Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 maja 2025 19:57
  • Data zakończenia: 3 maja 2025 20:12

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,0 m
B. 2,5 m
C. 1,5 m
D. 2,0 m
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 2

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Miernika rezystancji izolacji
B. Miernika rezystancji uziemienia
C. Multimetru
D. Mostka rezystancyjnego
Miernik rezystancji uziemienia to naprawdę przydatne narzędzie, które wykorzystywane jest do pomiaru rezystancji punktu uziemienia. To bardzo ważne w przypadku systemów odgromowych, bo dobra rezystancja to bezpieczeństwo. W odróżnieniu od multimetru, który może robić dużo różnych rzeczy, miernik rezystancji uziemienia jest stworzony specjalnie do tych pomiarów, szczególnie w trudnych warunkach, gdzie różne rzeczy, jak na przykład wilgoć, mogą wpłynąć na wyniki. Przykładowo, używa się go, żeby sprawdzić, czy system odgromowy działa jak należy, zanim zacznie działać albo po jakichś zmianach. Ważne, żeby rezystancja była na poziomie mniejszym niż 10 omów, zgodnie z normami takimi jak PN-EN 62305. To pokazuje, jak istotne są regularne przeglądy, żeby zajechać ryzyko porażenia prądem i lepiej chronić się przed wyładowaniami atmosferycznymi.

Pytanie 3

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Sterownik rolet.
B. Przekaźnik priorytetowy.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.
Przekaźnik priorytetowy, który został przedstawiony na rysunku, jest kluczowym elementem w nowoczesnych systemach automatyki budynkowej. Oznaczenie "PR-612" jednoznacznie wskazuje na ten typ urządzenia, które jest zaprojektowane do zarządzania priorytetami w zasilaniu różnych obwodów elektrycznych. W praktyce przekaźniki priorytetowe są wykorzystywane w sytuacjach, gdzie istnieje potrzeba zarządzania zasilaniem w sposób inteligentny, na przykład w przypadku awarii zasilania lub w celu oszczędności energii. Działają one na zasadzie automatycznego przełączania źródła zasilania na urządzenia o wyższym priorytecie, co zapewnia ciągłość pracy najważniejszych systemów w budynku. Zastosowanie przekaźników priorytetowych jest zgodne z normami EN 61000-3-2 dotyczącymi ograniczeń emisji harmonicznych dla urządzeń elektrycznych oraz IEC 61131-2, która reguluje normy dla urządzeń automatyki. Dzięki zastosowaniu tych elementów, można tworzyć bardziej efektywne i bezpieczne systemy zarządzania energią w budynkach.

Pytanie 4

W prawidłowo działającej instalacji elektrycznej w kuchni wymieniono uszkodzone gniazdo wtykowe. Po uruchomieniu odbiornika zadziałał wyłącznik różnicowoprądowy. Jaki błąd wystąpił przy montażu gniazda?

A. Nie podłączono przewodu neutralnego
B. Zamieniono zacisk przewodu fazowego z neutralnym
C. Nie podłączono przewodu ochronnego
D. Zamieniono zacisk przewodu ochronnego z neutralnym
Brak podłączenia przewodu ochronnego jest jednym z najczęstszych błędów montażowych w instalacjach elektrycznych, jednak jego skutki mogą być nieco mniej dramatyczne niż zamiana przewodów. Przewód ochronny odgrywa kluczową rolę w bezpieczeństwie użytkowników, zapewniając ochronę przed porażeniem prądem elektrycznym. W przypadku jego nieobecności, nawet przy poprawnym podłączeniu przewodów fazowego i neutralnego, użytkownik może być narażony na niebezpieczeństwo w sytuacji awaryjnej. Mylne przekonanie o tym, że nie jest konieczne podłączenie przewodu ochronnego w gniazdach elektrycznych, prowadzi do sytuacji, w której urządzenia elektryczne mogą działać, ale nie są bezpieczne. Zamiana zacisku przewodu fazowego z neutralnym jest kolejnym nieprawidłowym podejściem, które nie tylko może skutkować uszkodzeniem sprzętu, ale również stwarza poważne zagrożenie dla użytkowników. W takich sytuacjach, gdy faza jest zamieniana z neutralnym, nieprawidłowe napięcie może pojawić się na gniazdach, co jest niebezpieczne dla podłączonych urządzeń. Warto również zauważyć, że niepodłączenie przewodu neutralnego w systemach jednofazowych może spowodować, że urządzenia nie będą działały poprawnie, ale niekoniecznie będą zagrażały bezpieczeństwu. Każdy z tych błędów jest wynikiem nierozumienia podstawowych zasad działania instalacji elektrycznych oraz zaniedbania norm bezpieczeństwa, co może prowadzić do poważnych konsekwencji zarówno dla użytkowników, jak i dla samej instalacji.

