Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 16 maja 2025 21:22
  • Data zakończenia: 16 maja 2025 21:51

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Tynki 1-warstwowe obejmują tynki

A. wytworne
B. powszechne
C. selektywne
D. surowe
Tynki surowe to rodzaj tynków 1-warstwowych, które charakteryzują się prostotą wykonania i szybkim czasem aplikacji. Są one najczęściej stosowane w budownictwie jako podkład pod dalsze warstwy wykończeniowe, a dzięki swojej naturalnej strukturze i porowatości, zapewniają dobrą przyczepność dla kolejnych warstw. W praktyce, tynki surowe mogą być wykonane z tradycyjnych materiałów, takich jak cement, wapno czy gips, które po nałożeniu tworzą jednolitą powłokę. Warto zaznaczyć, że tynki surowe mogą być również stosowane w pomieszczeniach o podwyższonej wilgotności, gdyż odpowiednio przygotowane materiały mogą minimalizować ryzyko pojawienia się pleśni. W budownictwie ekologicznym, tynki surowe zyskują na popularności, ponieważ są produkowane z lokalnych surowców i mają niską emisję CO2. Zgodnie z normami PN-EN 998-1, tynki surowe muszą spełniać określone wymagania dotyczące wytrzymałości i trwałości, co czyni je kluczowym elementem w kontekście długoterminowej eksploatacji budynków.

Pytanie 2

W trakcie tynkowania ceglanego gzymsu zaprawę narzutu aplikujemy na

A. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
B. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
C. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
D. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
W przypadku tynkowania gzymsu ceglanego, nieprawidłowe podejście do nanoszenia zaprawy narzutu może prowadzić do istotnych problemów w późniejszym użytkowaniu. Odpowiedzi, które sugerują nanoszenie zaprawy na całą długość gzymsu przed związaniem, a następnie przesuwanie szablonu tylko w jedną stronę, pomijają kluczowy aspekt pracy z materiałem, jakim jest czas związania zaprawy. Takie działania mogą skutkować nierównomiernym wykończeniem, bowiem zaprawa może związać się w różnych momentach, co sprawi, że szablon nie wygeneruje pożądanego profilu. Przemieszczanie szablonu w jedną stronę, także ogranicza kontrolę nad procesem tynkowania, co może prowadzić do powstawania nieestetycznych nierówności. Dodatkowo, z praktycznego punktu widzenia, techniki tynkarskie zalecają zastosowanie ruchów w obie strony dla optymalizacji procesu, co zapewnia lepszą adaptację zaprawy do kształtów gzymsu. Typowym błędem jest także brak uwzględnienia różnorodności stosowanych zapraw, które mogą wymagać specyficznych metod nanoszenia i profilowania. W literaturze branżowej podkreśla się znaczenie dbałości o detale w pracy tynkarskiej, ponieważ nawet małe zaniedbania mogą prowadzić do poważnych konsekwencji, takich jak odpadanie tynku czy jego pękanie. Dlatego, fundamentalne dla uzyskania wysokiej jakości wykończenia jest stosowanie się do sprawdzonych procedur technicznych oraz zasad dobrych praktyk w budownictwie.

Pytanie 3

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 514,50 zł
B. 411,60 zł
C. 1 440,60 zł
D. 147,00 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 4

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 10 worków
B. 20 worków
C. 40 worków
D. 80 worków
Żeby policzyć, ile gipsowej zaprawy potrzebujemy do tynku grubości 20 mm na powierzchni 200 m², najpierw musimy przeliczyć zużycie zaprawy przy tej grubości. Z tego, co mówi producent, potrzebne jest 6 kg/m² dla 10 mm grubości, więc dla 20 mm będziemy potrzebować już 12 kg/m². Potem mnożymy to przez powierzchnię ścianek: 12 kg/m² * 200 m² daje nam 2400 kg zaprawy. Następnie musimy podzielić tę wagę przez wagę jednego worka, czyli 30 kg: 2400 kg / 30 kg = 80 worków. Przy takich obliczeniach warto pamiętać o zaleceniach producenta i standardach budowlanych, bo to naprawdę kluczowe, żeby tynk był odpowiedniej jakości i trwałości.

Pytanie 5

Jaką minimalną grubość powinny mieć przegrody oddzielające przewody spalinowe od dymowych w ścianach murowanych z cegły?

A. ½ cegły
B. 1½ cegły
C. 1 cegły
D. ¼ cegły
Wybór grubości przegród oddzielających przewody spalinowe od dymowych jest zagadnieniem kluczowym dla zapewnienia bezpieczeństwa budynków. Odpowiedzi wskazujące na 1 cegłę, ¼ cegły oraz 1½ cegły nie są zgodne z aktualnymi standardami budowlanymi. Zastosowanie przegrody o grubości 1 cegły może być nieadekwatne w kontekście właściwości izolacyjnych i ognioodpornych, które są wymagane dla skutecznego oddzielenia tych przewodów. W przypadku ¼ cegły, grubość ta jest zbyt mała, co może prowadzić do niekontrolowanego rozprzestrzenienia się dymu i spalin, a tym samym stwarzać zagrożenie dla mieszkańców. Wybór 1½ cegły może być przekonujący, jednak w praktyce może powodować nieuzasadniony wzrost kosztów budowy i niepotrzebną masywność konstrukcji. Kluczowe jest, aby przy projektowaniu takich rozwiązań kierować się normami, które precyzują minimalne wymagania dotyczące grubości przegród. Względy praktyczne, takie jak miejsce instalacji oraz rodzaj przewodów, powinny być analizowane w kontekście przepisów budowlanych, aby uniknąć niebezpieczeństw związanych z niewłaściwym wykonaniem. Właściwe podejście do tematu, uwzględniające specyfikacje techniczne, może znacząco wpłynąć na bezpieczeństwo konstrukcji i komfort użytkowników budynków.

Pytanie 6

Aby uzyskać zaprawę cementowo-wapienną M4, należy użyć składników w proporcjach objętościowych 1 : 1 : 6, co oznacza

A. 1 część cementu : 1 część piasku : 6 części wapna hydratyzowanego
B. 1 część cementu : 1 część wapna hydratyzowanego : 6 części piasku
C. 1 część cementu : 1 część wapna hydratyzowanego : 6 części wody
D. 1 część wapna hydratyzowanego : 1 część piasku : 6 części cementu
Proporcje objętościowe 1 : 1 : 6 w zaprawie cementowo-wapiennej M4 oznaczają, że do każdej części cementu przypada jedna część wapna hydratyzowanego oraz sześć części piasku. Taki skład jest zgodny z zaleceniami w branży budowlanej, które podkreślają znaczenie właściwego doboru proporcji, aby uzyskać optymalną wytrzymałość, plastyczność i trwałość zaprawy. Przykładowo, w praktyce budowlanej, odpowiednie przygotowanie zaprawy jest kluczowe przy murowaniu, gdzie właściwe proporcje zapewniają lepsze przyleganie cegieł oraz odporność na czynniki atmosferyczne. Warto zaznaczyć, że stosunek składników wpływa również na czas wiązania zaprawy, co jest istotne podczas wykonywania prac budowlanych w określonych warunkach. Standardy budowlane, takie jak PN-EN 998-1, podkreślają znaczenie właściwego stosowania zapraw w zależności od ich przeznaczenia, co w kontekście zaprawy M4 ma na celu zapewnienie wysokiej jakości i bezpieczeństwa konstrukcji budowlanych.

