Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 maja 2025 13:07
  • Data zakończenia: 8 maja 2025 13:15

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z wymienionych działań podczas instalacji elektrycznych do 1 kV wymagają wydania polecenia?

A. Codzienne, wskazane w instrukcji eksploatacji
B. Związane z ochroną urządzeń przed zniszczeniem
C. Związane z ochroną zdrowia i życia ludzi
D. Okresowe, określone w planie przeglądów
Odpowiedzi sugerujące, że codzienne czynności związane z instalacjami elektrycznymi do 1 kV, ratowanie urządzeń przed zniszczeniem oraz ratowanie zdrowia i życia ludzkiego nie wymagają wydania polecenia, opierają się na nieporozumieniach dotyczących procedur bezpieczeństwa. Codzienne działania powinny być realizowane zgodnie z instrukcjami eksploatacyjnymi, które mogą zawierać wytyczne dotyczące bezpieczeństwa, jednak nie zwalniają one z obowiązku dokumentacji i formalności. Ratowanie urządzeń przed zniszczeniem nie oznacza, że można działać bez uprzedniego zlecenia; wręcz przeciwnie, wszelkie działania powinny być dokładnie zaplanowane i zatwierdzone w celu uniknięcia dodatkowych szkód. Z kolei ratowanie zdrowia i życia ludzkiego, choć jest najwyższym priorytetem, również wymaga odpowiedniego zarządzania, aby działania podejmowane w sytuacjach awaryjnych były skuteczne i zgodne z procedurami wytycznymi. W praktyce, brak formalnego wydania polecenia może prowadzić do chaosu oraz niebezpieczeństwa w sytuacjach, które wymagają precyzyjnych działań i koordynacji. Należy pamiętać, że zgodność z procedurami i standardami jest kluczowa dla zapewnienia bezpieczeństwa i skuteczności działań w obszarze elektryki.

Pytanie 2

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 50 mm2
B. 35 mm2
C. 20 mm2
D. 25 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 3

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA

A. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
B. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
C. pierwszy i drugi działają nieprawidłowo.
D. pierwszy i drugi działają prawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 4

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Dwie osoby
C. Jedna osoba
D. Trzy osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 5

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. wzrost prędkości obrotowej wirnika
B. uruchomienie ochronnika przeciwprzepięciowego
C. obniżenie prędkości obrotowej wirnika
D. pojawienie się napięcia na obudowie silnika
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 6

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. stycznika
B. odłącznika
C. wyłącznika
D. przekaźnika
Wyłącznik, stycznik i przekaźnik to urządzenia, które pełnią różne funkcje w obwodach elektrycznych, ale nie są odpowiednie do zapewnienia widocznej przerwy. Wyłącznik to urządzenie, które może być używane do włączania i wyłączania obwodu, lecz nie gwarantuje fizycznej, wizualnej separacji od źródła zasilania. Z kolei stycznik, często stosowany w automatyce, służy do zdalnego włączania i wyłączania obwodów, ale również nie zapewnia widoczności przerwy, co jest kluczowe w kontekście bezpieczeństwa podczas prac serwisowych. Przekaźnik działa na zasadzie przekazywania sygnałów i kontrolowania innych obwodów, jednak nie jest to urządzenie, które można zastosować jako widoczne odłączenie zasilania. Powszechny błąd w myśleniu polega na tym, że niektóre osoby mylą te urządzenia, zakładając, że każde z nich może pełnić rolę odłącznika. W rzeczywistości odpowiednie urządzenie musi nie tylko wyłączyć obwód, ale także wizualnie potwierdzić tę operację, co ma kluczowe znaczenie w kontekście norm bezpieczeństwa, takich jak PN-EN 60204-1. Dlatego, aby zapewnić bezpieczeństwo, konieczne jest stosowanie odłączników w odpowiednich zastosowaniach.