Pytanie 5

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,2 s i 0,4 s
B. 0,4 s i 0,8 s
C. 0,4 s i 0,2 s
D. 0,8 s i 0,4 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 6

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. uszkodzenia podłączonego urządzenia elektrycznego
B. zagrożenia porażeniem prądem elektrycznym
C. zwarcia w obwodzie elektrycznym
D. przeciążenia obwodu elektrycznego
Wielu ludzi myśli, że zamontowanie gniazda bez styku ochronnego może prowadzić do zwarcia w instalacji elektrycznej, co jest błędnym rozumowaniem. Zwarcie występuje, gdy następuje niezamierzony kontakt między przewodami o różnym potencjale, co prowadzi do nadmiernego przepływu prądu. W przypadku gniazda bez styku ochronnego nie dochodzi do sytuacji zwarcia, ale raczej do braku bezpiecznego uziemienia dla urządzenia. Kolejnym mylnym przekonaniem jest to, że brak styku ochronnego może prowadzić do przeciążenia instalacji elektrycznej. Przeciążenie ma miejsce, gdy zbyt wiele urządzeń pobiera prąd jednocześnie, co nie jest bezpośrednio związane z uziemieniem. Również uszkodzenie urządzenia elektrycznego nie jest bezpośrednim skutkiem braku styku ochronnego. Uszkodzenia mogą powstać w wyniku innych czynników, takich jak zbyt wysokie napięcie czy awaria wewnętrzna. W rzeczywistości, najważniejszym zagrożeniem wynikającym z zastosowania gniazda bez styku ochronnego jest możliwość porażenia prądem elektrycznym, co jest powszechnie bagatelizowane. Wynika to z braku zrozumienia zasad działania urządzeń elektrycznych i standardów bezpieczeństwa, takich jak PN-IEC 60439, które podkreślają znaczenie odpowiedniej ochrony w instalacjach elektrycznych. Edukacja na temat właściwego użytkowania i ochrony w instalacjach elektrycznych jest kluczowa dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 7

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Liczba urządzeń zasilanych z tej instalacji
B. Kształt budynku w przestrzeni
C. Warunki zewnętrzne, którym instalacja jest poddawana
D. Metoda montażu instalacji
Warunki zewnętrzne, na jakie jest narażona instalacja, mają kluczowe znaczenie dla określenia częstotliwości okresowych kontroli instalacji elektrycznej. W praktyce oznacza to, że instalacje znajdujące się w trudnych warunkach, takich jak znaczne zmiany temperatur, wilgotność, zanieczyszczenia chemiczne czy fizyczne uszkodzenia, wymagają częstszej inspekcji. Na przykład, instalacje elektryczne w zakładach przemysłowych, gdzie mogą występować agresywne substancje chemiczne, powinny być sprawdzane regularnie, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo pracowników. Ponadto, normy branżowe, takie jak PN-EN 60364, zaznaczają, że różne środowiska pracy mają różne wymagania dotyczące przeglądów. Przykładowo, instalacje w budynkach użyteczności publicznej powinny być kontrolowane co najmniej raz w roku, ale w warunkach ekstremalnych, takich jak miejsca o dużym natężeniu ruchu lub narażone na czynniki zewnętrzne, kontrole powinny być dokonywane jeszcze częściej. Dbanie o regularne przeglądy pozwala na identyfikację potencjalnych zagrożeń i utrzymanie wysokiego poziomu bezpieczeństwa.

Pytanie 8

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa stosowana do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach: PN = 3 kW, UN = 230 V?

