kierownicy. Nieodpowiednia geometria może prowadzić do niestabilnego zachowania pojazdu, co jest szczególnie niebezpieczne przy dużych prędkościach. Z mojego doświadczenia wynika, że regularna kontrola i regulacja geometrii zawieszenia jest jedną z najważniejszych czynności serwisowych, które mają bezpośredni wpływ na bezpieczeństwo na drodze. Zapewnienie stabilności prowadzenia pojazdu to nie tylko kwestia komfortu, ale przede wszystkim bezpieczeństwa kierowcy i pasażerów. Dlatego warto zwracać uwagę na to, by geometria zawieszenia była zawsze odpowiednio wyregulowana.

Pytanie 27

"Sworzeń pływający" to element sworznia

A. obracający się w głowicy korbowodu i w piastach tłoka
B. mogący swobodnie przesuwać się wzdłuż osi w piastach tłoka
C. zamocowany w głowicy korbowodu i obracający się w piastach tłoka
D. zamocowany w piastach tłoka i obracający się w głowicy korbowodu
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumienia dotyczącego funkcji sworznia pływającego oraz jego roli w mechanice silników. Stwierdzenie, że sworzeń jest 'zamocowany w główce korbowodu i obracający się w piastach tłoka', jest mylące, ponieważ sworzeń pływający nie jest bezpośrednio zamocowany w główce korbowodu. Jego konstrukcja jest zaprojektowana tak, aby umożliwiać rotację i ruch osiowy, co jest kluczowe dla działania mechanizmów korbowych. Kolejny błąd polega na opisie sworznia jako 'zamocowanego w piastach tłoka i obracającego się w główce korbowodu', co jest także technicznie nieprawidłowe. Sworzeń pływający łączy tłok z korbowodem, a nie obraca się w główce korbowodu. Z kolei stwierdzenie, że sworzeń 'może swobodnie przesuwać się po osi w piastach tłoka', również jest błędne, ponieważ sworzeń pływający ma ograniczony ruch wzdłuż osi, co jest niezbędne do prawidłowego funkcjonowania silnika. Ruch sworznia pływającego powinien być kontrolowany i dostosowany do wymagań pracy silnika, co jest kluczowe dla zapobiegania nadmiernemu zużyciu komponentów i zapewnienia ich trwałości. Wnioski płynące z niepoprawnych odpowiedzi mogą prowadzić do większej awaryjności silników oraz nieefektywności ich działania.

Pytanie 28

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. średnicówką mikrometryczną
B. suwmiarką modułową
C. mikrometrem
D. przymiarem kreskowym
Mikrometr to narzędzie pomiarowe o wysokiej precyzji, które jest idealne do pomiaru średnicy zewnętrznej sworznia tłokowego, ponieważ pozwala na uzyskanie dokładności do setnych lub nawet tysięcznych części milimetra. Dzięki konstrukcji mikrometru, pomiar jest stabilny i powtarzalny, co jest niezbędne w procesie weryfikacji elementów mechanicznych. Przykładowo, mikrometr może być użyty do pomiaru średnicy sworznia, który następnie będzie montowany w tłoku, aby upewnić się, że pasuje on do otworu w cylindrze silnika. W przypadku silników spalinowych, precyzyjny pomiar średnicy jest kluczowy dla zapewnienia prawidłowego funkcjonowania silnika oraz minimalizacji luźnych tolerancji, które mogłyby prowadzić do zwiększonego zużycia i awarii. Standardy branżowe, takie jak ISO 286, określają wymagania dotyczące tolerancji wymiarowych, które szczególnie w przypadku elementów silnikowych, muszą być ściśle przestrzegane, aby zapewnić ich niezawodność i trwałość.

Pytanie 29

Omomierz można zastosować do weryfikacji czujnika

A. manometrycznego
B. położenia przepustnicy
C. zegara
D. Halla
Omomierz jest przyrządem pomiarowym, który jest używany do pomiaru oporu elektrycznego. W kontekście kontroli czujnika położenia przepustnicy, omomierz może być użyty do diagnozowania stanu czujnika, który jest kluczowy dla zarządzania pracą silnika. Czujnik położenia przepustnicy monitoruje kąt otwarcia przepustnicy, co jest istotne dla prawidłowego wtrysku paliwa i ogólnego zarządzania silnikiem. Przy użyciu omomierza można sprawdzić, czy czujnik działa poprawnie, mierząc jego opór w różnych położeniach. Przykładowo, przy pełnym otwarciu przepustnicy opór powinien osiągnąć przewidywaną wartość, co można porównać do wartości referencyjnych z dokumentacji technicznej. Analizowanie wyników pomiarów pozwala na wczesne wykrycie usterek, co jest zgodne z najlepszymi praktykami w diagnostyce pojazdów. Użycie omomierza w tego typu testach jest standardem w wielu warsztatach samochodowych, co podkreśla jego znaczenie w serwisowaniu i utrzymaniu pojazdów w dobrym stanie.