Pytanie 7

Czas pomiędzy kolejnymi kontroli oraz próbami instalacji elektrycznych w budynkach użyteczności zbiorowej nie powinien przekraczać

A. 5 lat
B. 2 lata
C. 3 lata
D. 1 rok
Wybór odpowiedzi, która sugeruje krótszy okres między kontrolami, może wynikać z niepełnego zrozumienia regulacji dotyczących bezpieczeństwa instalacji elektrycznych. Odpowiedzi takie jak 3 lata, 2 lata czy 1 rok są niewystarczające, ponieważ nie uwzględniają obowiązujących przepisów, które jednoznacznie określają maksymalny czas do 5 lat na przeprowadzenie przeglądów. Ważne jest, aby zrozumieć, że częstsze kontrole mogą być korzystne w specyficznych okolicznościach, ale nie są wymogiem prawnym. Użytkownicy mogą myśleć, że im częściej będą przeprowadzane kontrole, tym lepiej dla bezpieczeństwa, jednak nadmierna częstotliwość może prowadzić do niepotrzebnych kosztów i obciążenia dla budżetu. Dodatkowo, przeprowadzanie inspekcji zbyt rzadko, jak sugerują niektóre odpowiedzi, zwiększa ryzyko awarii i może skutkować brakiem wykrycia poważnych problemów w instalacji. Dlatego istotne jest, aby kierować się standardami branżowymi, które jasno określają wymogi dotyczące okresowych przeglądów, aby zapewnić bezpieczeństwo użytkowników budynków oraz zgodność z obowiązującymi przepisami.

Pytanie 8

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,5 IN do 1,0 IN
B. Od 0,3 IN do 0,8 IN
C. Od 0,3 IN do 1,0 IN
D. Od 0,5 IN do 1,2 IN
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.

Pytanie 9

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 1,1
B. 2,2
C. 0,8
D. 1,4
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 10

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. obniżenia obciążalności prądowej
B. wzrostu wytrzymałości mechanicznej przewodu
C. podniesienia obciążalności prądowej
D. zmiany wytrzymałości mechanicznej przewodu
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 11

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Wystająca izolacja między działkami komutatora
B. Przerwa w obwodzie twornika
C. Zabrudzony komutator
D. Nieodpowiednio dobrane szczotki
Przerwa w obwodzie twornika jest najpoważniejszym problemem, który może prowadzić do braku reakcji silnika na załączenie napięcia zasilania. W silniku szeregowym prądu stałego, twornik jest kluczowym elementem, który przekształca energię elektryczną w energię mechaniczną. Przerwa w obwodzie twornika oznacza, że prąd nie ma możliwości przepływu przez uzwojenie, co skutkuje brakiem momentu obrotowego i zatrzymaniem silnika. Taki stan może być spowodowany różnymi czynnikami, takimi jak uszkodzenie izolacji, korozja styków, czy mechaniczne uszkodzenia przewodów. W praktyce, aby zapobiegać takim problemom, zaleca się regularne przeglądy silników, zwłaszcza w zastosowaniach dorywczych, gdzie silnik może być narażony na dłuższe okresy bezczynności. W przypadku wykrycia przerwy, należy przeprowadzić diagnostykę, aby zidentyfikować miejsce usterki i podjąć odpowiednie kroki naprawcze, zgodne z branżowymi standardami serwisowymi, aby zapewnić długoterminowe i niezawodne działanie urządzenia. Dodatkowo, znajomość zasad działania silników prądu stałego oraz ich budowy, pozwala na szybsze rozwiązywanie problemów i podejmowanie skutecznych działań prewencyjnych.

Pytanie 12

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
B. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
C. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
D. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
Odpowiedź jest prawidłowa, ponieważ kolejność wykonywania czynności przed rozpoczęciem prac konserwacyjnych w urządzeniu elektrycznym ma kluczowe znaczenie dla bezpieczeństwa. Najpierw zabezpieczamy obwód przed przypadkowym załączeniem, co oznacza, że wyłączamy wszelkie źródła zasilania i stosujemy odpowiednie blokady. Następnie sprawdzamy brak napięcia, co można zrobić za pomocą odpowiednich narzędzi, takich jak wskaźniki napięcia lub multimetru. Uziemienie i zwarcie wszystkich faz to kolejne kroki, które mają na celu minimalizację ryzyka porażenia prądem oraz wyładowań elektrycznych. Zgodnie z normą PN-EN 50110-1, te działania stanowią integralną część procedur pracy w instalacjach elektrycznych. Przykładowo, w zakładach przemysłowych, gdzie pracuje się z dużymi maszynami, takie procedury są stosowane, aby zapewnić bezpieczeństwo pracowników i uniknąć poważnych wypadków. Dodatkowo, przestrzeganie tych zasad pomaga w zachowaniu zgodności z wymogami BHP oraz normami branżowymi.