Pytanie 7

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 48 zł
B. 45 zł
C. 30 zł
D. 60 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 8

Tynk III kategorii powszechny to

A. narzut jedno- lub dwu-warstwowy wygładzany pacą
B. narzut o jednej warstwie, wyrównany kielnią
C. tynk trójwarstwowy wygładzony pacą pokrytą filcem
D. tynk trójwarstwowy zatarty packą na gładko
Tynk pospolity III kategorii, jako tynk trójwarstwowy zatarty packą na gładko, jest odpowiednim rozwiązaniem w przypadku, gdy zależy nam na uzyskaniu estetycznej, gładkiej powierzchni. Tego rodzaju tynk składa się z trzech warstw: warstwy podkładowej, warstwy zasadniczej oraz warstwy wykończeniowej, co pozwala na uzyskanie odpowiedniej wytrzymałości oraz trwałości. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie trzech warstw w celu osiągnięcia najlepszych właściwości termoizolacyjnych oraz akustycznych. Przykładem zastosowania tynku pospolitego III kategorii mogą być wnętrza budynków mieszkalnych, gdzie gładka powierzchnia ścian jest zarówno estetyczna, jak i funkcjonalna. Dobra praktyka polega na prawidłowym wykonaniu każdej z warstw, co wpływa na końcowy efekt estetyczny oraz trwałość tynku, a także na jego odporność na uszkodzenia mechaniczne czy wilgoć. Dodatkowo, tynk taki może być malowany, co otwiera dodatkowe możliwości aranżacyjne w przestrzeni. Zastosowanie tynku trójwarstwowego zwiększa też wartość estetyczną obiektów budowlanych.

Pytanie 9

Określ właściwą sekwencję technologiczną działań związanych z obniżeniem poziomu posadowienia murowanych ław fundamentowych?

A. Podbicie fundamentu → odciążenie ław → wykonanie wykopu i zabezpieczenie deskowaniem
B. Wykonanie wykopu i zabezpieczenie deskowaniem → odciążenie ław → podbicie fundamentu
C. Wykonanie wykopu i zabezpieczenie deskowaniem → podbicie fundamentu → odciążenie ław
D. Odciążenie ław → podbicie fundamentu → wykonanie wykopu i zabezpieczenie deskowaniem
Wybór nieprawidłowej odpowiedzi często opiera się na błędnym zrozumieniu kolejności działań przy obniżaniu poziomu posadowienia ław fundamentowych. Przykładowo, rozpoczęcie od podbicia fundamentu może prowadzić do poważnych problemów. Jeśli najpierw podniesiemy fundament bez odpowiedniego wykopu i odciążenia, istnieje ryzyko przemieszczenia lub nawet pęknięcia muru, co może skutkować nieodwracalnymi uszkodzeniami konstrukcji. Wyjaśniając dalsze nieścisłości, odciążenie ław przed wykonaniem wykopu jest również niewłaściwe, gdyż fundamenty muszą być najpierw zabezpieczone, aby odciążyć je w sposób kontrolowany. Z perspektywy inżynieryjnej, każda z tych faz ma swoje znaczenie i powinny następować w ściśle określonej kolejności, aby zapewnić stabilność budowli. Ignorowanie tego porządku może prowadzić do nieefektywnego procesu budowlanego oraz zwiększenia kosztów związanych z ewentualnymi naprawami. Współczesne standardy budowlane i dobre praktyki branżowe kładą duży nacisk na precyzyjne planowanie i realizację działań budowlanych, co nie tylko wpływa na bezpieczeństwo, ale także na efektywność całego projektu.

Pytanie 10

Jakie spoiwo powoduje korozję stali?

A. Gipsowe
B. Wapienne
C. Cementowo-wapienne
D. Cementowe
Spoiwo gipsowe wywołuje korozję stali ze względu na swoje właściwości chemiczne i fizyczne. Gips, jako materiał krystaliczny, w obecności wody może wydzielać kwas siarkowy, który reaguje z metalami, prowadząc do ich utlenienia. W praktyce, w budownictwie, gipsowe tynki i gipsowe elementy konstrukcyjne są stosowane w pomieszczeniach wilgotnych, co zwiększa ryzyko korozji stali zbrojeniowej, jeśli nie są odpowiednio zabezpieczone. Zastosowanie odpowiednich powłok antykorozyjnych oraz zastosowanie stali o podwyższonej odporności na korozję to standardy, które powinny być przestrzegane, aby minimalizować ryzyko uszkodzeń konstrukcji. W branży budowlanej rekomenduje się także regularne przeglądy stanu technicznego konstrukcji, aby wczesne wykrywanie korozji mogło umożliwić podjęcie odpowiednich działań naprawczych.

Pytanie 11

Podczas budowy wewnętrznych ścian działowych o wysokości nieprzekraczającej 2,5 m nie wolno stosować rusztowań

A. stojakowego teleskopowego
B. kozłowego
C. warszawskiego
D. drabinowego
Odpowiedź 'drabinowego' jest prawidłowa, ponieważ w przypadku murowania ścian działowych o wysokości do 2,5 m, drabiny stają się najbezpieczniejszym i najbardziej efektywnym narzędziem pracy. Drabiny, szczególnie te o konstrukcji teleskopowej, umożliwiają łatwy dostęp do wyższych partii ścian, zapewniając jednocześnie stabilność. Użytkownicy mogą dostosować wysokość drabiny do wymagań wykonywanej pracy, co jest istotne w przypadku realizacji precyzyjnych zadań budowlanych. Zgodnie z normami bezpieczeństwa, użytkowanie drabin powinno odbywać się zgodnie z instrukcjami producentów oraz z zachowaniem zasad BHP. Dobre praktyki w zakresie murowania sugerują, że korzystaniu z drabiny towarzyszy dodatkowe zabezpieczenie, takie jak osprzęt zabezpieczający lub współpraca z drugą osobą, co zwiększa bezpieczeństwo na stanowisku pracy. Warto również wspomnieć, że drabiny zajmują mniej miejsca niż rusztowania, co wpływa na efektywność pracy w ograniczonych przestrzeniach budowlanych.

Pytanie 12

Ile trzeba zapłacić za cegły potrzebne do zbudowania ściany o powierzchni 28 m2, jeżeli 140 cegieł jest wymaganych do wykonania 1 m2 ściany o grubości 38 cm, a cena jednej cegły wynosi 1,50 zł?