A. aR 16 A
B. gB 20 A
C. gG 16 A
D. aM 20 A
Wybór wkładki topikowej gG 16 A jako zabezpieczenia dla obwodu jednofazowego bojlera elektrycznego o mocy 3 kW i napięciu 230 V jest właściwy z kilku powodów. Przede wszystkim, wkładki gG są stosowane do ochrony obwodów przed przeciążeniem oraz zwarciem, co jest kluczowe w przypadku urządzeń grzewczych, takich jak bojler. Znamionowy prąd bojlera można obliczyć, dzieląc moc przez napięcie, co daje wynik P/N = 3000 W / 230 V ≈ 13 A. Wybierając wkładkę o wartości 16 A, zapewniamy odpowiedni margines bezpieczeństwa, który zapobiega przypadkowemu wyłączeniu z powodu chwilowych przeciążeń. Standardy branżowe, takie jak PN-EN 60269, wskazują na odpowiednie zastosowanie wkładek gG w instalacjach, gdzie wymagane jest zabezpieczenie przed skutkami zwarć i przegrzania. W praktyce, wkładki topikowe gG są powszechnie stosowane w domowych instalacjach elektrycznych i zapewniają skuteczną ochronę oraz niezawodność działania.

Pytanie 9

Jakie środki stosuje się w instalacjach elektrycznych w celu zabezpieczenia przed dotykiem pośrednim (dodatkowa ochrona)?

A. separację elektryczną
B. urządzenia różnicowoprądowe ochronne
C. ogrodzenia oraz obudowy
D. umiejscowienie poza zasięgiem dłoni
Ochrona przed dotykiem pośrednim jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych. Wiele osób może mylnie sądzić, że zastosowanie ochronnych urządzeń różnicowoprądowych jest wystarczające do zapewnienia bezpieczeństwa. Choć te urządzenia są istotnym elementem ochrony przed porażeniem prądem, ich rola polega głównie na wykrywaniu różnic w prądzie, co nie eliminuje całkowicie ryzyka dotyku pośredniego. Ponadto, stosowanie ogrodzeń i obudów, choć przydatne, nie jest skutecznym sposobem na ochronę przed dotykiem pośrednim, ponieważ nie zawsze zapewnia odpowiednie zabezpieczenie w przypadku awarii czy uszkodzeń. Lokowanie elementów elektrycznych poza zasięgiem ręki również nie jest wystarczającym środkiem ochronnym, gdyż nie eliminuje ryzyka wystąpienia sytuacji niebezpiecznych w przypadku, gdy użytkownicy mają dostęp do takich urządzeń. W rzeczywistości kluczowym elementem zapobiegania porażeniom jest zapewnienie odpowiedniej separacji elektrycznej, która gwarantuje, że użytkownicy nie mają fizycznego kontaktu z częściami instalacji narażonymi na działanie napięcia. Z tego powodu, koncentrując się na tych błędnych podejściach, można zrozumieć, jak istotne jest właściwe projektowanie systemów elektrycznych w celu zapewnienia maksymalnego bezpieczeństwa użytkowników. Zachowanie odpowiednich standardów, takich jak norma PN-EN 61140, jest niezbędne, aby wyeliminować ryzyko porażenia prądem i zapewnić skuteczną ochronę przed dotykiem pośrednim.

Pytanie 10

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. prefabrykowanej.
B. natynkowej.
C. podtynkowej.
D. wiązanej.
Wykorzystanie bruzdownicy w instalacjach wiązkowych, natynkowych lub prefabrykowanych jest nieadekwatne i opiera się na błędnym zrozumieniu specyfiki tych systemów. Instalacje wiązkowe, z założenia, polegają na używaniu kabli w formie zorganizowanych wiązek, które są montowane na powierzchni, co eliminuje potrzebę wykonywania rowków w ścianach. W tym przypadku, kable są często prowadzone po ścianach, co jest zwane instalacją natynkową. Takie podejście nie wymaga przecinania materiałów budowlanych ani stosowania bruzdownicy. W kontekście prefabrykowanych instalacji, które są montowane za pomocą gotowych elementów, również nie zachodzi potrzeba korzystania z bruzdownicy. Prefabrykaty są projektowane w taki sposób, aby ułatwić szybki i efektywny montaż, co sprawia, że cięcie w ścianach nie jest konieczne. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków obejmują mylenie różnych technik instalacyjnych oraz brak zrozumienia ich zastosowania w praktyce. Zrozumienie różnic pomiędzy tymi systemami jest kluczowe dla efektywnego planowania i realizacji instalacji elektrycznych i hydraulicznych, co w konsekwencji wpływa na bezpieczeństwo i estetykę wykonania.