Pytanie 13

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA

A. P304 40-100-AC
B. P304 40-30-AC
C. P202 25-30-AC
D. P302 25-10-AC
Wyłącznik P202 25-30-AC jest poprawny, ponieważ jego prąd zadziałania wynosi 25 mA, co mieści się w przedziale I_A = (0,5÷1,00) I_ΔN dla tego urządzenia. Obliczając ten zakres, przyjmujemy, że nominalny prąd różnicowy I_ΔN wynosi 30 mA, co daje zakres zadziałania od 15 mA do 30 mA. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, chroniącymi przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi upływem prądu. Regularne sprawdzanie ich działania, zgodne z normami takimi jak PN-EN 61008, jest niezbędne w każdej instalacji elektrycznej. Właściwy dobór wyłączników i ich odpowiednie ustawienia mają kluczowe znaczenie dla bezpieczeństwa użytkowników i niezawodności systemu. Zastosowanie wyłącznika P202 25-30-AC w praktyce pozwala na efektywne zabezpieczenie obwodów w różnych aplikacjach, w tym w budynkach mieszkalnych, biurowych oraz przemysłowych.

Pytanie 14

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. zasilania ich z gniazd z ochronnym bolcem uziemiającym
B. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
C. wcześniejszego zweryfikowania efektywności ochrony w instalacji
D. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 15

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 30 mA
B. 100 mA
C. 500 mA
D. 1 000 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 16

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Ogrodzenie obszaru pracy
B. Używanie sprzętu izolacyjnego
C. Uziemienie odłączonej linii
D. Zarządzanie pracą w grupie
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 17

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Umieszczenie części czynnych poza zasięgiem ręki
B. Ogrodzenie
C. Obudowa
D. Samoczynne wyłączenie zasilania
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 18

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 10 mm2 Cu lub 10 mm2 Al
B. 10 mm2 Cu lub 16 mm2 Al
C. 16 mm2 Cu lub 10 mm2 Al
D. 16 mm2 Cu lub 16 mm2 Al
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 19

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 6 A
B. 10 A
C. 20 A
D. 16 A
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy PN = 2,4 kW oraz napięciu UN = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: IN = PN / UN. Zatem IN = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 20

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. B10
B. B16
C. C10
D. C6
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 21

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz

A. In = 1 A, Un = 400 V
B. In = 1 A, Un = 200 V
C. In = 2 A, Un = 200 V
D. In = 2 A, Un = 400 V
Wybór zakresu cewek prądowych i napięciowych watomierza w układzie Arona jest kluczowy dla dokładnych pomiarów mocy silnika trójfazowego. W tym przypadku, znamionowy prąd silnika wynosi 1,8 A, co oznacza, że cecha cewki prądowej powinna być dostosowana do wyższej wartości, aby zminimalizować ryzyko przeciążenia. Dlatego wybór 2 A dla cewek prądowych jest uzasadniony. Co więcej, napięcie znamionowe silnika wynosi 400 V w układzie gwiazda, co odpowiada napięciu międzyfazowemu. Zastosowanie cewki napięciowej o wartości 400 V zapewnia, że pomiar będzie dokonany w odpowiednim zakresie, co jest zgodne z najlepszymi praktykami branżowymi. Takie podejście nie tylko zapewnia precyzyjność, ale również bezpieczeństwo operacyjne, gdyż pozwala na uniknięcie przeciążeń, które mogą prowadzić do uszkodzeń sprzętu. W praktyce, dobór odpowiednich zakresów cewek prądowych i napięciowych jest kluczowy dla prawidłowego monitorowania i zarządzania pracą silników trójfazowych, co jest istotne dla efektywności energetycznej i długowieczności urządzeń. Dobrze dobrany sprzęt pomiarowy może również przyczynić się do zmniejszenia kosztów operacyjnych, co jest istotne w obszarze przemysłowym.