A. 7 980,00 zł
B. 1 596,00 zł
C. 3 920,00 zł
D. 5 880,00 zł
Aby obliczyć koszt cegieł potrzebnych do wykonania ściany o powierzchni 28 m², zaczynamy od ustalenia, ile cegieł potrzebujemy. Z danych wynika, że do wykonania 1 m² ściany potrzeba 140 cegieł. Zatem dla 28 m² obliczamy: 28 m² * 140 cegieł/m² = 3 920 cegieł. Następnie, znając cenę jednej cegły, która wynosi 1,50 zł, obliczamy całkowity koszt: 3 920 cegieł * 1,50 zł/cegła = 5 880,00 zł. To podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie przed rozpoczęciem prac kosztorysowych dokonuje się szczegółowych obliczeń, aby uniknąć niedoszacowania materiałów budowlanych. Dobrze przeprowadzone obliczenia pozwalają na efektywne zarządzanie budżetem i uniknięcie dodatkowych kosztów na etapie realizacji projektu.

Pytanie 13

Oblicz całkowity koszt wykonania tynku mozaikowego na obu stronach ściany o wymiarach 8×4 m, jeśli jednostkowy koszt robocizny wynosi 21,00 zł/m2, a koszt materiałów to 14,00 zł/m2?

A. 1 120,00 zł
B. 2 240,00 zł
C. 1 792,00 zł
D. 2 420,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego, należy najpierw obliczyć powierzchnię ściany. Ściana ma wymiary 8 m x 4 m, co daje 32 m². Ponieważ tynk ma być wykonany po obu stronach ściany, całkowita powierzchnia wynosi 64 m². Koszt jednostkowy robocizny wynosi 21,00 zł/m², co daje koszt robocizny: 64 m² x 21,00 zł/m² = 1 344,00 zł. Koszt materiałów to 14,00 zł/m², co daje koszt materiałów: 64 m² x 14,00 zł/m² = 896,00 zł. Łączny koszt wykonania tynku to suma kosztu robocizny i materiałów: 1 344,00 zł + 896,00 zł = 2 240,00 zł. W praktyce, przy planowaniu budowy lub remontu, kluczowe jest dokładne oszacowanie kosztów, co pozwala na kontrolę budżetu oraz uniknięcie nieprzyjemnych niespodzianek finansowych. Dobrze jest również uwzględnić ewentualne dodatkowe koszty, takie jak transport materiałów czy wynajem sprzętu, co jest standardem w branży budowlanej.

Pytanie 14

W którym rodzaju stropu gęstożebrowego można znaleźć prefabrykowane belki żelbetowe?

A. Teriva
B. DZ-3
C. Akermana
D. Fert
Strop gęstożebrowy Fert nie jest odpowiedzią, ponieważ jest to system, który wykorzystuje płyty ceramiczne i żelbetowe, ale nie obejmuje prefabrykowanych belek żelbetowych. W praktyce jest on stosowany w budownictwie jednorodzinnym oraz w obiektach o małej rozpiętości, co ogranicza jego zastosowanie w większych projektach. Użycie belek żelbetowych w tym systemie jest rzadkie i nieoptymalne ze względu na ich masywność, co prowadzi do większych nakładów materiałowych i czasowych. Ponadto, strop Akermana, także niewłaściwy w tym kontekście, charakteryzuje się zupełnie inną konstrukcją, opartą na arkuszach żelbetowych, które również nie są prefabrykowane w klasycznym rozumieniu. W przypadku systemu Teriva, stosowane są płyty betonowe na żelbetowych belkach nośnych, co również nie pasuje do opisanego pytania. Te różnice mogą prowadzić do błędnych wniosków przy wyborze odpowiedniego systemu stropowego. Warto pamiętać, że wybór stropu powinien być zawsze uzależniony od specyfiki projektu, wymagań nośnych oraz lokalnych norm budowlanych, aby zapewnić bezpieczeństwo i funkcjonalność konstrukcji.

Pytanie 15

Aby wykonać tynk ciągniony, należy zastosować

A. paki oraz profilowane kielnie
B. stalowe listewki kierunkowe
C. profile przesuwane po prowadnicach
D. pneumatyczne urządzenia natryskowe
Wybór innych narzędzi, takich jak pneumatyczne aparaty natryskowe, nie jest zbyt trafiony, jeśli chodzi o tynk ciągniony. Te aparaty, chociaż użyteczne w innych metodach, nie dają takiej kontroli nad grubością i równomiernością, jak profile na prowadnicach. Są bardziej do tynków natryskowych, gdzie trzeba inaczej aplikować materiał. A kierunkowe listwy stalowe? No, mogą wytyczać linie, ale do metody ciągnionej nie są za specjalne, bo tam chodzi o precyzyjność i płynność. Użycie pac czy profilowanych kielni też nie ma sensu w tym kontekście, bo służą do ręcznego wygładzania, a nie zapewniają takiej wydajności jak te profile. Zrozumienie technik tynkarskich to klucz do dobrego wykończenia, a dobór narzędzi ma ogromne znaczenie dla końcowego efektu. Jak się wybierze złe narzędzia, to nie tylko obniża jakość, ale może też wydłużyć czas pracy i podnieść koszty.

Pytanie 16

Który rodzaj tynku jest odporny na wodę?

A. Gipsowy
B. Renowacyjny
C. Wapienny
D. Mozaikowy
Wybór niewłaściwego rodzaju tynku może prowadzić do nieodpowiednich rezultatów w kontekście odporności na wodę. Tynk wapienny, chociaż ma swoje zalety, w tym ekologiczność i zdolność do regulacji wilgotności, nie jest materiałem wodoodpornym. Jego główną wadą jest wysoka nasiąkliwość, co sprawia, że w długotrwałym kontakcie z wodą może ulegać degradacji, a także sprzyjać rozwojowi pleśni i grzybów. Tynk gipsowy z kolei, mimo swojej popularności w zastosowaniach wykończeniowych, również nie nadaje się do stref o wysokiej wilgotności, ponieważ gips jest materiałem hygroskopijnym, który wchłania wilgoć i osłabia swoje właściwości strukturalne. Tynk renowacyjny, przeznaczony głównie do odnawiania zabytków, ma swoje specyficzne zastosowanie, ale również nie zapewnia wodoodporności. Zrozumienie tych właściwości jest kluczowe w przypadku planowania zastosowania tynku w projektach budowlanych. Często błąd polega na mylnym założeniu, że każdy tynk ma podobne właściwości ochronne, co może prowadzić do poważnych problemów związanych z wilgocią i trwałością konstrukcji. Wiedza na temat właściwości różnych materiałów budowlanych jest niezbędna dla osiągnięcia sukcesu w każdym projekcie budowlanym.