Pytanie 30

Zauważalny wzrost ciśnienia sprężania silnika podczas testu olejowego wskazuje na uszkodzenie

A. pierścieni tłokowych
B. uszczelki podgłowicowej
C. przylgni zaworowych
D. prowadnic zaworowych
Każda z pozostałych odpowiedzi, chociaż może wydawać się logiczna na pierwszy rzut oka, prowadzi do nieporozumień dotyczących diagnozowania problemów z silnikiem. Uszczelka podgłowicowa, prowadnice zaworowe i przylgi zaworowe mają swoje specyficzne funkcje w silniku, ale nie są bezpośrednio związane z wzrostem ciśnienia sprężania podczas próby olejowej. Uszczelka podgłowicowa jest odpowiedzialna za uszczelnienie przestrzeni między głowicą a blokiem silnika, a jej uszkodzenie może prowadzić do wycieków chłodziwa lub oleju, co niekoniecznie wpłynie na ciśnienie sprężania w sposób wykrywalny podczas tej konkretnej próby. Prowadnice zaworowe oraz przylgi zaworowe zajmują się uszczelnieniem przestrzeni wokół zaworów; ich uszkodzenie prowadzi do problemów z ciśnieniem w komorze spalania, jednakże nie wpływa na ciśnienie sprężania w czasie próby olejowej. Często mylone są te elementy przez mechaników, co skutkuje błędną diagnozą. Prawidłowe zrozumienie różnic pomiędzy tymi elementami jest kluczowe do skutecznej diagnostyki silnika. Stosowanie prób olejowych jest standardową praktyką, ale tylko w powiązaniu z odpowiednimi teoriami na temat funkcjonowania silnika można uzyskać wiarygodne wyniki. Właściwe podejście diagnostyczne powinno uwzględniać wszystkie komponenty silnika, ale w kontekście wzrostu ciśnienia podczas próby olejowej, pierścienie tłokowe są najważniejszym elementem, który należy sprawdzić.

Pytanie 31

System kontroli trakcji ma na celu utrzymanie przyczepności

A. wzdłużną opon napędowych.
B. wzdłużną i poprzeczną opon napędowych.
C. wzdłużną wszystkich opon.
D. poprzeczną opon napędowych
Układ kontroli trakcji (TCS) jest kluczowym elementem systemów bezpieczeństwa w nowoczesnych pojazdach, którego głównym celem jest zapewnienie optymalnej przyczepności kół napędowych w trakcie przyspieszania. Poprawna odpowiedź, dotycząca zachowania przyczepności wzdłużnej kół napędowych, jest istotna, ponieważ to właśnie te koła są odpowiedzialne za przenoszenie mocy silnika na nawierzchnię drogi. W sytuacjach, gdy występuje poślizg, na przykład na śliskiej nawierzchni, system TCS automatycznie kontroluje moc silnika oraz, w niektórych przypadkach, hamuje poszczególne koła, aby zminimalizować poślizg i poprawić stabilność pojazdu. Przykładowo, w przypadku samochodów osobowych, podczas nagłego przyspieszania na mokrej nawierzchni, TCS może ograniczyć moc silnika lub wprowadzić delikatne hamowanie, co pozwala na zachowanie pełnej kontroli nad pojazdem. Zastosowanie układów TCS jest zgodne z normami bezpieczeństwa, co czyni je standardem w branży motoryzacyjnej, przyczyniając się do zmniejszenia liczby wypadków związanych z utratą kontroli nad pojazdem.

Pytanie 32

Proces ładowania akumulatora, który został rozładowany, powinien trwać aż do momentu pojawienia się "gazowania" oraz osiągnięcia napięcia na ogniwie, które wynosi

A. 1,75 Y
B. 2,40 Y
C. 2,20 Y
D. 2,00 Y
Odpowiedź 2,40 V jest prawidłowa, ponieważ jest to wartość napięcia, przy której akumulator kwasowo-ołowiowy osiąga stan pełnego naładowania. W trakcie ładowania akumulatorów ważne jest, aby monitorować napięcie, ponieważ przekroczenie wartości 2,40 V na ogniwie może prowadzić do gazowania, co oznacza, że ​​elektrolit zaczyna się rozkładać na wodór i tlen. To zjawisko jest nie tylko nieefektywne, ale także może być niebezpieczne z uwagi na możliwość powstania mieszaniny wybuchowej. W praktyce, gdy akumulator osiąga napięcie 2,40 V, można uznać, że jest w pełni naładowany i gotowy do użycia. Dobrą praktyką jest również stosowanie ładowarek z funkcją automatycznego wyłączania, które zapobiegają przeładowaniu. Wartości te są zgodne z normami IEC oraz SAE, które definiują procedury ładowania akumulatorów kwasowo-ołowiowych, co dodatkowo potwierdza poprawność tej odpowiedzi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W funkcjonowaniu podnośników hydraulicznych stosowane jest prawo