Pytanie 22

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 00
B. IP 44
C. IP 22
D. IP 66
Odpowiedź IP 44 to dobry wybór. Oznacza, że osprzęt jest odporny na ciało stałe, które jest większe niż 1 mm, i nie przepuszcza wody. To sprawia, że nadaje się do miejsc, gdzie jest więcej wilgoci, jak w łazienkach czy kuchniach. W praktyce oznacza to, że możesz używać tego osprzętu tam, gdzie jest para wodna, kurz lub inne zanieczyszczenia. W pomieszczeniach przemysłowych, gdzie produkuje się dużo pyłu, IP 44 też się sprawdzi. Nasze normy, czyli IEC 60529, mówią, że IP 44 to dobry poziom ochrony, co jest istotne, żeby było bezpiecznie i trwało to dłużej. Ale jeśli potrzebujesz czegoś lepszego, to niektóre sytuacje mogą wymagać wyższych stopni ochrony, jak IP 54 czy IP 66. Jednak zazwyczaj IP 44 da radę w standardowych warunkach.

Pytanie 23

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Wyłącznik nadprądowy typu Z
B. Wyłącznik nadprądowy typu B
C. Bezpiecznik typu aR
D. Bezpiecznik typu aM
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 24

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Napięcia w poszczególnych fazach
B. Ciągłości przewodów ochronnych
C. Prądu, który jest pobierany przez odbiornik
D. Rezystancji izolacji przewodów
Rezystancja izolacji przewodów jest kluczowym pomiarem w ocenie bezpieczeństwa instalacji elektrycznych i oświetleniowych. Typowe mierniki uniwersalne, takie jak multimetrowe, są przeznaczone głównie do pomiarów prądu, napięcia i oporu, jednak nie są wystarczające do pomiaru rezystancji izolacji. Pomiar ten wymaga zastosowania specjalistycznych urządzeń, takich jak megomierze, które generują znacznie wyższe napięcia (zazwyczaj w zakresie 250V, 500V lub 1000V) w celu oceny jakości izolacji. W praktyce, taki pomiar pozwala na wykrycie uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji, takich jak przebicia elektryczne. Normy takie jak PN-IEC 60364 podkreślają konieczność regularnego przeprowadzania pomiarów rezystancji izolacji, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji. Przykładowo, w przypadku instalacji w obiektach publicznych, pomiar ten jest obligatoryjny, aby zapewnić spełnienie określonych standardów bezpieczeństwa elektrycznego.

Pytanie 25

Jakie urządzenie powinno zostać użyte do zasilenia obwodu SELV z sieci 230 V, 50 Hz?

A. Transformator bezpieczeństwa
B. Autotransformator
C. Przekładnik
D. Dzielnik napięcia
Transformator bezpieczeństwa jest kluczowym urządzeniem stosowanym do zasilania obwodów SELV (Safety Extra Low Voltage) z sieci 230 V, 50 Hz. Jego główną funkcją jest zapewnienie izolacji galwanicznej pomiędzy wysokim napięciem a niskim napięciem, co znacząco minimalizuje ryzyko porażenia prądem elektrycznym. Transformator bezpieczeństwa działa na zasadzie obniżania napięcia do poziomu, który jest bezpieczny dla użytkowników. Przykładem zastosowania transformatora bezpieczeństwa może być oświetlenie w obiektach, gdzie wymagana jest szczególna ochrona przed porażeniem, takie jak baseny, łazienki czy miejsca z dużą wilgotnością. Zgodnie z normą IEC 61140, urządzenia te muszą spełniać określone wymagania dotyczące bezpieczeństwa, co czyni je niezastąpionymi w instalacjach niskonapięciowych. Transformator bezpieczeństwa, w przeciwieństwie do innych urządzeń, zapewnia nie tylko redukcję napięcia, ale i odpowiednie zabezpieczenie przed skutkami awarii, co czyni go odpowiednim wyborem w kontekście bezpieczeństwa użytkowników.

Pytanie 26

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B20
B. B10
C. B25
D. B16
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdzie prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Zgodnie z normami, wyłącznik nadprądowy powinien mieć wartość znamionową, która pozwala na przepuszczenie prądu obciążenia, ale jednocześnie dostateczną, aby skutecznie zareagować w przypadku przeciążenia. W tym przypadku, z wyłączników B20, B16 i B10, żaden z nich nie spełnia wymogu, gdyż ich nominalne wartości są zbyt niskie w odniesieniu do obciążenia 21 A. Wybór B25 oznacza, że wyłącznik nadprądowy nie włączy się w normalnych warunkach pracy, ale zadziała w przypadku wyższych wartości prądu. W praktyce, zastosowanie wyłączników o zbyt niskich wartościach nominalnych prowadzi do ich częstego wyzwalania, co może być uciążliwe i powodować przerwy w dostawie energii. Zgodnie z dobrą praktyką, zawsze należy wybierać wyłączniki, które mają większą wartość niż maksymalne przewidziane obciążenie, ale nie więcej niż ich długotrwała obciążalność.