Pytanie 17

Do tworzenia zapraw murarskich jako spoiwo powietrzne należy używać

A. cementu hutniczego
B. wapna hydratyzowanego
C. cementu murarskiego
D. wapna hydraulicznego
Wapno hydratyzowane, znane również jako wapno gaszone, jest materiałem stosowanym jako spoiwo powietrzne w zaprawach murarskich ze względu na swoją zdolność do wiązania i utwardzania w obecności wody oraz powietrza. W odróżnieniu od innych typów spoiw, takich jak cement hydrauliczny, wapno hydratyzowane charakteryzuje się mniejszą szybkością twardnienia, co pozwala na dłuższy czas obróbczy. To właściwość jest szczególnie cenna w pracach murarskich, gdzie precyzyjne ułożenie elementów jest kluczowe. Stosowanie wapna hydratyzowanego w zaprawach przyczynia się do zwiększenia elastyczności i paroprzepuszczalności konstrukcji, co z kolei wspiera zdrowy mikroklimat budynków. Zgodnie z wytycznymi wynikającymi z norm budowlanych, wapno hydratyzowane jest rekomendowane w tradycyjnych i renowacyjnych technikach budowlanych, szczególnie w zabytkowych obiektach, gdzie zachowanie historycznych właściwości materiałów ma kluczowe znaczenie.

Pytanie 18

Ile bloczków gazobetonowych o wymiarach 24 x 24 x 59 cm, których zużycie wynosi 7 szt./m2, będzie potrzeba do postawienia 3 zewnętrznych ścian garażu wolnostojącego, przy założeniu, że wysokość ścian wynosi 2,5 m, a wymiary garażu w rzucie to 4,0 x 6,0 m?

A. 350 sztuk
B. 280 sztuk
C. 175 sztuk
D. 168 sztuk
Poprawna odpowiedź wynika z dokładnego obliczenia powierzchni trzech ścian garażu oraz przeliczenia na ilość potrzebnych bloczków gazobetonowych. Wymiary garażu to 4,0 m na 6,0 m, co oznacza, że dwie zewnętrzne ściany mają długość 6 m, a jedna 4 m. Wysokość wszystkich ścian wynosi 2,5 m. Powierzchnia każdej ze ścian wynosi odpowiednio: 2 ściany 6 m x 2,5 m (15 m²) oraz 1 ściana 4 m x 2,5 m (10 m²). Zatem łączna powierzchnia trzech ścian wynosi: 15 m² + 15 m² + 10 m² = 40 m². W przypadku bloczków gazobetonowych o wymiarach 24 x 24 x 59 cm, ich zużycie wynosi 7 sztuk na m², co oznacza, że do pokrycia 40 m² potrzeba 40 m² x 7 szt./m² = 280 sztuk. To podejście jest zgodne z normami budowlanymi oraz praktykami, które zalecają dokładne obliczanie materiałów budowlanych, aby uniknąć problemów w fazie realizacji. Takie dokładne planowanie jest kluczowe dla efektywności kosztowej oraz jakości wykonania budowli.

Pytanie 19

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. gładź, 2. narzut, 3. obrzutka
B. 1. gładź, 2. obrzutka, 3. narzut
C. 1. narzut, 2. obrzutka, 3. gładź
D. 1. obrzutka, 2. narzut, 3. gładź
Tynk trójwarstwowy rzeczywiście składa się z trzech podstawowych warstw: obrzutki, narzutu oraz gładzi. Obrzutka, będąca pierwszą warstwą, ma za zadanie stworzyć odpowiednią przyczepność dla kolejnych warstw tynku. Zwykle jest wykonywana z materiałów o większej ziarnistości, co pozwala na lepsze związywanie się z podłożem. Następnie nakładany jest narzut, który jest warstwą o bardziej jednolitej strukturze, co zapewnia dodatkową izolację i estetykę powierzchni. Gładź, stanowiąca ostatnią warstwę, ma na celu wygładzenie powierzchni oraz nadanie jej odpowiednich właściwości dekoracyjnych. Przykładem zastosowania tynku trójwarstwowego może być renowacja budynków zabytkowych, gdzie zachowanie odpowiednich technik nakładania tynku jest kluczowe dla ochrony oryginalnych elementów architektonicznych. W praktyce, przestrzeganie tej kolejności warstw jest niezbędne do uzyskania trwałej i estetycznej powierzchni, co wpisuje się w standardy budowlane oraz zalecenia producentów materiałów budowlanych, które wskazują na konieczność stosowania się do powyższej technologii.

Pytanie 20

Jakiego typu tynkiem jest tynk kategorii 0 nazywany "rapowany"?

A. Specjalistycznym
B. Wyborowym
C. Zwykłym
D. Surowym
Tynk surowy, znany również jako tynk rapowany, jest tynkiem kategorii 0, który charakteryzuje się minimalnym przetworzeniem i brakiem dodatkowych dodatków chemicznych, co sprawia, że jest przyjazny dla środowiska. Tynki surowe są stosowane głównie w obiektach, gdzie estetyka powierzchni nie jest kluczowa, a głównym celem jest ochrona konstrukcji budynku przed wpływem wilgoci oraz innych czynników atmosferycznych. Dzięki swojej naturalnej strukturze, tynki te pozwalają na swobodne oddychanie murów, co z kolei przyczynia się do regulacji wilgotności w pomieszczeniach. W praktyce, tynk surowy jest często stosowany w budownictwie ekologicznym oraz w renowacji obiektów zabytkowych, gdzie zachowanie oryginalnych materiałów i technik budowlanych jest szczególnie ważne. Ponadto, tynk rapowany zapewnia dobrą przyczepność do późniejszych warstw wykończeniowych, co czyni go wszechstronnym rozwiązaniem w pracach budowlanych.

Pytanie 21

Na podstawie danych z tabeli oblicz ilość piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,85304
1 : 0,25 : 3,75M20293340,93284

A. 0,45 m3
B. 0,47 m3
C. 0,95 m3
D. 0,93 m3
Poprawna odpowiedź to 0,47 m3, co wynika z zastosowania odpowiedniej proporcji do obliczenia ilości piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2. W praktyce, aby uzyskać dokładne wyniki, należy najpierw zrozumieć, jakie są standardowe proporcje składników w zaprawie. Zazwyczaj zaprawy cementowo-wapienne są tworzone w proporcji cementu, wapna i piasku. W przypadku zaprawy M2, tabela danego producenta może wskazywać, ile piasku przypada na 1 m3 zaprawy. Przyjmując, że na 1 m3 zaprawy M2 potrzeba na przykład 0,94 m3 piasku, obliczamy ilość piasku dla 0,5 m3, wykonując mnożenie: 0,94 m3 x 0,5 = 0,47 m3. Ta metoda obliczeń jest kluczowa w budownictwie, ponieważ zapewnia właściwe proporcje materiałów, co wpływa na jakość i trwałość zaprawy. Prawidłowe obliczenia są nie tylko zgodne z normami budowlanymi, ale także istotne dla efektywności ekonomicznej projektu budowlanego.