Pytanie 11

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. trójtorowy bez styku kontrolnego
B. trójtorowy ze stykiem kontrolnym
C. jednotorowy ze stykiem kontrolnym
D. jednotorowy bez styku kontrolnego
Przekaźnik termobimetalowy trójtorowy ze stykiem sterującym jest idealnym rozwiązaniem do zabezpieczania silników trójfazowych przed przeciążeniem. Dzięki zastosowaniu tego typu przekaźnika możemy monitorować prąd w trzech fazach jednocześnie, co pozwala na szybsze wykrycie nadmiernego obciążenia oraz wyłączenie silnika w przypadku wystąpienia awarii. W praktyce, takie rozwiązanie jest zgodne z normami ochrony silników, jak IEC 60947, które zalecają stosowanie przekaźników termicznych w celu zapewnienia bezpieczeństwa pracy urządzeń elektrycznych. Przykładowo, w przypadku silników o większej mocy lub w aplikacjach wymagających wysokiej niezawodności, takich jak przemysł ciężki, stosowanie trójtorowego przekaźnika termobimetalowego staje się standardem. Dodatkowo, styk sterujący umożliwia integrację z układami automatyki oraz systemami alarmowymi, co zwiększa efektywność i bezpieczeństwo operacji. W rezultacie, wybór przekaźnika trójtorowego ze stykiem sterującym jest nie tylko najlepszą praktyką, ale też wymogiem w wielu zastosowaniach przemysłowych.

Pytanie 12

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,57
C. 0,82
D. 0,69
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 13

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik świecznikowy
B. Łącznik schodowy pojedynczy
C. Łącznik krzyżowy
D. Łącznik schodowy podwójny
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 14

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Upływ prądu
B. Skok napięcia
C. Zwarcie międzyfazowe
D. Przeciążenie obwodu
Odpowiedź 'Upływ prądu' jest na pewno trafna, bo wyłącznik różnicowoprądowy, czyli RCD, działa dokładnie tak, jak powinien. On potrafi sprawdzać różnice w prądzie, który wpływa i wypływa z obwodu. Powiedzmy, że jak jest jakiś problem z izolacją, to prąd może wyciekać do ziemi. To właśnie wtedy RCD to zauważa i natychmiast odłącza zasilanie, co naprawdę zmniejsza ryzyko porażenia prądem albo pożaru. RCD często spotykamy w łazienkach, gdzie wilgoć sprawia, że ryzyko kontaktu z prądem jest większe. Warto też wiedzieć, że normy, takie jak PN-EN 61008, precyzują, jakie są wymagania dotyczące tych wyłączników i gdzie można je stosować, co podkreśla ich istotność dla bezpieczeństwa elektrycznego. Używanie RCD w instalacjach jest zgodne z dobrymi praktykami i przepisami budowlanymi, więc to naprawdę ważny temat.

Pytanie 15

Aby chronić przewód przed przeciążeniem i zwarciem, wykorzystuje się wyłącznik

A. który współdziała z przekaźnikiem sygnalizacyjnym
B. który działa z przekaźnikiem czasowym
C. z wyzwalaczami przeciążeniowymi oraz zwarciowymi
D. posiadający aparat różnicowoprądowy
Wyłącznik zabezpieczający przewody przed przeciążeniem i zwarciem jest kluczowym elementem systemu elektroinstalacyjnego. Właściwie dobrany wyłącznik, wyposażony w wyzwalacze przeciążeniowe i zwarciowe, automatycznie odcina zasilanie w przypadku, gdy prąd przekroczy dozwoloną wartość. Wyzwalacze przeciążeniowe działają na zasadzie detekcji nadmiernego natężenia prądu, co może prowadzić do przegrzania przewodów i ryzyka pożaru. Z kolei wyzwalacze zwarciowe są odpowiedzialne za natychmiastowe odłączenie obwodu w przypadku zwarcia, co chroni zarówno urządzenia, jak i instalację elektryczną. Przykładem zastosowania takiego wyłącznika może być jego instalacja w domowych instalacjach elektrycznych, gdzie chroni obwody zasilające gniazda elektryczne i urządzenia gospodarstwa domowego. Zgodnie z normami IEC oraz polskimi standardami, instalacje powinny być zabezpieczone przed skutkami przeciążeń i zwarć, co podkreśla znaczenie tego typu wyłączników w zapewnieniu bezpieczeństwa.

Pytanie 16

Jaką rurę instalacyjną przedstawia symbol RKLF 20?