Pytanie 27

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Realizowanie pracy w zespole
B. Używanie sprzętu izolacyjnego
C. Ogrodzenie terenu, na którym prowadzone są prace
D. Przyłączenie wyłączonej linii do uziemienia
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 28

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
B. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
C. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
D. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 29

W pomieszczeniu zainstalowano 40 żarówek o mocy 75 W każda. Jakiego wyłącznika nadprądowego powinno się użyć do zabezpieczenia jednofazowej instalacji oświetleniowej zasilanej napięciem 230 V?

A. C10
B. B6
C. B16
D. C6
Odpowiedź B16 jest poprawna, ponieważ dobór wyłącznika nadprądowego powinien być uzależniony od całkowitego obciążenia instalacji. W tym przypadku mamy do czynienia z 40 żarówkami o mocy 75 W każda, co daje łącznie 3000 W. Przy napięciu zasilania wynoszącym 230 V, całkowity prąd pobierany przez te żarówki można obliczyć za pomocą wzoru: I = P / U, co w naszym przypadku daje I = 3000 W / 230 V ≈ 13 A. Wyłącznik B16 zapewnia odpowiedni margines bezpieczeństwa, ponieważ jest w stanie obsłużyć prąd do 16 A, co oznacza, że może znieść chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu żarówek. Wyłączniki typu B są przeznaczone do obwodów, w których obciążenie jest głównie rezystancyjne, co jest typowe dla instalacji oświetleniowych. W praktyce, zastosowanie wyłącznika B16 w tym przypadku spełnia normy PN-IEC 60898-1, które regulują dobór zabezpieczeń nadprądowych, zapewniając jednocześnie bezpieczeństwo użytkowników oraz ochronę instalacji.

Pytanie 30

Które z poniższych zjawisk nie wpływa na pogorszenie jakości energii elektrycznej?

A. Czystość powietrza
B. Przepięcia
C. Obecność harmonicznych
D. Wahania napięcia
Czystość powietrza nie jest czynnikiem wpływającym na jakość energii elektrycznej, ponieważ nie ma bezpośredniego związku z parametrami elektrycznymi sieci. Jakość energii elektrycznej określana jest przez stabilność napięcia, częstotliwość, zawartość harmonicznych oraz obecność przepięć i zapadów napięcia. Czystość powietrza może mieć wpływ na inne aspekty funkcjonowania instalacji, takie jak chłodzenie urządzeń czy ochrona przed korozją, ale nie bezpośrednio na jakość samej energii. W kontekście eksploatacji maszyn, urządzeń i instalacji elektrycznych, czystość powietrza jest bardziej istotna z punktu widzenia utrzymania sprzętu w dobrej kondycji, a nie jakości energii elektrycznej jako takiej. W praktyce, osoby zajmujące się eksploatacją instalacji powinny zwracać uwagę na zanieczyszczenia, które mogą osadzać się na urządzeniach, powodując ich przegrzewanie lub przyspieszoną korozję.

Pytanie 31

Jakie oznaczenia powinien mieć wyłącznik różnicowoprądowy zaprojektowany do ochrony przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtyczkowych uniwersalnych w instalacji jednofazowej 230 V/50 Hz?