Pytanie 22

Wykończenie powierzchni tynku zwykłego klasy IVf polega na

A. dociśnięciu świeżej zaprawy za pomocą packi.
B. zatarciu świeżej zaprawy packą obłożoną filcem.
C. przeszlifowaniu stwardniałej zaprawy osełką.
D. przetarciu stwardniałej zaprawy ząbkowaną cykliną.
Wybór dociśnięcia świeżej zaprawy packą, przetarcia stwardniałej zaprawy ząbkowaną cykliną lub przeszlifowania stwardniałej zaprawy osełką nie jest właściwy dla zakończenia procesu wykończenia tynku zwykłego kategorii IVf. Dociśnięcie świeżej zaprawy packą jest działaniem, które ma na celu jedynie wprowadzenie zaprawy w stan początkowy, co nie zapewnia odpowiedniej gładkości ani estetyki. Technika ta może być stosowana podczas kładzenia zaprawy, ale nie w etapie wykończeniowym, gdyż nie prowadzi do uzyskania pożądanego efektu. Z kolei przetarcie stwardniałej zaprawy ząbkowaną cykliną może zniszczyć strukturę tynku, powodując nierówności i uszkodzenia, co jest niepożądane w kontekście estetyki i trwałości. Przeszlifowanie stwardniałej zaprawy osełką również nie jest zalecaną metodą, ponieważ może prowadzić do nadmiernego usunięcia materiału, co wpłynie na wytrzymałość i właściwości izolacyjne tynku. Właściwe wykończenie tynku to kluczowy aspekt, który nie tylko zapewnia walory estetyczne, ale również funkcjonalność, dlatego stosowanie nieodpowiednich technik może skutkować problemami w przyszłości, takimi jak pęknięcia, odspojenia czy zawilgocenie.

Pytanie 23

Powierzchnia gipsowa, która ma być poddana tynkowaniu, musi być

A. gładka i nawilżona
B. porysowana i nawilżona
C. gładka i sucha
D. porysowana i sucha
Podłoże gipsowe przeznaczone do tynkowania powinno być porysowane i zwilżone, ponieważ te dwa czynniki znacząco wpływają na przyczepność tynku do podłoża. Porysowanie powierzchni gipsowej zwiększa powierzchnię styku pomiędzy gipsem a tynkiem, co przyczynia się do lepszej adhezji. Dzięki temu tynk nie odrywa się i nie pęka, co jest kluczowe dla długotrwałości wykończenia. W przypadku gdy podłoże jest także zwilżone, minimalizujemy ryzyko zbyt szybkiego wysychania tynku, co mogłoby prowadzić do jego pękania i osłabienia struktury. Dobrą praktyką jest nawilżenie podłoża przed nałożeniem tynku, co zapewnia równomierne wchłanianie wilgoci i stabilne warunki do pracy. Warto również pamiętać, że zgodnie z normami budowlanymi, każde podłoże musi być odpowiednio przygotowane, aby spełniało wymagania dotyczące jakości wykonania robót budowlanych. Przykładem zastosowania tych zasad mogą być projekty budowlane, w których tynki są nakładane na ściany gipsowe w celu uzyskania estetycznego i trwałego wykończenia.

Pytanie 24

Jakie materiały są wymagane do naprawy pojedynczych pęknięć w murze o głębokości przekraczającej 30 mm?

A. Cięgna z prętów stalowych i kątowniki mocujące
B. Klamry stalowe Ø6-8 mm oraz zaczyn gipsowy
C. Klamry stalowe Ø15-18 mm oraz zaczyn cementowy
D. Kotwy stalowe rozporowe gwintowane oraz mieszanka betonowa
Wybór klamr stalowych Ø15-18 mm oraz zaczynu cementowego do naprawy pęknięć muru o głębokości większej niż 30 mm jest uzasadniony ze względu na wysoką wytrzymałość materiałów oraz ich zdolność do zapewnienia stabilności strukturalnej. Klamry stalowe są stosowane w celu wzmocnienia połączeń w murze, co jest kluczowe w przypadku głębokich pęknięć. Dzięki odpowiedniej średnicy klamr, możliwe jest efektywne przeniesienie obciążeń na otaczające materiały. Zaczyn cementowy, z kolei, charakteryzuje się doskonałymi właściwościami wiążącymi oraz odpornością na działanie czynników atmosferycznych. W praktyce, taka kombinacja materiałów pozwala nie tylko na skuteczne wypełnienie pęknięć, ale także na ich długotrwałe zabezpieczenie przed dalszymi uszkodzeniami. Stosowanie klamr stalowych w połączeniu z zaczynem cementowym jest zgodne z dobrymi praktykami budowlanymi, które wskazują na konieczność używania wytrzymałych materiałów w przypadku napraw strukturalnych.

Pytanie 25

Jeżeli do wymurowania ścian zaplanowano 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12, to łączny koszt zakupu zapraw, zgodnie z cennikiem, wyniesie

Cennik zakupu zapraw
zaprawa cementowo-wapienna M 7– 175,00 zł/m3
zaprawa cementowa M 12– 200,00 zł/m3

A. 4 600,00 zł
B. 4 450,00 zł
C. 3 400,00 zł
D. 2 975,00 zł
Aby obliczyć łączny koszt zakupu zapraw, niezbędne jest przemnożenie ilości zaprawy przez ich cenę jednostkową, co stanowi standardową praktykę w zarządzaniu kosztami budowy. W opisywanym przypadku mamy 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12. Każdy z tych typów zapraw ma różne ceny, które powinny być znane z cennika. Pomnożenie objętości zaprawy przez jednostkową cenę daje koszt dla każdej z zapraw. Następnie, poprzez zsumowanie tych dwóch wartości, uzyskujemy łączny koszt zakupu. Przykładowo, jeżeli cena jednostkowa zaprawy M 7 wynosi 300 zł/m3, a zaprawy M 12 550 zł/m3, to koszt wynosi odpowiednio 1800 zł dla M 7 oraz 9350 zł dla M 12, co daje łączny koszt 11150 zł. Poprawne podejście do obliczeń kosztów materiałowych jest kluczowe w procesie budowlanym, ponieważ wpływa na ostateczny budżet projektu oraz jego rentowność. Dobrą praktyką jest również uwzględnienie ewentualnych zniżek lub kosztów dodatkowych, co może pomóc w dokładniejszym szacowaniu.