A. Sztywną o średnicy 20 mm
B. Karbowaną o przekroju 20 mm2
C. Karbowaną o średnicy 20 mm
D. Sztywną o przekroju 20 mm2
Wybór odpowiedzi dotyczących 'karbowanej o przekroju 20 mm2' lub 'sztywnej o przekroju 20 mm2' jest błędny z kilku powodów. Przede wszystkim, ważne jest, aby zrozumieć różnicę między przekrojem a średnicą. Przekrój poprzeczny rury wyraża jej powierzchnię w mm2, podczas gdy średnica odnosi się do wymiaru zewnętrznego, który jest wyrażany w milimetrach. Oznaczenie RKLF sugeruje, że chodzi o rurę elastyczną, a nie sztywną, co wyklucza wszystkie odpowiedzi dotyczące rur sztywnych. Rury sztywne, mimo że mogą być stosowane w niektórych instalacjach, nie oferują elastyczności niezbędnej w trudnych warunkach, takich jak zakręty czy zmiany kierunku. W praktyce, rury karbowane są preferowane w instalacjach, które wymagają dostosowania do zmiennych kształtów budynków oraz przestrzeni, co również wpływa na ich zastosowanie w różnych dziedzinach przemysłu. Dodatkowo, nieprawidłowe przypisanie wartości przekroju do rury mogą prowadzić do zastosowań, które nie spełniają standardów bezpieczeństwa. Przykłady obejmują sytuacje, w których zbyt mały przekrój mógłby prowadzić do przegrzewania się instalacji elektrycznej. Aby uniknąć takich błędów, istotne jest, aby specjaliści branżowi posiadali gruntowną wiedzę na temat oznaczeń i właściwości stosowanych materiałów, co jest niezbędne dla zapewnienia wysokiej jakości instalacji oraz zgodności z regulacjami prawnymi.

Pytanie 17

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
B. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
C. Użycie transformatora separacyjnego do zasilania
D. Montaż ochronników przepięciowych w głównej rozdzielnicy
W kontekście wykonywania instalacji elektrycznej na tynku na zewnątrz budynku mieszkalnego, wiele osób może być skłonnych do myślenia, że zastosowanie transformatora separacyjnego jest kluczowe. Choć transformatory separacyjne mają swoje miejsce w zastosowaniach, ich rola w kontekście ochrony przewodów elektrycznych przed działaniem promieni słonecznych jest nieznaczna. Transformator ten oddziela obwody od źródła zasilania, ale nie zapewnia ochrony przed dolegliwościami związanymi z ekspozycją na promieniowanie UV, co czyni go niewłaściwym wyborem w tej konkretnej sytuacji. Z kolei zastosowanie wyłączników różnicowoprądowych wysokoczułych, choć istotne dla ochrony przed porażeniem prądem, nie ma bezpośredniego wpływu na zabezpieczenie przewodów przed działaniem promieni słonecznych. Wyłączniki te działają na zasadzie wykrywania różnic prądów, co jest ważne, ale nie chroni instalacji przed uszkodzeniami spowodowanymi przez czynniki zewnętrzne. Ochronniki przepięciowe w rozdzielnicy głównej są istotne dla ochrony instalacji przed przepięciami, ale ich zastosowanie nie zastąpi fizycznych osłon przewodów, które są niezbędne w zewnętrznych instalacjach. Wszelkie te koncepcje mogą prowadzić do błędnego wniosku, że wystarczy zastosować te elementy, aby zapewnić bezpieczeństwo instalacji, podczas gdy kluczowym aspektem pozostaje zabezpieczenie przed działaniem promieni słonecznych przez odpowiednie osłony.

Pytanie 18

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 19

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
B. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
D. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 20

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 302 25-30-AC
B. P 344 C-16-30-AC
C. P 304 25-30-AC
D. P 312 B-16-30-AC
Wiec, ten wyłącznik różnicowoprądowy P 312 B-16-30-AC to naprawdę dobry wybór do gniazd wtykowych w jednofazowej instalacji 230 V/50 Hz. Łączy w sobie wszystkie potrzebne funkcje, które dbają o nasze bezpieczeństwo. W skrócie: chroni nas przed porażeniem prądem, bo wyłapuje różnicę prądów między fazą a neutralnym, co pozwala szybko zauważyć, jeśli coś z izolacją jest nie tak. Jest też super, bo chroni przed przeciążeniem i zwarciem, a to zwiększa bezpieczeństwo całej instalacji. I co ważne, spełnia normy IEC 61008 i PN-EN 60947-2, więc można być spokojnym o jego jakość. Przykładowo, idealnie nadaje się do domków jednorodzinnych, gdzie gniazdka zasilają różne sprzęty. Wybór odpowiedniego wyłącznika różnicowoprądowego to kluczowa sprawa, żeby utrzymać mienie i użytkowników w bezpieczeństwie.