A. Boyle'a-Mariott'a
B. Pascala
C. Hooke'a
D. Kirchoffa
Odpowiedzi wskazujące na inne prawa, takie jak prawo Kirchoffa czy prawo Boyle'a-Mariott'a, mogą wydawać się związane z obszarem inżynierii, jednak w kontekście podnośników hydraulicznych są zupełnie nieadekwatne. Prawo Kirchoffa dotyczy zachowania prądów i napięć w obwodach elektrycznych, co nie ma zastosowania w systemach hydraulicznych. Z kolei prawo Boyle'a-Mariott'a odnosi się do gazów i ich ciśnienia w zamkniętej objętości, co również nie jest tematem podnośników hydraulicznych, które operują cieczami, a nie gazami. Prawo Hooke'a, związane z deformacją ciał sprężystych, również nie jest właściwe w kontekście hydrauliki, gdyż nie opisuje zasad działania cieczy ani przekazywania sił. Wybór niewłaściwej odpowiedzi często wynika z błędnego skojarzenia funkcji danego prawa z działaniem podnośników. Dlatego kluczowe jest zrozumienie specyfiki każdego z tych praw oraz ich zastosowania w odpowiednich dziedzinach nauki i inżynierii. Zrozumienie i umiejętność właściwego przyporządkowania praw fizycznych do odpowiednich zjawisk jest niezbędne w pracy inżyniera i technika, co wpływa na jakość podejmowanych decyzji w praktyce.

Pytanie 39

Jasnobeżowy osad na elektrodach świecy zapłonowej wskazuje na

A. prawidłowe spalanie
B. spalanie mieszanki o dużej zawartości paliwa
C. spalanie mieszanki o niskiej zawartości paliwa
D. intensywne zanieczyszczenie filtra powietrza
Jasnobeżowy nalot na elektrodach świecy zapłonowej jest oznaką prawidłowego spalania mieszanki paliwowo-powietrznej w silniku. Gdy proces spalania zachodzi poprawnie, temperatura i ciśnienie w komorze spalania są odpowiednie, co skutkuje optymalnym odparowaniem paliwa i jego efektywnym spaleniem. Taki nalot może być wynikiem odpowiedniej ilości powietrza dostarczanego do silnika oraz właściwego ustawienia zapłonu. W praktyce, regularna kontrola stanu świec zapłonowych, a także ich wymiana zgodnie z zaleceniami producenta, jest kluczowa dla utrzymania silnika w dobrej kondycji. Prawidłowe spalanie wpływa nie tylko na osiągi silnika, ale również na jego emisję spalin, co jest zgodne z rosnącymi normami ekologicznymi. Dobre praktyki wskazują na konieczność utrzymania systemu dolotowego i filtrów powietrza w czystości, co również wspiera poprawne spalanie i redukcję nagromadzeń na elektrodach świecy.

Pytanie 40

Podczas wykonywania pomiarów kontrolnych po naprawie systemu wydechowego samochodu, miernik poziomu hałasu należy umieścić przy końcówce rury wydechowej w odległości około

A. 0,3 m
B. 0,5 m
C. 1,0 m
D. 0,1 m
Wybór błędnych odległości do pomiaru natężenia hałasu z układu wydechowego może prowadzić do nieprecyzyjnych wyników, które nie odzwierciedlają prawdziwego stanu technicznego pojazdu. Używanie zbyt małych odległości, takich jak 0,1 m, może spowodować, że pomiar będzie zafałszowany przez odbicia dźwięku od podłoża, co zakłóca ogólny poziom hałasu rejestrowany przez miernik. Z drugiej strony, odległość 1,0 m może nie być wystarczająco bliska, aby uchwycić rzeczywisty dźwięk emitowany przez układ wydechowy, co również prowadzi do błędnych wniosków. Tego rodzaju błędy mogą wynikać z niewłaściwego zrozumienia zasad akustyki oraz niewłaściwego stosowania sprzętu pomiarowego. Ważne jest, aby technicy zdawali sobie sprawę z faktu, że odległość ma kluczowe znaczenie dla jakości pomiaru, a nieodpowiednie podejście może skutkować brakiem możliwości spełnienia wymogów prawnych dotyczących poziomu hałasu emitowanego przez pojazdy. Przy pomiarach istotne jest także uwzględnienie warunków otoczenia, takich jak wiatr czy inne źródła hałasu, które mogą wpłynąć na wynik pomiaru. Zrozumienie tych aspektów jest kluczowe dla przeprowadzania skutecznych i rzetelnych pomiarów akustycznych w praktyce warsztatowej.