Pytanie 26

Tynk wewnętrzny, który odznacza się twardą i gładką powierzchnią przypominającą polerowany marmur, to

A. sztukateria
B. stiuk
C. sztablatura
D. sgraffito
Stiuk to technika wykończeniowa, która charakteryzuje się twardą i gładką powierzchnią, często stosowaną w architekturze wnętrz, aby naśladować wygląd polerowanego marmuru. Wykonanie stiuku polega na aplikacji specjalnych mieszanek gipsowych lub wapiennych, a następnie ich szlifowaniu oraz polerowaniu, co nadaje im charakterystyczny blask. Stiuk jest szczególnie popularny w stylu klasycznym, ale również w nowoczesnych aranżacjach, gdzie estetyka i elegancja odgrywają kluczową rolę. Przykłady zastosowania stiuku można znaleźć w luksusowych hotelach, rezydencjach oraz w obiektach użyteczności publicznej, gdzie wymagany jest efektowne wykończenie wnętrz. W kontekście branżowych standardów, stosowanie stiuku często związane jest z praktykami konserwatorskimi, gdzie przywraca się dawne techniki wykończeniowe, zachowując historyczny charakter obiektów. Warto również podkreślić, że stiuk jest materiałem o dobrych właściwościach akustycznych i termoizolacyjnych, co czyni go funkcjonalnym wyborem w projektowaniu wnętrz.

Pytanie 27

Jakie narzędzie nie jest pomocne w mierzeniu kątów pomiędzy przecinającymi się płaszczyznami sąsiadujących murów?

A. Kątownica i łata
B. Trójkąt egipski
C. Poziomnica
D. Kątownik murarski
Poziomnica jest narzędziem służącym do pomiaru poziomości i pionowości powierzchni, co oznacza, że jej głównym celem jest zapewnienie, że elementy konstrukcyjne są ułożone w linii prostej wzdłuż osi wertykalnej lub horyzontalnej. W kontekście sprawdzania kątów między przecinającymi się płaszczyznami dwóch sąsiednich murów, poziomnica nie jest odpowiednim narzędziem, ponieważ nie ma zdolności do pomiaru kątów. Do takich pomiarów niezbędne są narzędzia, które mogą określić, czy kąty są prostokątne, takie jak kątownica lub kątownik murarski. Poziomnica odgrywa kluczową rolę w budownictwie, szczególnie podczas stawiania ścian czy układania podłóg, gdzie precyzyjne wypoziomowanie jest istotne dla stabilności konstrukcji. Dzięki zastosowaniu poziomnicy, można zminimalizować ryzyko deformacji, które mogłyby prowadzić do większych problemów w przyszłości, takich jak osiadanie budynku. W standardach budowlanych podkreśla się znaczenie używania poziomicy w każdym etapie budowy w celu zapewnienia jakości i bezpieczeństwa.

Pytanie 28

W hurtowni "Bud-kom" sprzedaż bloczków z betonu komórkowego odbywa się wyłącznie w pełnych paletach. Zgodnie z potrzebami do budowy ścian budynku wymagane jest 375 sztuk bloczków o wymiarach 480×199×599 mm. Na jednej palecie mieści się 24 bloczki o tych rozmiarach. Cena tych bloczków wynosi 631,00 zł za paletę. Jakie będą całkowite koszty zakupu bloczków w tej hurtowni zgodnie z wymaganiami?

A. 9 750,00 zł
B. 10 096,00 zł
C. 10 125,00 zł
D. 9 465,00 zł
Aby obliczyć koszty zakupu bloczków z betonu komórkowego w hurtowni 'Bud-kom', musimy najpierw ustalić, ile palet bloczków jest potrzebnych do zaspokojenia zapotrzebowania. Potrzebujemy 375 bloczków, a na jednej palecie mieszczą się 24 bloczki. Dlatego liczba potrzebnych palet wynosi: 375 podzielić przez 24, co daje 15,625. Ponieważ sprzedaż w hurtowni jest realizowana wyłącznie w pełnych paletach, zaokrąglamy tę liczbę w górę do 16 palet. Koszt jednej palety wynosi 631,00 zł, więc całkowity koszt zakupu będzie wynosił 16 palet pomnożone przez 631,00 zł, co daje 10 096,00 zł. Dzięki tej metodzie można szybko ocenić koszty materiałów budowlanych, co jest kluczowe dla harmonogramu i budżetu projektu budowlanego. W praktyce wiedza ta jest niezbędna do planowania zakupów i zarządzania finansami projektu budowlanego, a także do wspierania negocjacji z dostawcami, co może pozwolić na uzyskanie korzystniejszych warunków handlowych.

Pytanie 29

Jaką minimalną grubość powinny mieć ścianki oddzielające kanały dymowe w kominach wykonanych z cegły?

A. 1/2 cegły
B. 1/4 cegły
C. 1 cegła
D. 3/4 cegły
Wybierając odpowiedź, która sugeruje, że grubość przegródek jest mniejsza niż 1/2 cegły, można się łatwo pomylić, jeśli nie zna się roli tych przegródek w kominach. One są naprawdę ważne dla utrzymania dobrej izolacji i oddzielania kanałów dymowych. Grubości 3/4 cegły, 1/4 cegły czy 1 cegła są po prostu niewłaściwe i nie spełniają wymogów bezpieczeństwa. Jeśli przegródki będą za cienkie, jak w przypadku 1/4 cegły, może to prowadzić do problemu z odprowadzaniem spalin, co jest niebezpieczne dla zdrowia. Z kolei 1 cegła to może być za dużo, jeśli chodzi o koszty budowy, a przy tym nie warto przesadzać z materiałami. W sumie, nieprzestrzeganie norm dotyczących grubości tych przegródek może prowadzić do poważnych problemów, jak zapchanie kanałów dymowych, co pokazuje, że warto trzymać się zasad budowlanych przy projektowaniu kominów.

Pytanie 30

W czasie intensywnych upałów cegłę ceramiczną wypełnioną przed jej użyciem do murowania należy

A. zgromadzić pod zadaszeniem
B. nakryć plandeką
C. zagruntować gruntownikiem
D. zamoczyć w wodzie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zanurzenie cegły ceramicznej w wodzie przed murowaniem to naprawdę ważny krok, zwłaszcza gdy na dworze jest gorąco. Cegła ceramiczna łatwo wchłania wodę, a jeśli jest zbyt sucha, to może się okazać, że zaprawa nie zwiąże się z nią dobrze. Chodzi o to, żeby cegła miała odpowiednią wilgoć, co sprawia, że połączenie z zaprawą murarską staje się mocniejsze. Kiedy nie nawilżamy cegły, to ona może wciągać wodę z zaprawy, co prowadzi do pęknięć i osłabienia całej ściany. Najlepiej zanurzyć cegły na około 10-15 minut, żeby miały czas na wchłonięcie wody. W branży budowlanej to już praktyka, która jest uważana za standard, co można zobaczyć w normach budowlanych jak PN-EN 771-1. Mówią one o tym, jak ważne jest dobre przygotowanie materiałów przed ich użyciem, więc lepiej tego nie lekceważyć.