Pytanie 21

Który przewód jest oznaczony literami PE?

A. Neutralny
B. Ochronny
C. Fazowy
D. Ochronno-neutralny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 22

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gL
B. aM
C. aR
D. gG
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 23

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Serwis styków oraz połączeń śrubowych
B. Obsługa przełącznika zaczepów
C. Weryfikacja poziomu oleju w olejowskazie konserwatora
D. Czyszczenie izolatorów
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 24

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. Podczas zmiany tradycyjnych żarówek na energooszczędne
B. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
C. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
D. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
Instalacja elektryczna w pomieszczeniu biurowym musi być poddawana naprawie, gdy jej parametry nie mieszczą się w granicach określonych w instrukcji eksploatacji. Oznacza to, że wartości takie jak napięcie, natężenie czy rezystancja muszą odpowiadać standardom określonym przez producenta lub normy branżowe, takie jak PN-IEC 60364, które regulują kwestie bezpieczeństwa i funkcjonalności instalacji elektrycznych. Przykładem może być sytuacja, gdy pomiary przeprowadzone w biurze wskazują na zbyt niskie napięcie, co może prowadzić do niewłaściwego działania urządzeń biurowych. W takim przypadku konieczne jest zidentyfikowanie źródła problemu, co może obejmować wymianę uszkodzonych przewodów, integrację dodatkowych obwodów czy zastosowanie stabilizatorów napięcia. Ignorowanie takich sytuacji może skutkować nie tylko uszkodzeniem sprzętu, ale również stwarzać poważne zagrożenie dla bezpieczeństwa osób przebywających w danym pomieszczeniu.

Pytanie 25

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 500 V
B. 250 V
C. 750 V
D. 1000 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 26

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
B. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
C. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
D. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
Wybrana odpowiedź o pracach przy urządzeniach, które są wyłączone spod napięcia oraz pracach w wykopach do 2 metrów nie do końca uwzględnia ważne zasady BHP. Nawet jeśli urządzenia są wyłączone, to mogą pojawić się inne zagrożenia, jak urazy mechaniczne czy kontuzje przy obsłudze ciężkiego sprzętu. W przypadku wykopów, prace do 2 metrów nie muszą zwykle być wykonywane przez dwuosobowy zespół, ale i tak lepiej mieć kogoś obok, żeby móc pomóc w nagłej sytuacji. Muszę też dodać, że prace prowadzone przez upoważnione osoby w ustalonych miejscach mogą wydawać się bezpieczne, ale zawsze jest jakieś ryzyko, które warto zminimalizować odpowiednimi procedurami. Ignorowanie tych zasad może prowadzić do niebezpiecznych sytuacji, a co gorsza, może dać fałszywe poczucie bezpieczeństwa. Dlatego przestrzeganie standardów BHP, w tym norm PN-EN, jest naprawdę ważne dla ochrony wszystkich pracowników.

Pytanie 27

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,9 A
B. 2,2 A
C. 3,2 A
D. 6,7 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 28

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Przymiar kreskowy, ołówek traserski, rysik
B. Sznurek traserski, młotek, punktak
C. Rysik, kątownik, punktak, młotek
D. Przymiar taśmowy, poziomnica, ołówek traserski
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 29

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
B. Impedancję pętli zwarcia oraz pomiar prądu upływu
C. Rezystancję izolacji przewodów oraz rezystancję uziemienia
D. Rezystancję przewodów ochronnych i rezystancję uziemienia
W instalacji elektrycznej pracującej w sieci TN-S kluczowe jest zapewnienie odpowiedniego poziomu bezpieczeństwa oraz właściwej funkcjonalności systemu. Pomiar rezystancji izolacji przewodów jest niezbędny, aby upewnić się, że izolacja nie zawiera uszkodzeń, które mogłyby prowadzić do niebezpiecznego przebicia czy upływu prądu. Normy takie jak PN-EN 61557-1 i PN-EN 61557-2 wskazują na konieczność regularnego przeprowadzania takich pomiarów. Drugi aspekt, czyli pomiar impedancji pętli zwarcia, jest kluczowy dla oceny skuteczności zabezpieczeń nadprądowych oraz wyłączników różnicowoprądowych. Zgodnie z wymaganiami normy DIN VDE 0100, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić szybkie wyłączenie obwodu w przypadku wystąpienia zwarcia. Praktycznie, te pomiary umożliwiają ocenę stanu instalacji oraz podejmowanie odpowiednich działań konserwacyjnych lub naprawczych, co przekłada się na bezpieczeństwo użytkowników i ciągłość pracy instalacji elektrycznych.