A. P 302 25-30-AC
B. P 304 25-30-AC
C. P 344 C-20-30-AC
D. P 312 B-16-30-AC
Wyłącznik różnicowoprądowy P 312 B-16-30-AC jest odpowiednim wyborem do zabezpieczania obwodów gniazd wtyczkowych w instalacji jednofazowej 230 V/50 Hz. Oznaczenie to wskazuje na jego zdolność do detekcji prądów upływowych i jednoczesne zabezpieczenie przed przeciążeniami oraz zwarciami. W szczególności litera 'B' oznacza, że urządzenie jest przystosowane do obciążeń indukcyjnych, co czyni je idealnym w wielu zastosowaniach domowych oraz biurowych, gdzie używane są urządzenia elektryczne z silnikami. Warto również zwrócić uwagę na wartość prądu różnicowego, która wynosi 30 mA, co jest zgodne z normami bezpieczeństwa, zgodnie z dyrektywą 2014/35/UE. Użycie tego wyłącznika przyczynia się do zwiększenia bezpieczeństwa użytkowników, minimalizując ryzyko porażenia prądem, co powinno być priorytetem w każdym projekcie elektrycznym. Zastosowanie wyłączników różnicowoprądowych w takim obwodzie jest nie tylko najlepszą praktyką, ale także wymogiem wielu norm budowlanych i elektrycznych, co czyni je kluczowymi elementami nowoczesnych instalacji.

Pytanie 32

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody do instalacji wewnętrznych
B. Przewody aluminiowe
C. Przewody o podwyższonej odporności na UV
D. Przewody z miedzi beztlenowej
Wybór odpowiednich przewodów do instalacji zewnętrznych jest kluczowy, aby zapewnić ich trwałość i bezpieczeństwo. Przewody aluminiowe, choć lżejsze i tańsze, są mniej odporne na korozję i mają niższą przewodność elektryczną w porównaniu do przewodów miedzianych. Aluminiowe przewody mogą być stosowane w niektórych przypadkach, ale wymagają szczególnej uwagi podczas montażu, aby zminimalizować ryzyko utleniania się i utraty połączeń. Przewody z miedzi beztlenowej charakteryzują się wysoką przewodnością i są często stosowane w audiofilskich zastosowaniach, gdzie zależy nam na minimalizacji strat sygnału. Jednak w kontekście instalacji zewnętrznych ich odporność na czynniki atmosferyczne nie różni się znacząco od standardowych przewodów miedzianych. Przewody do instalacji wewnętrznych są projektowane z myślą o innych warunkach eksploatacyjnych. Nie są one przystosowane do odporności na promieniowanie UV, zmiany temperatury czy wilgotności. Użycie takich przewodów na zewnątrz może prowadzić do ich szybkiej degradacji, co z kolei zwiększa ryzyko awarii systemu. Dlatego ważne jest, aby zawsze stosować przewody odpowiednie do specyficznych warunków środowiskowych, w jakich będą eksploatowane.

Pytanie 33

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową
B. Hydronetkę
C. Tłumicę
D. Gaśnicę płynową
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 34

Jakie dodatkowe urządzenie jest wymagane do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f = 50 Hz?

A. Opornik
B. Kondensator
C. Wyłącznik różnicowoprądowy
D. Bezpiecznik silnikowy
Kondensator jest niezbędnym elementem dla silnika indukcyjnego trójfazowego zasilanego napięciem jednofazowym, ponieważ umożliwia on utworzenie sztucznego przesunięcia fazowego. Silnik indukcyjny trójfazowy wymaga trzech faz zasilania do prawidłowego działania, a zasilanie jednofazowe dostarcza tylko jedną. Dodanie kondensatora do obwodu silnika pozwala na wytworzenie dodatkowej fazy, co z kolei umożliwia rozwinięcie momentu obrotowego i rozpoczęcie pracy silnika. W praktyce zastosowanie kondensatorów jest powszechne w układach, gdzie konieczne jest zasilanie silników trójfazowych z jednofazowych źródeł energii, na przykład w małych warsztatach czy w domach jednorodzinnych. Warto również zaznaczyć, że przy doborze kondensatora należy kierować się jego pojemnością, która powinna być odpowiednia do konkretnego silnika, aby zapewnić optymalne parametry pracy oraz uniknąć uszkodzenia urządzenia. Dobre praktyki wskazują na konieczność stosowania kondensatorów o odpowiedniej klasie i znamionach, aby zapewnić długotrwałą i bezpieczną pracę silnika.