Pytanie 31

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 150 kg
B. 100 kg
C. 25 kg
D. 50 kg
Aby obliczyć ilość cementu potrzebną do wykonania zaprawy cementowo-wapiennej, należy najpierw zrozumieć stosunek objętościowy składników, który wynosi 1:2:4. Oznacza to, że na każdą część cementu przypadają dwie części wapna i cztery części piasku. W tym przypadku, skoro przygotowano 50 kg wapna, to obliczamy ilość cementu w następujący sposób: jeśli 2 części to 50 kg, to 1 część (czyli cement) wynosi 25 kg (50 kg / 2 = 25 kg). Dodatkowo, dla zapewnienia właściwych właściwości zaprawy oraz trwałości konstrukcji, dobrym standardem jest stosowanie dokładnych proporcji, które zapewniają odpowiednią wytrzymałość i elastyczność mieszanki. Warto pamiętać, że w praktyce do wykonania zaprawy często korzysta się z gotowych mieszanek zapraw, które już mają zmierzone i dobrane składniki w odpowiednich proporcjach, co ułatwia pracę budowlaną.

Pytanie 32

Budowę stropu Fert o długości 4,00 m należy rozpocząć od położenia

A. zbrojenia belek monolitycznych
B. pustaków ceramicznych na deskowaniu
C. zbrojenia żeber rozdzielczych
D. belek nośnych na ścianach
Rozpoczęcie wykonania stropu Fert od ułożenia pustaków ceramicznych na deskowaniu jest niezgodne z zasadami konstrukcyjnymi. Pustaki ceramiczne są elementami wypełniającymi, które pełnią funkcję izolacyjną oraz zwiększają masę stropu, ale ich układanie powinno następować dopiero po zamocowaniu belek nośnych. Zbrojenie żeber rozdzielczych, choć istotne w kontekście zwiększenia nośności i sztywności stropu, również należy umieszczać po ułożeniu belek nośnych. Niezależnie od tego, jak ważne jest zapewnienie odpowiedniego zbrojenia, cała konstrukcja bazuje na prawidłowo zamocowanych belkach nośnych. Kolejnym błędnym podejściem jest rozpoczęcie od zbrojenia belek monolitycznych, które w kontekście stropu Fert nie znajduje zastosowania, ponieważ strop ten bazuje na prefabrykowanych elementach, a nie monolitycznej konstrukcji. Zrozumienie sekwencji prac budowlanych oraz znaczenia każdego z elementów jest kluczowe dla prawidłowego wykonania stropu. Na tym etapie często popełnia się błąd, myśląc, że można pominąć fundamentalne elementy konstrukcyjne na rzecz detali, co w konsekwencji prowadzi do osłabienia całej struktury i zwiększa ryzyko awarii. W praktyce budowlanej zawsze należy dbać o kolejność i sposób wykonania, aby zapewnić stabilność i bezpieczeństwo budynku.

Pytanie 33

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Gipsu budowlanego
B. Wapna pokarbidowego
C. Gipsu szpachlowego
D. Wapna hydraulicznego
Wybór wapna hydraulicznego do wykonania tynku zewnętrznego w miejscach narażonych na działanie wilgoci jest uzasadniony jego właściwościami. Wapno hydrauliczne jest spoiwem, które w przeciwieństwie do wapna gaszonego, może twardnieć zarówno na powietrzu, jak i pod wodą, co czyni je idealnym do zastosowań na zewnątrz budynków. Działa to na korzyść trwałości tynku, który musi znosić zmienne warunki atmosferyczne, w tym deszcz i wilgoć. Przykładem zastosowania wapna hydraulicznego może być tynkowanie fundamentów budynków oraz murów piwnicznych, gdzie narażenie na wodę gruntową jest intensywne. W obiektach zabytkowych, gdzie zachowanie tradycyjnych metod budowlanych jest niezwykle istotne, wapno hydrauliczne jest również preferowane ze względu na swoje właściwości paroprzepuszczalne, co pozwala na odprowadzanie wilgoci bez uszkadzania struktury budynku. Warto również wspomnieć, że zgodnie z normami budowlanymi, stosowanie wapna hydraulicznego spełnia wymogi dotyczące ochrony przed wilgocią, co potwierdzają odpowiednie badania i certyfikaty. Dlatego wapno hydrauliczne stanowi najlepszy wybór do tynków w trudnych warunkach atmosferycznych.

Pytanie 34

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)

A. 4 pojemniki wapna i 2 pojemniki cementu.
B. 5 pojemników cementu i 2,5 pojemnika wapna.
C. 5 pojemników wapna i 2,5 pojemnika cementu.
D. 4 pojemniki cementu i 2 pojemniki wapna.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 35

Przygotowanie zaprawy cementowo-wapiennej w sposób ręczny polega na odmierzeniu wszystkich składników, a następnie ich zmieszaniu

A. cementu z ciastem wapiennym rozrzedzonym wodą i dodaniu piasku
B. cementu z piaskiem i dodaniu ciasta wapiennego rozrzedzonego wodą
C. wody z piaskiem i dodaniu ciasta wapiennego oraz cementu
D. wody z cementem i dodaniu piasku oraz ciasta wapiennego
Wiele osób może mylnie uważać, że kluczowe jest dodawanie różnych składników w różnych kolejnościach, co prowadzi do nieprawidłowego przygotowania zaprawy. Na przykład, w odpowiedzi sugerującej połączenie wody z piaskiem i ciastem wapiennym oraz cementem, brakuje podstawowego kroku, jakim jest połączenie cementu z piaskiem. Cement jest głównym składnikiem wiążącym, a jego mieszanie z piaskiem przed dodaniem innych komponentów jest niezbędne do osiągnięcia odpowiedniej struktury i właściwości zaprawy. Kolejne podejście, które sugeruje mieszanie wody z cementem, a następnie dodanie piasku oraz ciasta wapiennego, pomija istotny fakt, że zaprawy na bazie cementu muszą najpierw związać się z piaskiem, aby stworzyć stabilną masę. Z kolei stwierdzenie, że można połączyć cement z ciastem wapiennym rozrzedzonym wodą i dodać piasek, ignoruje rolę piasku jako składnika, który zapewnia strukturę. Takie podejścia prowadzą do nieprawidłowych proporcji oraz braku właściwości mechanicznych zaprawy, co może skutkować osłabieniem całej konstrukcji. W kontekście standardów budowlanych, istotne jest przestrzeganie norm dotyczących proporcji składników, co zapewnia bezpieczeństwo i trwałość wykonanych prac budowlanych.

Pytanie 36

Na podstawie przedstawionej receptury roboczej oblicz, ile piasku należy dodać do sporządzenia mieszanki betonowej, jeżeli na jeden zarób użyto 50 kg cementu.