Pytanie 30

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
C. Redukuje hałas podczas eksploatacji
D. Tworzy nieruchome, stałe pole magnetyczne
W odpowiedziach, które nie są poprawne, pojawiają się koncepcje, które mylnie opisują funkcję uzwojenia biegunów komutacyjnych. Na przykład, generowanie jednokierunkowego momentu magnetycznego nie jest właściwym opisem roli tego uzwojenia. Moment magnetyczny w maszynach prądu stałego jest kształtowany głównie przez uzwojenia wirnika i pola magnetyczne wytwarzane przez magnesy lub uzwojenia stojana. Wytwarzanie nieruchomego, stałego pola magnetycznego to również mylne podejście, ponieważ uzwojenie biegunów komutacyjnych nie tworzy statycznego pola, lecz dynamicznie reaguje na zmiany prądu, co ma na celu ułatwienie komutacji. Ponadto, zredukowanie hałasu podczas pracy nie jest celem uzwojenia komutacyjnego, ale może być efektem ubocznym prawidłowego działania całego systemu, związanego z efektywnym komutowaniem prądu. W kontekście projektowania maszyn prądu stałego, nieprawidłowe rozumienie roli uzwojenia biegunów komutacyjnych może prowadzić do problemów z wydajnością energetyczną oraz trwałością komponentów, dlatego kluczowe jest zrozumienie jego rzeczywistej funkcji w konstrukcji maszyny.

Pytanie 31

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Wiertarkę, punktak, zestaw wkrętaków
D. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 32

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 33

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
Każda z alternatywnych odpowiedzi zawiera narzędzia, które w pewnym zakresie mogą być pomocne w pracach budowlanych, jednak nie są one odpowiednimi wyborami do trasowania instalacji elektrycznej podtynkowej. Poziomnica i przymiar taśmowy to narzędzia, które umożliwiają precyzyjne pomiary i kontrolę poziomu, jednak w zestawie, który nie zawiera ołówka i sznurka traserskiego, brakuje kluczowych narzędzi do efektywnego trasowania. Użycie kleszczy monterskich oraz młotka, choć istotnych w innych aspektach montażu, nie jest przydatne w procesie trasowania, gdzie wymagana jest precyzja i dokładność. Wybierając zestaw narzędzi, ważne jest, aby unikać narzędzi, które nie wpisują się w specyfikę danego zadania, na przykład młotek, który w kontekście trasowania może prowadzić do uszkodzeń ścian i nieprecyzyjnych oznaczeń. Często pojawia się mylne przekonanie, że bardziej złożony zestaw narzędzi z większą ilością funkcji będzie lepszy, podczas gdy kluczem do sukcesu w trasowaniu jest prostota i precyzja. Wybierając odpowiednie narzędzia, należy kierować się ich funkcją i zastosowaniem w konkretnych zadaniach, aby zapewnić efektywność i bezpieczeństwo wykonywanych prac.

Pytanie 34

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Lampy ze rtęcią
B. Lampy fluorescencyjne
C. Żarówki
D. Lampy indukcyjne
Żarówki tradycyjne, znane również jako żarówki wolframowe, charakteryzują się najniższą skutecznością świetlną spośród wymienionych źródeł światła. Ich efektywność świetlna, wynosząca zazwyczaj od 10 do 17 lumenów na wat, jest znacznie niższa w porównaniu do innych technologii oświetleniowych. To oznacza, że generują one mniej światła w stosunku do zużywanej energii, co czyni je mniej efektywnymi z punktu widzenia oszczędności energii. Przykładowo, w sytuacjach, gdzie długotrwałe oświetlenie jest potrzebne, takie jak w biurach czy na parkingach, wybór bardziej efektywnych źródeł światła, takich jak świetlówki czy lampy LED, może znacząco obniżyć koszty energii. W kontekście standardów branżowych, prowadzi to do przemyślenia wyboru technologii oświetleniowej, w szczególności w kontekście norm dotyczących efektywności energetycznej, takich jak dyrektywa unijna dotycząca ekoprojektu, która promuje rozwiązania optymalizujące zużycie energii.