Pytanie 35

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Uziemić megomierz
B. Odłączyć zasilanie
C. Podłączyć urządzenie do sieci
D. Zmierzyć napięcie zasilania
Przed pomiarem rezystancji izolacji za pomocą megomierza należy bezwzględnie odłączyć zasilanie badanego obwodu. To kluczowy krok, który zapewnia bezpieczeństwo zarówno osoby wykonującej pomiar, jak i chroni sprzęt przed uszkodzeniem. Megomierz generuje wysokie napięcie, które w połączeniu z istniejącym zasilaniem mogłoby spowodować porażenie elektryczne lub uszkodzenie izolacji. Dodatkowo, odłączenie zasilania pozwala na uzyskanie dokładnych wyników, ponieważ eliminuje wpływ napięcia zasilającego na pomiar. W praktyce, przed rozpoczęciem pomiarów, należy również upewnić się, że obwód nie jest pod napięciem za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa pracy z urządzeniami elektrycznymi, które podkreślają znaczenie odłączenia zasilania przed jakimikolwiek pracami serwisowymi czy pomiarowymi.

Pytanie 36

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B32
B. B25
C. B20
D. B16
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 37

Jakie zadania przy aktywnych urządzeniach elektrycznych można zrealizować bez zlecenia?

A. Dotyczące konserwacji bądź napraw urządzeń, które są całkowicie lub częściowo pod napięciem
B. Przeprowadzane przy użyciu spawania oraz wymagające pracy z otwartym źródłem ognia
C. Realizowane w sytuacjach stwarzających szczególne niebezpieczeństwo dla życia lub zdrowia osób
D. Dotyczące ratowania życia lub zdrowia osób
Prace związane z konserwacją lub remontami urządzeń znajdujących się całkowicie lub częściowo pod napięciem, jak również te wykonywane w warunkach szczególnego zagrożenia życia lub zdrowia ludzkiego, są obarczone wysokim ryzykiem i nie powinny być podejmowane bez odpowiednich poleceń oraz przygotowania. W przypadku konserwacji urządzeń elektrycznych, nawet jeśli wykwalifikowani pracownicy posiadają niezbędne umiejętności i wiedzę, działania te muszą odbywać się w kontrolowanych warunkach z zapewnieniem bezpieczeństwa, co obejmuje m.in. wyłączenie zasilania, stosowanie odpowiednich zabezpieczeń i środków ochrony osobistej. Prace te powinny być również poprzedzone odpowiednią oceną ryzyka oraz uzyskaniem stosownych zezwoleń od przełożonych. Podejmowanie działań w warunkach zagrożenia życia, niezależnie od okoliczności, wymaga szczególnej ostrożności i nie powinno być mylone z sytuacjami, w których można podjąć ryzyko. Przykłady nieprawidłowych działań podejmowanych w sytuacjach, które nie są związane z ratowaniem życia, mogą prowadzić do poważnych wypadków, w tym porażenia prądem, co czyni te odpowiedzi nieodpowiednimi. Bezpieczeństwo w miejscu pracy, zwłaszcza przy działaniach elektroinstalacyjnych, jest kluczowe i musi być zawsze przestrzegane zgodnie z obowiązującymi normami oraz przepisami prawa.

Pytanie 38

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 30 mA
B. 500 mA
C. 1 000 mA
D. 100 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 39

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego
B. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
C. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
D. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
Analizując inne odpowiedzi, można zauważyć, że każda z nich zawiera istotne błędy w ocenie stanu technicznego transformatora. Wskazanie na uszkodzenie transformatora, takie jak zwarcie międzyzwojowe po stronie wtórnej, jest nieuzasadnione, ponieważ zwarcie zazwyczaj skutkuje poważnymi problemami z napięciem i prądem, a w analizowanym przypadku stwierdzono jedynie zmiany w obciążeniu. Z kolei sugestia, że zmiany napięcia i prądu wynikają ze zmniejszenia napięcia zasilającego, jest błędna, ponieważ zmniejszenie napięcia zasilającego powinno skutkować obniżeniem napięcia po stronie wtórnej, co nie miało miejsca w tej sytuacji. Chociaż przerwy po stronie wtórnej mogą powodować istotne zmiany w parametrach pracy transformatora, to jednak nie są one adekwatne do opisanych objawów. Kluczowe w tej analizie jest zrozumienie, że transformator w prawidłowych warunkach pracy powinien wykazywać stabilność napięcia oraz prądu, co potwierdza jego poprawną funkcjonalność. W przypadku wystąpienia jakichkolwiek anomalii, istotne jest przeprowadzenie szczegółowej analizy obciążenia oraz charakterystyki podłączonych odbiorników, aby uniknąć mylnych wniosków związanych z uszkodzeniami transformatora.

Pytanie 40

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.