Receptura robocza
składniki 1 m³ mieszanki betonowej
Beton C8/10
cement:250 kg
piasek:410 dm³
żwir:783 dm³
woda:165 dm³

A. 165 dm3
B. 82 kg
C. 82 dm3
D. 165 kg
Poprawna odpowiedź, 82 dm3, wynika z zastosowania proporcji, co jest kluczowym podejściem w obliczeniach dotyczących mieszania materiałów budowlanych. W przypadku betonu, zachowanie odpowiednich proporcji między cementem, wodą, piaskiem i kruszywem jest niezbędne dla uzyskania optymalnej wytrzymałości mieszanki. Receptura wskazuje, że dla 250 kg cementu potrzebne jest 410 dm3 piasku. Skoro używamy tylko 50 kg cementu, co stanowi 1/5 tej ilości, również piasek powinien być zmniejszony proporcjonalnie, co daje 82 dm3. W praktyce budowlanej, precyzyjne obliczenia tego rodzaju są kluczowe, ponieważ zbyt mała lub zbyt duża ilość piasku może prowadzić do osłabienia struktury betonu, co wpływa na jego trwałość i odporność na warunki atmosferyczne. Proporcje materiałów powinny być zawsze dostosowywane do specyficznych warunków budowy oraz standardów, takich jak Eurokod 2, który określa zasady projektowania konstrukcji betonowych.

Pytanie 37

Stalowe elementy, które mają służyć jako podłoże pod tynk, powinny być przygotowane na całej powierzchni

A. owinąć siatką stalową ocynkowaną
B. wyłożyć matami trzcinowymi
C. obłożyć listewkami drewnianymi
D. pokryć mleczkiem cementowym
Owinięcie elementów stalowych siatką stalową ocynkowaną jest najlepszym rozwiązaniem przed nałożeniem tynku, ponieważ zabezpiecza stal przed korozją oraz zapewnia odpowiednią przyczepność tynku do powierzchni. Siatka stalowa działa jako zbrojenie, które zwiększa wytrzymałość tynku, minimalizując ryzyko pęknięć oraz odspajania materiału od podłoża. Zastosowanie siatki ocynkowanej jest zgodne z zasadami dobrych praktyk budowlanych, które zalecają stosowanie materiałów odpornych na działanie wilgoci oraz chemikaliów. W praktyce, siatka powinna być przytwierdzona do elementów stalowych w sposób zapewniający jej stabilność, co dodatkowo można osiągnąć przez użycie specjalnych kołków montażowych. Przykład zastosowania to budowa ścianek działowych, gdzie stalowa konstrukcja wymaga trwałego i solidnego podłoża do nałożenia tynku, co jest istotne w kontekście długoterminowej eksploatacji budynku oraz jego estetyki.

Pytanie 38

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Żużla wielkopiecowego
B. Piasku rzecznego
C. Piasku kwarcowego
D. Miału marmurowego
Piasek kwarcowy, choć często używany w budownictwie, nie jest odpowiedni do produkcji zapraw ciepłochronnych, głównie z powodu swoich właściwości termoizolacyjnych, które są znacznie gorsze niż te oferowane przez żużel wielkopiecowy. Piasek kwarcowy charakteryzuje się dużą gęstością i masą, co może prowadzić do zwiększenia ciężaru tynku, a tym samym do obniżenia jego efektów izolacyjnych. W kontekście tynków ciepłochronnych, kluczowe jest, aby kruszywo miało zdolność do zatrzymywania powietrza w swojej strukturze, co piasek kwarcowy nie jest w stanie zapewnić. Z kolei miał marmurowy, pomimo że ma estetyczne walory, nie spełnia wymogów dotyczących termoizolacyjności i może być zbyt drogi w zastosowaniu w skali budownictwa. Piasek rzeczny, choć z natury ma mniejsze zanieczyszczenia, również nie zapewnia odpowiednich właściwości izolacyjnych i może prowadzić do problemów z wilgocią w tynku. Wybór niewłaściwego kruszywa może skutkować nieefektywnymi rozwiązaniami budowlanymi, co podkreśla znaczenie stosowania materiałów zgodnych z wytycznymi branżowymi oraz normami, takimi jak PN-EN 998-1, które precyzują parametry technologiczne dla zapraw budowlanych. Dlatego też kluczowe jest, aby osoby zajmujące się doborem materiałów budowlanych miały świadomość właściwości technicznych i praktycznych aspektów używanych surowców.

Pytanie 39

Wymiary pomieszczenia przedstawionego na rysunku w skali 1:100 wynoszą 8x10 cm. Jaką objętość ma to pomieszczenie, jeżeli jego rzeczywista wysokość to 2,5 m?

A. 50 m3
B. 200 m3
C. 100 m3
D. 800 m3
Aby obliczyć kubaturę pomieszczenia, należy znać jego wymiary oraz wysokość. Wymiary pomieszczenia na rysunku są podane w skali 1:100, co oznacza, że każdy 1 cm na rysunku odpowiada 100 cm (czyli 1 m) w rzeczywistości. Zatem wymiary 8x10 cm w skali 1:100 przekładają się na rzeczywiste wymiary pomieszczenia, które wynoszą 8 m x 10 m. Kubatura pomieszczenia oblicza się jako iloczyn długości, szerokości i wysokości. W tym przypadku: 8 m (długość) * 10 m (szerokość) * 2,5 m (wysokość) = 200 m3. Przykładem zastosowania tej wiedzy jest projektowanie wnętrz czy architektura, gdzie dokładne obliczenia kubatury są kluczowe dla określenia wymagań wentylacyjnych, grzewczych, a także dla optymalizacji przestrzeni. Zgodnie z normami budowlanymi, takie obliczenia muszą być precyzyjne, co pozwala na efektywne zarządzanie przestrzenią oraz komfort użytkowników.

Pytanie 40

Wszystkie techniczne wymagania związane z realizacją i odbiorem prac tynkarskich znajdują się w

A. kosztorysie ofertowym
B. projekcie architektonicznym
C. specyfikacji technicznej
D. dzienniku budowy
Dziennik budowy jest dokumentem administracyjnym, który służy do rejestrowania postępu prac budowlanych oraz wszelkich istotnych wydarzeń na budowie. Nie zawiera on jednak szczegółowych wymagań dotyczących wykonania robót, co prowadzi do błędnych wniosków dotyczących jego roli w procesie budowlanym. W projekcie architektonicznym znajdują się głównie rysunki i opisy dotyczące ogólnego wyglądu budynku oraz jego funkcji, ale nie precyzuje on technologii wykonania poszczególnych robót budowlanych. Kosztorys ofertowy koncentruje się na aspektach finansowych inwestycji, takich jak wycena robót, ale również nie zawiera informacji technicznych dotyczących wykonania prac. Zrozumienie roli każdego z tych dokumentów jest kluczowe w procesie budowlanym. W praktyce, błędne przekonanie, że może się je stosować jako alternatywę dla specyfikacji technicznej, często prowadzi do problemów budowlanych, takich jak niezgodność materiałów z wymaganiami czy niedostateczna jakość wykonania. Dlatego ważne jest, aby w każdym projekcie budowlanym klarownie określić, jakie dokumenty są odpowiedzialne za konkretne aspekty techniczne, aby uniknąć nieporozumień i zapewnić wysoką jakość końcowego produktu.