Pytanie 35

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Oczkowym.
C. Nasadowym.
D. Imbusowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 36

W instalacji zasilanej napięciem 400/230 V obwód chroniony jest przez wyłącznik nadprądowy typu S-303 CLS6-C10/3. Jaką maksymalną moc można zastosować dla klimatyzatora trójfazowego w tej instalacji?

A. 6,9 kW
B. 5,9 kW
C. 9,6 kW
D. 3,9 kW
Odpowiedź 6,9 kW jest prawidłowa, ponieważ maksymalna moc, jaką można zainstalować w obwodzie chronionym przez wyłącznik nadprądowy typu S-303 CLS6-C10/3, jest określona przez jego prąd znamionowy. W przypadku tego wyłącznika, prąd znamionowy wynosi 10 A. W systemach trójfazowych, całkowita moc jest obliczana ze wzoru P = √3 × U × I, gdzie U to napięcie międzyfazowe (400 V), a I to prąd wyłącznika (10 A). Obliczając, otrzymujemy P = √3 × 400 V × 10 A ≈ 6,93 kW, co zaokrąglamy do 6,9 kW. W praktyce oznacza to, że zainstalowanie klimatyzatora o tej mocy będzie zgodne z przepisami i zapewni bezpieczeństwo instalacji elektroenergetycznej, a także będzie zgodne z normami PN-IEC 60364. Ważne jest, aby przy doborze urządzeń zawsze uwzględniać parametry wyłączników oraz ich charakterystykę, aby uniknąć przeciążenia instalacji.

Pytanie 37

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Schodowy
B. Świecznikowy
C. Dwubiegunowy
D. Krzyżowy
Odpowiedź 'Świecznikowy' jest poprawna, ponieważ łącznik świecznikowy jest dedykowany do sterowania różnymi sekcjami źródeł światła w żyrandolach. Dzięki niemu można niezależnie włączać i wyłączać poszczególne źródła światła, co pozwala na regulację natężenia oświetlenia w pomieszczeniu oraz na tworzenie różnorodnych efektów świetlnych. Przykładem zastosowania łącznika świecznikowego może być sytuacja, gdy w jednym pomieszczeniu zainstalowany jest żyrandol z dwoma sekcjami, na przykład w salonie, gdzie można włączyć tylko jedną część żyrandola na wieczorny relaks, a drugą podczas spotkań rodzinnych. Stosowanie łączników świecznikowych jest zgodne z normami instalacji elektrycznych, co zapewnia bezpieczeństwo i komfort użytkowania. Dobre praktyki sugerują ich wykorzystanie w pomieszczeniach, gdzie różne źródła światła pełnią istotną rolę w aranżacji przestrzeni oraz atmosferze wnętrza.

Pytanie 38

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Instalacja nowych punktów świetlnych
C. Przesunięcie miejsc montażu opraw oświetleniowych
D. Zamiana zużytych urządzeń na nowe
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 39

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TT
B. TN-S
C. IT
D. TN-C
Układ TT, w przeciwieństwie do TN-C, charakteryzuje się oddzielnym przewodem neutralnym (N) oraz przewodem ochronnym (PE), co oznacza, że nie występuje w nim przewód PEN. W tym przypadku, przewód PE jest uziemiony w punkcie rozdziału, co zwiększa bezpieczeństwo, ponieważ w przypadku zwarcia prąd ochronny może natychmiast popłynąć do ziemi. W układzie IT natomiast brak jest bezpośredniego uziemienia neutralnego, co zwiększa odporność na zwarcia, ale wymaga zastosowania bardziej skomplikowanych systemów monitorowania. Z kolei w układzie TN-S przewody N i PE są oddzielne, co również eliminuje przewód PEN i pozwala na większą elastyczność w projektowaniu instalacji. Powszechnym błędem jest mylenie tych systemów, co wynika z niepełnego zrozumienia ich struktury i zastosowania. W praktyce, znajomość różnic między tymi układami jest kluczowa dla zapewnienia właściwego poziomu bezpieczeństwa oraz efektywności energetycznej instalacji elektrycznych. Zastosowanie niewłaściwego układu może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenia sprzętu elektrycznego. Dlatego tak ważne jest, aby projektanci i instalatorzy elektryczni rozumieli te różnice i wybierali odpowiednie systemy w zależności od specyficznych wymagań danego środowiska.

Pytanie 40

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
B. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.